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Abstract. In this paper, we propose a new feature selection criterion.
It is based on the projections of data set elements onto each attribute.
The main advantages are its speed and simplicity in the evaluation of
the attributes. The measure allows features to be sorted in ascending
order of importance in the definition of the class. In order to test the
relevance of the new feature selection measure, we compare the results
induced by several classifiers before and after applying the feature selec-
tion algorithms.

1 Introduction

The selection of relevant features is a central problem in machine learning. If
a relevant feature is removed, the measure of the remaining features will de-
teriorate. In order to identify relevant attributes, we need to address what a
good feature is for classification. Without defining the goodness of a feature or
features, it does not make sense to talk about best or optimal features. The
algorithms evaluate the attributes based on general characteristics of the data.

Feature Selection can be viewed as a search problem, where each state in the
search space specifies a subset of the possible features. The need for evaluation
is common to all search strategies.

In this paper, we propose a new feature selection criterion not based on calcu-
lated measures between attributes, or complex and costly distance calculations.
This criterion is based on a unique value called NLC. It relates each attribute
with the label used for classification. This value is calculated by projecting data
set elements onto the respective axis of the attribute (ordering the examples
by this attribute), then crossing the axis from the beginning to the greatest
attribute value, and counting the Number of Label Changes (NLC) produced.
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2 Related Work

Feature selection algorithms use different evaluation functions. Functions are
based in criterions to measure the relevance of the attributes. There are several
taxonomies of these evaluation measures in previous work, depending on differ-
ent criterions: Langley [9] group evaluation functions into two categories: filter
and wrapper. Blum y Langley [3] provide a classification of evaluation functions
into four groups, depending on the relation between the selection and the induc-
tion process: embedded, filter, wrapper, weight. Another different classification,
Doak [5] and Dash [4] provide a classification of evaluation measure based on
their general characteristics more then in the relation with the induction process.
The classification realized by Dash, separate five different types of measures: dis-
tance, information, dependence, consistency y accuracy. Feature Selection can
be viewed as a search problem, where each state in the search space specifies a
subset of the possible features. The need for evaluation is common to all search
strategies. In general, attribute selection algorithms perform a search through the
space of feature subsets, and must address four basic issues affecting the nature
of the search: 1) Starting point: forward and backward, according to whether it
began with no features or with all features. 2) Search organization: exhaustive
or heuristic search. 3) Evaluation strategy: wrapper or filter. 4) Stopping crite-
rion: a feature selector must decide when to stop searching through the space
of feature subsets. A predefined number of features are selected, a predefined
number of iterations reached. Whether or not the addition or deletion of any
feature produces a better subset, we also stop the search, if an optimal subset
according to some evaluation function is obtained.

3 Feature Evaluation

3.1 Observations

To discover main idea of the algorithm we base on the data sets IRIS and WINE,
because of the easy interpretation of their two-dimensional projections.

In Figure 1(a) it is possible to observe that if the projection of the examples
is made on the ordinate axis we can not obtain intervals where any class is a
majority. Nevertheless, for the Petalwidth attribute it is possible to appreciate
some intervals where the class is unique: [0,0.6] for Setosa, [1.0,1.3] for Versicolor
and [1.8,2.5] for Virginica. This is because when projecting the examples on this
attribute the number of label changes is minimum. For example, it is possible to
verify that for Petalwidth the first label change takes place for value 1 (setosa to
Versicolor), the second in 1.3 (Versicolor to Virginica). There are other changes
later and the last one is in 1.8.

In Figure 1(b) the same conclusion is reached with data set WINE. We
analyze the projection of data set elements onto C8 and C7 attributes. We
identify intervals where one class is a majority when crossing the abscissas axis
from the beginning to the greatest attribute value: [0,1] for class 3, [1.5,2.3] for
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Fig. 1. (a) IRIS. Representation of Attributes Sepalwidth-Petalwidth (b) WINE. Rep-
resentation of Attributes C8-C7

class 2 and [3,4] for class 1. Nevertheless, for C8 attribute on the ordinate axis
it is not possible to observe any intervals where the class is unique.

We conclude that it will be easier classify by attributes with the smallest
number of label changes. If the attributes are in ascending order according to
the NLC, we obtain a ranking list with the better attributes from the point
of view of the classification, in Iris this would be: Petalwidth 16, Petallength
19, Sepallenth 87 and Sepalwidth 120. This result agrees with what is common
knowledge in data mining, which states that the width and length of petals are
more important than those related to sepals.

Classifying IRIS with C4.5 by Sepalwidth only, we obtain 59% accuracy and
by Petalwitdth 95%. The attributes used in Figure 1(b) are the first and the last
on the ranked list, with a NLC value of 43 and 139 respectively. Applying the
classifier C4.5, we obtain 80.34% accuracy by C7 and 47.75% by C8.

3.2 Definitions

Definition 1: An example e ∈ E is a tuple formed by the Cartesian product
of the value sets of each attribute and the set C of labels. We define the
operations att and lab to access the attribute and its label (or class): att: E x
N → A and lab: E → C, where N is the set of natural numbers.

Definition 2: Let the universe U be a sequence of example from E. We will
say that a database with n examples, each of them with m attributes and
one class, forms a particular universe. Then U=<u[1],...,u[n]> and as the
database is a sequence, the access to an example is achieved by means of its
position. Likewise, the access to j-th attribute of the i-th example is made
by att(u[i],j), and for identifying its label lab(u[i]).

Definition 3: An ordered projected sequence is a sequence formed by the pro-
jection of the universe onto the i-th attribute. This sequence is sorted out in
ascending order.

Definition 4: A partition in constant subsequences is the set of subsequences
formed from the ordered projected sequence of an attribute in such a way
as to maintain the projection order. All the examples belonging to a sub-
sequence have the same class and every two consecutive subsequences are
disjointed with respect to the class.
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Fig. 2. Data set with (a) ten and (b) twelve elements and two classes

Definition 5: A subsequence of the same value is the sequence composed of
the examples with identical value from the i-th attribute within the ordered
projected sequence. This situation can be originated in continuous variables,
and it will be the way to deal with the discrete variables.

Definition 6: two examples are inconsistent if they match except for the class
label.

3.3 Description

The algorithm is based on this basic principle: to count the label changes of
examples projected onto each feature. If the attributes are in ascending order
according to the NLC we will have a list that defines the priority of selection,
from greater to smaller importance.

Before formally exposing the algorithm, we will explain in more detail the
main idea. Let us consider the situation depicted in Figure 2(a), with ten el-
ements numbered and two labels (O-odd numbers and E-even numbers): the
projection of the examples on the abscissas axis produces three constant subse-
quences {O,E,O} corresponding to the examples {[1,3,5][8,4,10,2,6][7,9]}. Identi-
cally, with the projection on the ordinates axis we can obtain six constant subse-
quences {O,E,O,E,O,E} formed by the examples {[1][2,4][3,9][6,10][5,7][8]}. We
check that the first attribute has two label changes and the second one has five.
Applying our hypothesis, the first attribute is more relevant than the second
one, because it has a smaller NLC.

4 Algorithm

The algorithm is very simple and fast (Table 1). It has the capacity to operate
with continuous and discrete variables as well as with databases which have
two classes or multiple classes. For each attribute, the training-set is ordered
(QuickSort [7], this algorithm is O(n log n), on average and we count the NLC
throughout the ordered projected sequence.



NLC: A Measure Based on Projections 911

Table 1. Main Algorithm

Input: E training (N examples, M attributes)
Output: E reduced (N examples, K attributes)

for each attribute Ai ∈ 1..M
QuickSort(E,i)
NLCi ← NumberChanges(E,i)

NLC Attribute Ranking
Select the k first

Table 2. NumberChanges function

Input: E training (N examples, M attributes), i
Output: number of label changes
for each example ej ∈ E with j in 1..N

if att(u[j],i) ∈ subsequence of the same value
changes = changes + ChangesSameValue()

else
if lab(u[j]) <> lastLabel)
changes = changes + 1

return(changes)

Applying the algorithm to the example of the Figure 2(b) we obtain the
ordered projected sequences:

{1, 3, 4, 10, 2, 11, 8, 9, 6, 12, 5, 7}

{1, 11, 4, 8, 3, 9, 10, 6, 2, 12, 5, 7}
and the partitions:

{[1, 3][4, 10, 2][11, 8, 9, 6, 12, 5, 7]}
{[1, 11][4, 8][3, 9][10, 6, 2, 12][5, 7]}

The elements’ projections onto the first attribute produce two constant sub-
sequences and one subsequence of the same value with different labels. The
elements’ projections onto the second attribute produces five constant subse-
quences.

NumberChanges considers whether we deal with different values from an at-
tribute, or with a subsequence of the same value (this situation can be originated
in continuous and discrete variables). In the first case, it compares the present
label with the last one. Whereas in the second case, where the subsequence is
of the same value, it counts the maximum possible changes by means of the
function ChangesSameValue.

In the attribute represented on the ordinates axis (b) in Figure 2(b), we
see several subsequences of the same value with the same label, then, we deal
with constant subsequence, and the result is four label changes (NLC=4). In
the attribute on the abscissas axis (a), the first two partitions are constant
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subsequences, and the third is a subsequence of the same value with two labels.
Therefore, we consider the maximum possible NLC.

In the previous case, we have the subsequence [11,8,9,6,12,5,7] where four
elements are class O (odd) y three class E (even). There are two reasons for
counting the maximum NLC: first, we want to penalize the attribute in these
inconsistency situations; and second, we want to avoid ambiguities that could
be produced depending on the elements order after algorithm QuicSort is ap-
plied. For example, in different independent executions, we could obtain these
situations: [E,E,E,O,O,O,O], [E,E,O,O,O,O,E], [O,O,E,E,O,O,E],. . . with NLC
equal to 1, 2 and 3 respectively. ChangesSameValue returns 5, the maximum.
The situation is: [O,E,O,E,O,E,O]. This can be obtained with low cost. It can be
deduced counting the class’ elements in the subsequence without resorting the
elements.

