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Abstract. Emerging applications using miniature electronic devices (e.g.,
tracking mobile objects using sensors) generate very large amounts of
highly dynamic data that poses very high overhead on databases both in
terms of processing and communication costs. A promising approach to
alleviate the resulting problems is to exploit the application’s tolerance
to bounded error in data in order to reduce the overheads. In this paper,
we consider imprecise spatial data and the correlation between the data
quality and precision requirements given in user queries. We first provide
an approach to answer spatial range queries over imprecise data by asso-
ciating a probability value with each returned object. Then, we present
a novel technique to set the data precision constraints for the data col-
lecting process, so that a probabilistic guarantee on the uncertainty in
answers to user queries could be provided. The algorithms exploit the
fact that objects in two-dimensional space are distributed under certain
distribution function. Experimental results are also included.

1 Introduction

With the rapid development of wireless communication devices and sensor net-
works, wide variety of applications that require efficient access to and manage-
ment of dynamic spatial-temporal data have emerged. Examples include traffic
control, vehicle navigation, battle field monitoring and mobile communication
analysis. Due to the dynamic nature of the data, many issues [2] arise on collec-
tion, storage and query of such data.

In many such applications, data is generated at a rapid rate(often continu-
ously). It raises significant challenge for the database server where data is stored,
as well as the communication networks through which the data flows to the
server. Existing data management systems, as well as communication networks
do not possess the bandwidth and capability required to sustain the data gen-
erating rate. The problem is further exacerbated when bandwidth is limited or
network wireless electronics(e.g. sensors) have limited resource(e.g. power). Re-
cent research has provided various techniques, including compression and model
adaptation [3]. Deliberately accepting approximate data is another important
approach to reduce data size and associated cost, if the imprecision could be
tolerated by user applications posed on the collected data.



In this paper, we consider the situation in which users have specific require-
ments on the accuracy/certainty of the answers. The problem we address is how
data precision can be set during data collection so as to meet the application
requirement. Other issues related to how the spatial-temporal data can be stored
at the server(see [10] and [11]) or indexing approaches to optimize query perfor-
mance(see [14], [15] and [13]) are not considered.

The rest of the paper is organized as follows: In next the section, we provide a
formal description on the problems we are going to address. Section 3 illustrates
how uncertainty from imprecise data could be propagated to and presented in
query answers. In section 4, we present our proposed algorithms on setting pre-
cision requirements to guarantee small uncertainty in answering user queries.
Experimental results are presented in section 5. Section 6 concludes the paper.

2 Problem Formulation

The first problem we will discuss deals with answering range queries with im-
precise cached data. Let e represent the imprecision of a object location. If we
know from the database the object location at certain time instant, its real
physical location may be at any point within a distance of e from that cached
location. Thus, an object location could be represented graphically using a circle
area(referred as ”uncertain area” henceforth). In another word, a point object
will be represented by an object with physical extent. The probability density
distribution of the exact object location in the circle area should be decided by
the data collection process. In this paper, we make the assumption that a given
object is equally likely to be anywhere in its uncertain area.

Let R represent a query region. A typical range query is “return all the objects
that are located in R”. A COUNT query is “return the number of objects that
are located in R”. Due to the fact that there exists uncertainty with the exact
location of objects, it is impossible to provide exact answers to these queries. In
section 3 we discuss how to process these queries. Here we introduce a couple of
more concepts to facilitate later discussions.

MUST set: The set of objects that “must” be located within the query range.

MAY set: The set of objects that “may” be located within the query range.

ANS set: It is the approximate answer set of objects whose cached locations
are in the query region.

We further represent the number of objects in a MUST set as Ng, number
of objects in a M AY set as N,,, and number of objects in an AN.S set as Ny.

Absolute Uncertainty 0,: J, is the size of M AY set (0, = Nyy,).

Relative Uncertainty J,: J, is the ratio of N, to N, (6, = ]]\\7,)
q

In our second problem, we assume that there is a requirement on the degree
of uncertainty that could appear in answering user queries. The task is to set



precision constraints to all location data(e.g. using a quality-aware data collec-
tion middleware), so that the specified requirement is satisfied. Formally, the
problem can be stated as:

Given a requirement that the answer to a random range COUNT query on ob-
jects in a two-dimensional space should have uncertainty 6 < dg with probability
P > Py, find the largest possible imprecision value e for all location data.

0o and Py are constants specified by users or database servers. Some times,
we also refer to Py as the confidence level. Although in this paper we address
how to solve the above problem based on COUNT queries, other type of ag-
gregate queries could be handled in a similar way. We solve this problem using
probabilistic analysis in section 4.

3 Answer Range Queries over Imprecise Data

In this section, we show how to answer the two range queries described earlier.
Although the process is straightforward, the format of results is important for
further discussions in the later sections. Here different objects may have differ-
ent imprecision e. Note although we assume a uniform probability distribution
of object location across the uncertain area, any type of known probability dis-
tribution is applicable.

3.1 Return Objects in a Given Range

The task of returning objects within a given query range can be accomplished by
modifying the traditional spatial query processing technique that deploys tree
structures. The first modification is that the point objects are now represented
by objects with non-zero extents—the uncertain area with radius e(see figure 1).
To handle the fact that some objects are not fully contained in the region, an-
other modification is needed to associate each returned object with a probability
value(p;) to indicate how likely the object can really be in the query region.
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Probability value p; is 1.0 for those objects whose uncertainty area is com-
pletely contained by the given query region. For objects whose uncertainty areas
overlap with query region, p; could be computed as the cumulative probability
represented by the overlapping area. Under the assumption of uniform proba-
bility distribution, we have: p; = %, where A; is the overlap area that can be
computed from geometric parameters.

3.2 Return COUNT of Objects in a Given Range

To answer COUNT queries, the format of answers needs to be specified first.
Possible options are {min, maz}, {min, max, mean}, {min, max, mean,var},
and {(min, Ppin), (min + 1, Ppint1), .., (Max, Prmay)}. Note that here we use
upper case P to represent the probability that COUNT takes a specific value.
Lower case p is used to represent the probability with which an object could be
in a query region. A server can produce all the information needed in the above
answer formats, given its capability to answer the query discussed in section 3.1.
Here we summarize the process to compute the above answers.

Let the first Ny objects in the answer set be the ones from MUST set.
Then, we know p; = 1 for all 1 < ¢ < N,. An immediate result is that min =
|[MUST| = Ny and max = |[MUST|+ |[MAY| = N5+ Ny,,. Mean is summation
of p;’s of all relevant objects. And variance can be evaluated as:

Ns+Npm
variance = Z P(COUNT = k)(k — mean)? (1)
k=0

The probability for individual COUNT value can be computed by summa-
tion of probabilities of events that yield the COUNT'. For example, below is the
probability that COUNT takes value of min + 1.

Ns+Nm

P(COUNT =N, +1)= Y p[[Jd=p))] (2)

Lj=Netl i

Among the four answer formats, the more detailed formats require more
computation as well as larger answer sizes. Choosing a proper format should be
a task of database server based on user requirements. In next section, we base
our discussion on the second format.

4 Set Data Precision Constraints to Meet Application
Requirements

As shown in the previous section, aggregate range queries can be answered in
form of {min, max, mean}. For COUNT query, max — min is determined by
information on the size of query range, object density in the area of interest, and
the location data precision. Figure 2 illustrates the above factors under a typical



query scenario. Intuitively, the smaller e is, the smaller the shaded area A,, is
and thus the smaller the absolute uncertainty is. In this section, we develop
a precision constraint on e so that we can have a probabilistic guarantee on
uncertainty. Usually, high confidence on small uncertainty is desired.

There are many factors in the real world that complicate the problem. Certain
assumptions have to be made to simplify the problem. First, we assume objects
are uniformly distributed on the space of interest, with density known as d.
In another word, any object is equally likely to appear anywhere in a given
space. In most applications, locations of moving objects may display certain
pattern(e.g., many vehicles are on highway 405). However, a space could be
partitioned into different areas that approximately have uniform densities. For
example, density of mobile phone users in a community area can be different from
that on a campus. With the partitioning, data imprecision can be set differently
for different areas. For the regions that contain parts of neighboring areas, data
precisions can be set with the density that can provide conservative result. It is
also possible for a specific application to estimate the upper and lower bound
of object densities in the application scenario and choose a conservative bound
for analysis. Density can be estimated by sampling the interested area. Second,
we will set the same imprecision e to all location data. Although it could be
more beneficial to set different imprecision to different object location data, the
problem with various data precision will become very complicated. And that
remains a topic of future work. We also assume a typical range query is over a
range with dimension a x b. And it could be positioned anywhere in the space.

4.1 Geometric Representation and Probabilistic Properties

We can visualize the M AY set and MUST set in the answer to a range query
by areas in figure 2. The inner rectangle area A, in the figure corresponds to
MUST set. Similarly, the shaded area A,, corresponds to M AY set. All the
objects falling outside of these areas are irrelevant. These conclusions are based
on the observation that any circle centered within A,, must intersect with query
window and the corresponding object has non-zero probability of both being
within query region and being outside the region. Also notice that ANS set is
represented by the query window R. Geometric calculations yield the following
results: As = (a — 2¢)(b — 2¢e) and A,,, = 4(a + b)e — (4 — 7)e.

Corresponding to Ns, N,,, and N, introduced earlier, we use ns, n,,, and
nq to denote variables (not actual outcomes) of number of objects with cached
locations in Ag, A, and query region respectively. From probability theory [1],
we know that they are Poisson variables, with means of Ay = Agd, A, = And,
and A; = abd. In the following analysis, we first make an assumption that n,, and
ng are independent variables. This is valid when the overlap(hence, correlation)
between A,, and R is small. When the assumption is not valid, we use heuristic
method to improve the performance.



4.2 Probabilistic Guarantee on Absolute Uncertainty

The problem to be solved here is “Find a constraint on e, such that with probabil-
ity P > Py, a randomly positioned range(a x b) COUNT query will be answered
with §, < dg.”. The desired solution should be some constraint on e, such that
P(ny < 00) > Py. Since n,, is a Poisson variable with mean \,, = A,,d, its
probability density function and cumulative probability distribution function
are:

e~ Am A\
P, =—-" 3
e ®)
% e~ Am A\
P(nm < 50) = Z T{” (4)
N =0 me

We observe ! that when ), becomes smaller, P(n,, < d) gets larger. This
observation of monotonicity tells us that if eg is the value of e such that P(n,, <
do) = Py, we will guarantee P(n,, < d9) > Pp when e < eg,. Now the problem
becomes to find the A, that enables P(n,, < dy) = Py. There exist many ap-
proaches to deal with this problem, including programs implementing numerical
methods or employing Poisson Cumulative Probability Table. With A,, com-
puted, eg can be obtained by solving the equation: [4(a+b)e — (4 —m)e?]d = Ap,.

4a+)—/16(a+ )2 —4(4 )2

0= 204 — ) (5)

We conclude that e < ep is the desired constraint that guarantee, with prob-
ability Py or higher, a random COUNT query will be answered with absolute
uncertainty &, < dg. Since we exploited the exact Poisson cumulative distribu-
tion in the above process, the ey so obtained is the optimal tight bound on e
that satisfies the uncertainty constraint.

4.3 Probabilistic Guarantee on Relative Uncertainty

In this subsection, we will try to “find a constraint on e, such that with probability
P > Py, a randomly positioned range(axb) COUNT query will be answered with

6r < 0g.”. In a random query, §, is represented by T;L—: The problem becomes to

< dp) > Py. Since n,, and n, are Poisson

Nm

find a constraint on e such that P(2
q

variables, we can develop cumulative probability function for ==
q

50nq

P(Z_ZL <do) = Z Z p(nim,nq) (6)

ng=0n.,=0

! One easy way to look at this is to use figures of cumulative functions with different
means.



When n,, and n, are independent, we can express p(nm, 1q) as p(1m,)p(ng):

don.
0 - n 0Ma Nm
TN, B e NN e A\,
POy S0 =2 |y 2 = g
q ng=0 4 N =0 m

Since n, goes up to infinity, it is impossible to evaluate for exact cumulative
probability P (Z—*: < dp). But we can approximate the value by observing the fact
that when n, becomes large, the element to be summed in the outer summation
becomes very small. It is smaller than Poisson probability at value n,. Obviously,
the larger the upper bound of n,, the more accurate the approximation is. Also
note that the standard deviation of Poisson variable is square root of its mean
o = vV/\. Then using cAq as upper bound, where c is a constant larger than 1,
should yield a good approximation that is smaller than exact value.

(W™ dong

Pl < gy 3o (CA Ly AT (8)

n ! TN
q ng=0 8 N, =0 m

With this approximation, we can find A, that will guarantee P (Z—*: <do) > Pp.
And the corresponding e = eg can be evaluated using formula 5. Again, numerical
method should be deployed for finding A, (eg). In our experiment, we search for
Am(€0) starting from A, = dpA; when Py > 0.5. This is enabled by the fact that
the cumulative probability function is a monotonic function of A, (hence, eq).

We have so far showed how to set imprecision constraints on location mea-
surements so that a probabilistic guarantee could be provided on the answers
to random user queries. Between the two uncertainties we have defined, since
approximation is applied and correlation plays a role in developing bound with
relative uncertainty, the bound is not as tight as the one for absolute uncer-
tainty. On the other hand, relative uncertainty guarantee could still be preferred
by users, since people tend to have a percentage concept in mind.

5 Empirical Evaluation

In this section, we study the performance of the proposed algorithms for pro-
viding probabilistic guarantees through simulation. We compare the simulation
results of probability that a random query will be answered under given uncer-
tainty constraints with desired confidence values.

Data: In the simulation, we set the space of interest to be 100 x 100 in
two dimensions. The unit is not specified and it could vary from application to
application. Queries are randomly positioned in the 100 x 100 space and they
are all in same size—10 x 10. However, we change the object density(which is
uniform) from 0.05/square unit to 10/square unit. From statistics point of view,
changing query window size and changing object density have the same effect
on theoretical analysis, since both result in a change in the mean value.



Experiments on Various Densities: Our first experiment is done by
varying the density, while fixing the uncertainties at 10 or 10% and fixing the
confidence requirement at Py = 0.90, and computing tolerated imprecision value
e. Then simulations are conducted to count the numbers of returned objects in
different sets, N, and Ny, for each randomly generated query. The number of tri-
als is set to be 10000. This simulation gives us insight about how the algorithms
behave with different densities(thus, mean \,). Figure 3 shows the computed
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imprecision values and figure 4 shows the simulation results. It is easy to see
that the algorithm performs extremely well for absolute uncertainty constraint.
But for relative uncertainty constraint, the result is good only for large density
values and deteriorate when the density becomes smaller and smaller. This can
be understood, however, with a re_examination of the independence assumption
between n,, and n,. The assumption is valid only when the overlap between
M AY region and query region R is small and there are large number of objects
in query region. But when A, is small, the correlation between n,, and n, be-
comes too significant to be ignored. We adopt heuristic methods to improve the
performance. The curve “relative, adjusted” in above figures show the effect of
an adjustment, which is to use Py > 0.95 for constraint requirement Py > 0.90.
After this adjustment, for most of the densities larger than 0.5/square unit yield
good results. Experimental results show that a very small decrease in e will pro-
duce significant improvement on the confidence level. Although the results from
adjustments are not optimal, they are very close to optimal (which should be a
curve between the two “relative” curves) as shown in figure 3.

Experiments on Different Confidence Levels: Figure 5 and figure 6
show us empirical results on different confidence levels ranging from 0.80 to 1
with fixed uncertainties (6, = 10 or 6, = 10%) and density (dyp = 1). Again,
results for absolute uncertainty are very good. The adjusted experiments are
done by increasing the confidence level by 5% percent for Py values below 0.90
and increasing less(up to 0.96,0.97,0.98,0.99,0.995, 1, respectively) for other
confidence values. And the results are conservative after the adjustments.
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6 Related Work

The authors are not aware of any work on calibrating data for probabilistic un-
certainty guarantees in the domain of spatial range query. There are two closely
related areas, uncertainty management in information system and quality-aware
data collection, where substantial amount of research work has been conducted.

Uncertainty management in information system([5], [4]) deals with the uncer-
tainty management and reasoning in an information system. The work in section
3 of this paper can be viewed as a specific example of uncertainty management
in the domain of spatial range queries using probabilistic method. As a contrast,
[12] handled uncertainty in spatial database domain using method of fuzziness.
But the major contribution of this paper is on how to control the introduction
of uncertainty into an information system, which has not been addressed in the
area.

Quality-aware data collection is the most closely related work to this paper.
In this area, quality/precision requirements of query answers and quality in raw
data are connected, with the ultimate goal of satisfying query requirements while
minimize certain cost. For example, Yu et al. [6] addressed network monitoring
problems in which certain aggregate values in a network are approximated. Ol-
ston et al. [9] provided an adaptive data collection protocol to collect data with
certain precision requirements so that the application quality requirements of
a set of continuous queries could be met and the total communication cost for
collecting the data is minimized. However, most of the works in this area have
been concentrated on deterministic guarantees of user requirements. Usually in
the context of real time applications, more accurate data is available with more
cost. In contrast, in our problem, queries are on data collected before and thus
the precisions have been fixed.

There are also some other uncertainty-related works in literature. Schnei-
der [7] introduced fuzziness into the modeling of spatial data. Pfoser et al. [8]
addressed a problem in which the uncertainty is caused by low sampling rate.
These works are all different from our approach or our problem setting.



7 Conclusion

In this paper, we first described a query processing technique for aggregate
range queries over imprecise data. Then we presented algorithms to set precision
constraints on spatial data collection process to meet uncertainty constraints
when the data are used to answer user queries. The guarantees are probabilistic
and are discussed under the scenarios of using either absolute uncertainty or
relative uncertainty. Both theoretical analysis and experimental results showed
that the probabilistic guarantee based on absolute uncertainty yields a tighter
bound which enables larger tolerated data imprecision. And simple adjustments
on relative uncertainty method can be applied to improve its performance.
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