Skip to main content

ART-Based Neuro-fuzzy Modelling Applied to Reinforcement Learning

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2774))

  • 962 Accesses

Abstract

The mountain car problem is a well-known task, often used for testing reinforcement learning algorithms. It is a problem with real valued state variables, which means that some kind of function approximation is required. In this paper, three reinforcement learning architectures are compared on the mountain car problem. Comparison results are presented, indicating the potentials of the actor-only approach. The function approximation modules used are based on NeuroFAST ( Neuro- Fuzzy ART-Based Structure and Parameter Learning TSK Model). NeuroFAST is a neuro-fuzzy modelling algorithm, with well-proven function approximation capabilities, and features the functional reasoning method (the Takagi-Sugeno-Kang fuzzy model), Fuzzy ART concepts and specific techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baird, L.C.: Reinforcement learning in continuous time: Advantage updating. In: Proc. of IEEE Intl. Conf. on Neural Networks (ICNN 1994), Orlando, Florida (1994)

    Google Scholar 

  2. Baird, L.C.: Residual algorithms: Reinforcement learning with function approximation. In: Prieditis, A., Russell, S. (eds.) Proc. of 12th Intl. Conf. on Mach. Learn., pp. 30–37. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  3. Baxter, J., Bartlett, P.L.: Reinforcement learning in POMDP’s via direct gradient ascent. In: Proc. of 17th Intl. Conf. on Machine Learning, Stanford, CA (2000)

    Google Scholar 

  4. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting, and Control. Holden Day, San Francisco (1970)

    Google Scholar 

  5. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely approximating the value functions. In: Tesauro, G., Touretzky, D. (eds.) Advances in Neural Information Processing Systems (Proc. of 1994 Conf.), San Mateo, CA, pp. 369–376. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  6. Carpenter, G.A., Grossberg, S., Rosen, G.A.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4, 759–771 (1991)

    Article  Google Scholar 

  7. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. on Neural Networks 3(5), 698–712 (1992)

    Article  Google Scholar 

  8. Gordon, G.: Stable function approximation in dynamic programming. In: Proc. of 14th Intl. Conf. on Machine Learning, Nashville, TN (1997)

    Google Scholar 

  9. Kimura, H., Kobayashi, S.: An analysis of actor/critic algorithms using eligibility traces: reinforcement learning with imperfect value functions. In: Proc. of 15th Intl. Conf. on Mach. Learn., Madison, Wisconsin, pp. 278–286 (1998)

    Google Scholar 

  10. Konda, V.R., Tsitsiklis, J.N.: Actor critic algorithms. In: Advances in Neural Information Processing Systems (Proc. of the 1999 conference), Cambridge, MA, vol. 12. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Lin, C.-J., Lee, C.S.G.: Neural Fuzzy Systems: a Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  12. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  13. Mamdani, E.H., Assilian, S.: Applications of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Elec. Eng. 121, 1585–1588 (1974)

    Article  Google Scholar 

  14. Moore, A.W., Atkeson, C.G.: The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces. Machine Learning 21, 1–36 (1995)

    Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, Cambridge, MA, vol. 12, pp. 1057–1063. MIT Press, Cambridge (1999)

    Google Scholar 

  17. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans on Syst., Man, Cybern. 15, 116–132 (1985)

    MATH  Google Scholar 

  18. Tzafestas, S.G., Zikidis, K.C.: NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model. IEEE Trans on Syst., Man, Cybern. 31(5), 797–802 (2001)

    Article  Google Scholar 

  19. Tzafestas, S.G., Zikidis, K.C.: High Accuracy Neuro – Fuzzy Modeling. In: IEEE Int. Conf. on Artificial Intelligence Systems (IEEE ICAIS 2002), Divnomorskoe, Russia (2002)

    Google Scholar 

  20. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 229–256 (1992)

    MATH  Google Scholar 

  21. Zikidis, K.C., Tzafestas, S.G.: Adaptive neuro-fuzzy modeling applied to policy gradient reinforcement learning. In: 5th Hellenic European Conference on Computer Mathematics & its Applications (HERCMA 2001), Athens, Greece (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zikidis, K.C., Tzafestas, S.G. (2003). ART-Based Neuro-fuzzy Modelling Applied to Reinforcement Learning. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2774. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45226-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45226-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40804-8

  • Online ISBN: 978-3-540-45226-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics