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Abstract. A common technique for improving performance in a
database is to decluster the database among multiple disks so that data
retrieval can be parallelized. In this paper we focus on answering range
queries in a multidimensional database (such as a GIS), where each of its
dimensions is divided uniformly to obtain tiles which are placed on dif-
ferent disks; there has been a significant amount of research for this prob-
lem (a subset of which is [1,2,3,4,5,6,7,8,9,11,12,13,14,15]). A declustering
scheme would be optimal if any range query could be answered by doing
no more than �# of tiles inside the range/# of disks � retrievals from
any one disk. However, it was shown in [1] that this is not achievable in
many cases even for two dimensions, and therefore much of the research
in this area has focused on developing schemes that performed close to
optimal. Recently, the idea of using replication (i.e. placing records on
more than one disk) to increase performance has been introduced. [7,
12,13,15]. If replication is used, a retrieval schedule (i.e. which disk to
retrieve each tile from) must be computed whenever a query is being pro-
cessed. In this paper we introduce a class of replicated schemes where
the retrieval schedule can be computed in time O(# of tiles inside the
query’s range), which is asymptotically equivalent to query retrieval for
the non-replicated case. Furthermore, this class of schemes has a strong
performance advantage over non-replicated schemes, and several schemes
are introduced that are either optimal or are optimal plus a constant ad-
ditive factor. Also presented in this paper is a strictly optimal scheme for
any number of colors that requires the lowest known level of replication
of any such scheme.

1 Introduction

A typical bottleneck in many systems is I/O; to reduce the effect of this bottle-
neck data can be declustered onto multiple disks to facilitate parallel retrieval of
the data. In a multi-dimensional database, such as a GIS or a spatio-temporal
database, the dimensions can be tiled uniformly to form a grid, and when an-
swering a range query in such a system, only the tiles that contain part of the
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query need to be retrieved. In such an environment, a declustering scheme at-
tempts to place the tiles on disks in such a way that the average range query is
answered as efficiently as possible. If the database is treated like a grid and the
disks as colors, then this can be stated as a grid coloring problem. For the rest
of the paper we use record and tile synonymously and likewise use declustering
and coloring interchangeably.

Given a database declustered on k disks and a range query Q contained on
m tiles, Q is answered optimally if no more than �m

k � tiles are retrieved from
any one disk. A declustering is called strictly optimal if all range queries can
be answered optimally, however it was shown in [1] that this is not achievable
except in a few limited circumstances. Thus there has been a significant amount
of work to develop declustering schemes that have close to optimal performance,
a sampling of which are in [2,3,4,5,6,9,11,14].

To improve performance further the idea of using replication (i.e. placing each
tile on multiple disks) has been introduced [7,12,13,15]. When replication is used
each tile in a query can be retrieved from multiple places which allows greater
flexibility when answering the query. In order to use replication an algorithm
for computing an optimal retrieval schedule is required (i.e. which disk do you
retrieve each tile from). Algorithms for computing this schedule are given in [7,
12,13,15]. The most general of these runs in time O(rm2 + mk) where r is the
most number of disks that a tile is stored on, m is the number of tiles to be
retrieved, and k is the number of disks. (For more information on work using
replication see Section 2). One problem with replication is that it adds a non-
negligible overhead to query response. In this paper we define a class of coloring
techniques, which we call the grouping schemes, for which a schedule of retrievals
can be computed in time O(# of tiles to be retrieved) (from here on we refer to
this as O(# of tiles)), which is asymptotically equivalent to the time required
to compute a schedule for a non-replicated scheme. This technique essentially
transforms existing coloring schemes into replicated schemes by placing disks into
groups and placing tiles on all disks in a group; when the group size is two this is
equivalent to RAID level 1. Previously, the only general strict optimal solution
for any number of disks was the Complete Coloring [7,15], which places each tile
on every disk. We introduce several new schemes that are either have strictly
optimal performance for all queries or will answer any query in no more time
than a strictly optimal scheme plus an additive constant; these new schemes have
the lowest known level of replication for such performance bounds. Furthermore,
these grouping schemes are shown to have stronger experimental performance
than schemes without replication.

The outline of this paper is as follows: Section 2 discusses previous work in
this area, in Section 3 the grouping schemes are introduced and schemes that
achieve strictly optimal performance or are a constant additive factor above an
optimal solution, Section 4 contains experimental data showing the performance
of the grouping schemes, and Section 5 concludes the paper.
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2 Related Work

Given an n-dimensional database with each dimension divided uniformly to form
tiles, if tiles are placed on different disks, then the retrieval of records during
query processing can be parallelized. The I/O time in such a system is time that
it takes to retrieve the maximum number of tiles stored on the same disk. The
problem of placing the records so that the response times for range queries is
minimized has been well studied; this section presents a survey of this work.

Given a database declustered onto k disks and a range query Q contained on
m tiles, an optimal tile declustering would require no more than �m

k � retrievals
from any one disk. It was shown in [1] that this bound is unachievable for all range
queries in a grid except in a few limited circumstances. Since there are many
cases where no scheme can achieve this optimal bound, several schemes have been
developed to achieve performance that is close to optimal. To quantify “close to
optimal”, define the additive error of a declustering scheme to be the maximum
over all range queries Q of the value (rettime(Q) − �m

k �), where rettime(Q) is
defined as the retrieval time for query Q (i.e. it is the maximum number of tiles
in Q retrieved from a single disk). These schemes include Disk Modulo DM [6],
Fieldwise eXclusive (FX) or [9], the cyclic schemes (including RPHM, GFIB, and
EXH) [11], GRS [4], a technique developed by Atallah and Prabhakar [2] which
we will call RFX, and several techniques based on discrepancy theory [5,14] (for
an introduction to discrepancy theory see [10]). Note that these are just a subset
of the declustering techniques that have been developed for this problem.

Suppose we are given k colors. The DM approach [6] assigns tile (x, y) to
(x + y) mod k. The FX approach [9] assigns tile (x, y) to (x ⊕ y) mod k. Cyclic
allocation schemes [11] choose a skip value s such that gcd(k, s) = 1 and assigns
tile (x, y) to (x + sy) mod k. The choice of the skip value, s, is what defines the
scheme. In RPHM (Relatively Prime Half Modulo), s is defined to be the integer
nearest to k

2 that is relatively prime to k. The GFIB (Generalized FIBonacci)
scheme defines s to be an approximate of the previous Fibonacci number (by
using the closed formula) that is relatively prime to k. The EXH (Exhaustive)
scheme takes all values of s where gcd(s, k) = 1 and finds the one that optimizes a
certain criterion, for example minimizing the additive error is a possible criterion.
Another class of schemes are the permutation schemes [4], in these schemes a
permutation φ of the numbers in {0, ..., k − 1} is chosen and then tile (x, y) is
assigned color (x−φ−1((y) mod k)). Examples of permutation schemes are DM,
the cyclic schemes, and GRS. In the GRS scheme [4] the permutation is computed
as follows: i) ∀i ∈ {0, ..., k − 1} compute the fractional part of 2i

1+
√

5
, and call

it ki and then ii) sort the values ki and use this to define the permutation. A
scheme based on the Corput set is defined in [14] that is similar to GRS except
that the ki values are a0

2 + a1
4 + a2

8 + ... + ak−1
2k where ak−1...a1a0 is the binary

representation of i. In [2], the RFX scheme was presented that was later found
in [3] to be equivalent to (x ⊕ yR) mod k, where yR is the (�log k�)-bit reversal
of y. For brevity, the details of higher dimensional schemes are not provided.



226 M. Atallah and K. Frikken

It was shown in [14] that the additive error for k colors in two dimensions
is Ω(log k), and that in d(≥ 3) dimensions it is Ω(log

d−1
2 k). In two dimensions,

schemes have been developed (RFX, GRS, and schemes based in discrepancy
theory [2,14]) that have a provable upper bound of O(log k) on additive error.
For higher dimensions d(≥ 3), two schemes are given in [5] with additive error
O(log(d−1) k), which are the schemes with the lowest proven asymptotic bound
on additive error. A recent trend has been to use replication [7,12,13,15] to
increase performance further. Several query scheduling algorithms have been
given in previous work, but the only general algorithm that works for any type
of replication is in [7] and runs in time O(rm2 +mk) where r is the most number
of disks that a tile is stored on, m is the number of tiles to be retrieved, and k
is the number of disks. In [12,13] it was proven that if tiles are stored on two
random disks then the probability of requiring more than (� (# of tiles/# of
disks) � +1) retrievals from a single disk for a random query approaches 0 as
the number of disks gets large. In [15] replication was used to achieve optimal
solutions for up to 15 disks. A strictly optimal scheme, called Complete Coloring
(CC), for any number of disks by storing all tiles on all disks was introduced
in [7,15]. The SRCDM scheme was introduced in [7], and has an additive error
no larger than 1, but requires the number of disks be a perfect square (n2) and
requires that each tile is placed on n disks.

3 Grouping Replication Scheme

In this section the grouping schemes are introduced. Section 3.1 defines some
notations that will be needed before defining this class of schemes. In Section
3.2, the grouping schemes are defined along with an algorithm that computes
the retrieval schedule in time O(#of tiles). Section 3.3 contains several schemes
that have an additive error that is 0 or is O(1). Finally, in Section 3.4 we provide
a strictly optimal coloring scheme that works for any number of colors.

3.1 Notations and Terminology

Before we can formally define the grouping schemes we need to define some
notation and terminology. A non-replicated coloring function C for d dimensions
and m disks is a function C : ℵd → {0, ..., m − 1}, essentially C maps a tile to a
disk. A replicated coloring function C with level of replication r for d dimensions

and m disks is a function C : ℵd →
r⋃

i=1
{0, ..., m − 1}i, essentially C maps a

tile to the set of disks (with size no more than r) that contain the tile. Since
the replicated coloring function is a generalization of the non-replicated coloring
function, we assume all coloring functions are replicated for the rest of the paper.
A convenient shorthand notation for coloring schemes is (C, m, r, d) which states
the coloring function C declusters a d dimensional grid onto m disks with a level
of replication r. Two coloring schemes (C, m, r, d) and (D, m, r, d) are said to be
equivalent if and only if there is a bijection f : {0, ..., m−1} → {0, ..., m−1} such
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that i ∈ C(x1, ..., xd) iff f(i) ∈ D(x1, ..., xd). Essentially schemes are equivalent
if there is a rearrangement of the colors that will make them identical, and it is
obvious that equivalent schemes have identical retrieval time for any query.

3.2 Definition of Grouping Schemes

A scheme is considered to be formed with groups if the colors are partitioned
into sets and tiles are assigned to partitions where assigning a partition to a tile
is equivalent to placing it on all disks in that partition. The motivation for this
class of schemes is to be able to distribute the additive error of the coloring that
assigns tiles to partitions among the different members of the partition. Hence,
the additive error of any one member of the partition will be smaller, and thus
reducing the additive error of the scheme.

Formally, a coloring scheme (C, m, r, d) is considered formed by groups if
the colors can be partitioned into sets S1, S2, ..., Sk with at least one set where
|Si| > 1 such that if C(x1, x2, ..., xd) = S and the following holds: if (Si ∩S) 
= ∅,
then Si ⊆ S. Such a scheme is called simple if the last constraint is changed to:
if (Si ∩ S) 
= ∅, then Si = S. A scheme formed by groups is said to have equal
partitions if each partition Si is identical in size, or equivalently |Si| = m

k for all
i.

It is possible to transform any coloring scheme (C, m, r1, d) into a scheme
formed by groups with equal partitions (of size r2) (C ′, mr2, r1r2, d), where C ′

is defined as: C ′(x1, ..., xd) =
⋃

s∈C(x1,...,xd)
{im + s|0 ≤ i < r2}, we denote this

transformation process by GROUP ((C, m, r1, d), r2) ((C, m, r1, d) is referred to
as the base scheme in what follows). A scheme defined with GROUP is simple
if r1 = 1. Now any scheme defined with GROUP is a scheme formed by groups
with equal partitions, but any scheme formed by groups with equal partitions is
equivalent to a scheme that can be defined with GROUP (proof omitted). We
call the set of schemes defined by GROUP the grouping schemes.

There have been scheduling algorithms defined for any replicated algorithm
that will work for any replicated scheme, but for simple grouping schemes (rep-
resented by GROUP ((C, m, 1, d), r)) there is a scheduling algorithm that runs in
time O(m) and executes with one pass over the tiles (see RetrieveTiles below).
The algorithm uses a function SetSchedule(tile,disk) which sets the schedule
to retrieve tile from disk.

begin RetrieveTiles(Query, (C, mr, r, d) = GROUP ((D, m, 1, d), r))
A[] := array initialized to 0 of size m.
forall t = (t1, ..., td) in Query do

c := C(t)
SetSchedule(t,c + A[c])
A[c] := ((A[c] + m) mod (mr))

endfor
end RetrieveTiles
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Thus simple grouping schemes can be used without having to incur the ad-
ditional scheduling costs of other replicated schemes. In addition to this, the
additive error of a grouping scheme with level of replication l is bounded by the
� o

l � where o is the additive error of the base scheme (see Theorem 3-3). Before
this can be proven we need Lemmas 3-1 and 3-2.

Lemma 3-1: If the coloring scheme (C, m, r, d) has an additive error of o,
then GROUP ((C, m, lr, d), l) will have a response time no larger than � � x

k �+o

l �
for x records.

Proof: For the x records the original coloring scheme will have at most
(�x

k �+ o) instances of any one color which means there will be at most (�x
k �+ o)

instances of any group. These values can be distributed equally among the l

colors in that group to obtain a maximum response time of � � x
k �+o

l �. QED

Lemma 3-2: � � x
k �+o

l � ≤ � x
kl� + � o

l �
Proof: Let x = a(kl)+ bk + c, where 0 ≤ b < l and 0 ≤ c < k. There are two

cases to consider: (b = 0 and c = 0) or (b 
= 0 or c 
= 0).

Case 1: (b = 0 and c = 0): � � x
k �+o

l � = � � a(kl)
k �+o

l � = �al+o
l � = a + � o

l � =
�a(kl)

kl � + � o
l � = � x

kl� + � o
l �

Case 2: (b 
= 0 or c 
= 0): � � x
k �+o

l � = � � akl+bk+c
k �+o

l � = �al+b+� c
k �+o

l � ≤ a +
� b+1+o

l � ≤ a + � l+o
l � = a + 1 + � o

l � = �a(kl)+bk+c
kl � + � o

l � = � x
kl� + � o

l �.
In either case � � x

k �+o

l � ≤ � x
kl� + � o

l �. QED
Theorem 3-3: If the coloring scheme (C, m, r′, d) has an additive error of o,

then GROUP ((C, m, r′, d), r) will have an additive error no larger than � o
r �.

Proof: Follows directly from Lemma 3-1 and Lemma 3-2. QED
This last theorem implies that the additive error for a coloring scheme can be

reduced by using this grouping method. Since the additive error can be reduced
the expected value above optimal will also be reduced. To summarize this section,
a class of replicated schemes can be defined with the GROUP transformation,
which we call the grouping schemes. A subset of these schemes are simple and for
this subset there are two significant benefits compared to non-replicated schemes
including: i) queries can be processed in time proportional to the number of
records which is asymptotically optimal, and ii) there is a performance increase.

3.3 Achieving Optimal and Constant Additive Error

In this section schemes with 0 and O(1) additive error are introduced.
Corollary 3-4: If a scheme (C, m, r1, d) is strictly optimal so is

GROUP ((C, m, r1, d), r2).
Proof: Since (C, m, r1, d) is strictly optimal the additive error will be 0, and

thus by Theorem 3-3, the additive error of GROUP ((C, m, r1, d), r2) will also
be 0, and thus is strictly optimal. QED

The previous corollary implies that any scheme with level of replication r
that is optimal for c disks can be transformed using GROUP into a scheme
that is optimal for ck disks with level of replication kr. It is possible to color a
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two dimensional grid optimally with 1, 2, or 3 (or 5 in 2-D) colors using RPHM
in two dimensions and DM in higher dimensions. Hence, it is possible to color
a grid with r, 2r, or 3r, (or 5r in 2-D) with level of replication r in a strictly
optimal fashion (by Corollary 3-4). Furthermore, these schemes are simple and
so RetrieveTiles can be used to retrieve the tiles in time proportional to the
number of records. The CC scheme described in [7,15] is the scheme defined
above that uses a base scheme with only 1 color. In addition to these optimal
schemes there are grouping schemes that achieve an additive error that is O(1).

Corollary 3-5: If a scheme (C, m, r1, d) has an additive error of O(f(m))
for some function f then is GROUP ((C, m, r1, d), x), where x > f(m) has an
additive error that is O(1).

Proof: Since the scheme (C, m, r1, d) has an additive error of O(f(m)), then
the additive error is bounded by af(m) for some constant a. Now by theorem 3-3,
GROUP ((C, m, r1, d), x) will have an additive error no larger than �af(m)

x � ≤ a
and thus is O(1). QED

The following is a table of grouping schemes with base schemes with m
colors that have an additive error which is O(1) but can be scheduled with
RetrieveTiles (it is assumed m is a power of 2 for the RFX scheme):

Level of Additive
Base Scheme Dimensions Replication Error

LHDM [8] d (m − 1)d−1 − 1 1
RFX, GRS, and

other schemes [2,3,14] 2 log m O(1)
RFX [2,3] 2 2 log m − 3 1

Schemes in [5] d logd−1 (m) O(1)

3.4 Generalizing Optimal Additive Error

In the previous section schemes were introduced that were strictly optimal, but
these schemes are applied in the situation where the number of colors was a
multiple of the number of colors in a base scheme that is optimal (i.e. 1, 2,
or 3 (or 5 in 2-D)). The CC coloring is an instance of the previous scheme
and is strictly optimal for any number of colors, but it requires that the level
of replication be the number of colors, which may be unreasonable for many
applications. In this section a strictly optimal scheme for any number of colors
is given with a level of replication close to half the number of colors.

The scheme presented here is a generalization of GROUP ((C, 2, 1, d), k)
where C is the DM coloring scheme that is strictly optimal for any number
of colors. In the case, where the number of colors is even, we are trivially done
using schemes discussed in the previous section. Suppose the number of colors
is odd (i.e. m = 2k + 1), to create a scheme for m colors place 2k of the colors
using the grouped DM scheme with level of replication k and then place the
entire database on the last disk. Note that the level of replication for such a
scheme for m disks is �m

2 �+(m mod 2) which is about m
2 . It can be proven that

this scheme is strictly optimal, but we omit this proof due to space constraints.
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A possible criticism of this scheme is that if you can place the entire database
on a single disk, then why not use the CC mechanism for simplicity. However, in
this case it is only required that a single disk be large enough to hold the entire
database. This may not be reasonable for large databases, but is reasonable in
some situations.

This generalized approach can be extended to grouping schemes with base
schemes with 3 (and 5 in 2-D) disks in a similar fashion (we omit the details due
to space constraints). It is not true however that if you have an optimal scheme
for k colors that if you put all tiles on another disk that the solution will be
optimal for k + 1 disks.

The scheme defined in this section constitutes a general strictly optimal
schemes with the lowest known level of replication. With some modification to
our scheduling algorithm the schedule can be computed in time O(# of records).
We give a verbal description of the algorithm here for when there are 2k +1 col-
ors and the scheme described above is used. Essentially there are two groups of
k colors and 1 extra color. We know that an optimal schedule is achievable so we
determine what optimal is, and call it o. Assign up to the first ko tiles of each
group to disks in that group, such that no more than o tiles are assigned to any
one disk, and if there are any tiles remaining after this has been done to both
groups assign these leftovers to the last disk which is not in either group.

4 Experiments

For this section, experiments were performed to compare the performance be-
tween grouped schemes with level of replication as 2 and non-grouped schemes.
The comparison criterion that is used is the expected deviation from optimal
for all queries. To compute the expected deviation from optimal for a col-
oring scheme (C, m, r, d) we compute the expected value from optimal of all
wraparound queries in an d dimensional grid with side lengths equal to m. There
is a finite number of queries in such a grid so this value can be computed ex-
actly for smaller m values, but is estimated for larger values. This estimation
is done by taking a random sampling of queries and computing the expected
deviation from optimal of these queries. It is worth noting that when an exact
value is computed that the maximum additive error found will be the maxi-
mum additive error in any grid (see [8], which can be generalized to grouping
schemes, but this generalization is omitted). To perform the comparison between
the replicated and non-replicated schemes we use a hybrid coloring. Given a set
of colorings this hybrid coloring uses the coloring that minimizes the expected
deviation from optimal for a specific number of disks, i.e. the hybrid coloring uses
the best coloring in the set for a specific situation. The comparison is figure 1 is
between the hybrid coloring of a set of non-replicated schemes and the hybrid
coloring for these schemes transformed with GROUP using level of replication
of 2.

The set of non-replicated coloring schemes used are DM [6], FX (for powers of
2) [9], RFX (for powers of 2) [2], RPHM [11], GFIB [11], GRS [4], and a scheme
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Fig. 1. Expected Deviation from Optimal for 2-D Schemes

based on the Corput set [14]. For the grouping schemes we use the grouped
version of these schemes with level of replication 2. When the number of disks
is no more than 40, exact values were computed, but estimates were used for
up to 140 disks. These estimates were made by looking at 5000 queries (chosen
randomly with uniform distribution) in the grid using the mean deviation as the
estimate. The results are displayed in Figure 1.

Figure 1 is interesting for several reasons. First, it shows that the estimate is
accurate for predicting the expected deviation for values up to 40. Also, it shows
that the grouping schemes perform far better than the non-replicated schemes,
since the expected deviation from optimal is 2-3 times larger for non-replicated
colorings than for grouping schemes. Thus if a replication level of 2 is used, then
range query performance will be improved substantially.

5 Conclusions

When declustering data, there are three inhibiting factors that may prevent the
usage of replication: i) there is not enough disk space on each disk to contain
enough information, ii) the slow down that occurs with query scheduling for
replication is too overwhelming, and iii) the benefit from replication is not sig-
nificant. We have introduced a class of schemes, called the grouping schemes,
which eliminate conditions (ii) and (iii). Condition (ii) is eliminated because the
grouping schemes can be scheduled in time O(number of tiles), and it was shown
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in Section 4, that these techniques perform extremely well even if the level of
replication is 2 which eliminates condition (iii). Thus an important conclusion
about the usage of replication can be stated: If there is enough room on the
disks to facilitate replication, then replication should be used. Furthermore, a
strictly optimal scheme for any number of colors with the lowest known level
of replication for such a solution was presented along with several schemes with
additive error that is O(1) were given that have fewer restrictions on the number
of disks and have a lower level of replication than previous schemes that achieve
an O(1) bound on additive error (the authors know of only one such previous
scheme, which is SRCDM).
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