We conclude that the attribute b with four NLC is more relevant that the
attribute a with seven NLC.

5 Experiments

In this section we compare the quality of selected attributes by the NCL mea-
sure with the selected attributes by the other two methods: Information Gain
(IG) [10] and the ReliefF method [8]. IG has been chosen because it is the more
popular concept and it is used more when you want to evaluate the relevance
of an attribute. And the ReliefF method has been chosen because it is widely
referenced in other papers. The ReliefF method is a version of the Relief method
by Kononenko, wich permits attributes with missing values and multiclass prob-
lems. The quality of each selected attribute was tested by means of three clas-
sifiers: the Naive Bayes [6], C4.5 [10] and 1-NN [1]. The implementation of the
induction algorithms and the others selectors was done using the Weka library1

and the comparison was performed with eighteen databases of the University
from California Irvine [2]. The data sets were chosen with few missing values.

The process followed to test the quality of the attributes selected with the
NCL measure was the following. For all original data sets, we obtained the
accuracy using the three classifiers and the size of the decision trees induced by
C4.5. We obtained the same measures after applying each selector algorithm,
recording the number of attributes selected.

To asses the obtained results, two paired t statistical tests with a confidence
level of 95% were realized

In order to establish the number of attributes in each case, we obtain a ranked
list of features with the three method and we use the learning curve to observe
the effect of added features. Starting with one feature (the most relevant one
first) and gradually adding next most relevant feature one by one, we calculate
its accuracy rate. We select the set of attributes with the best accuracy. Applying
a different classifier, we obtain a different set.
1 http://www.cs.waikato.ac.nz/ ml
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For each database (DB), the measures were estimated taking the mean of
a ten fold cross validation. A ten-fold cross-validation is performed by dividing
the data into ten blocks of cases that have an approximately similar size, and
for each block in turn, testing the model constructed from the remaining nine
blocks on the unseen cases in the hold-out block (Figure 3(a)). The same folds
were used for each algorithm training-sets.

Each reducing method was given a training set (DB N.data) consisting of
90% of the available data, from which it returned a subset DB METHOD N
(Figure 3(b)), where METHOD is one of NLC, RLF, IG, N is a value in 0,1,...,9
and includes a classifier to obtain the learning curve (Figure 4). We use the same
classifier that we are going to classify the test set. For example, from DB 1.data
we would obtain DB IG 1.data by applying the IG method. The remaining 10%
of the unseen data (DB N.test) was also reduced (DB METHOD N.test) (Fig-
ure 3(b)) and tested on the instances of DB METHOD N.data using a clas-
sifier (Figure 3(c)). For example, we obtain iris ig 1.data by applying the IG
method to the iris 1.data file generated by the cross validation. Afterwards, we
use iris ig 1.data to classify iris ig 1.test by means of the nearest neighbor tech-
nique. When we deal with the learning curve, we also apply 1NN (Figure 4).

As a further comparison, another widely-used learner, C4.5 and NB, was
run on these data sets (Figure 3(c)). For example, after reducing iris 3.data
with NLC, iris nlc 3.data was generated, it was given as input to C4.5 and the
decision tree generated was used to classify the iris nlc 3.test file (test files are
reduced too).

If we consider all the possible results that we get using the original data, the
three selection methods (NLC, RLF and IG) and the three classifiers (C4.5, 1NN
and NB) with eighteen data sets taking the mean of a 10-fold cross validation,
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Table 3. Accuracy obtained with C4.5, 1NN and naive Bayes, selecting the subset
with the best accuracy

Data C4.5 1NN NB
C4.5 NLC 1 2 3 RLF IG 1NN NLC 1 2 3 RLF IG NB NLC 1 2 3 RLF IG

anne 98.6 98.4 98.4 98.0 99.3 99.0 98.9 98.9 86.3 89.2 ◦ • 90.0 92.4
bala 78.4 78.4 78.4 78.4 86.9 86.9 86.9 86.9 88.8 88.8 88.8 88.8
germ 71.1 73.8 ◦ ◦ 70.5 74.5 72.4 69.7 70.8 71.0 74.8 75.5 73.4 74.7
diab 76.7 75.1 75.9 75.5 70.9 68.2 66.7 68.5 76.2 75.6 75.8 76.5
glas 69.2 70.1 71.0 67.3 70.5 71.9 • 75.1 74.2 45.8 56.6 ◦ ◦ 47.7 51.0
gla2 77.8 79.6 79.2 79.0 79.2 78.3 • • 89.0 89.0 61.9 69.9 ◦ ◦ 64.4 69.9
h-st 78.5 83.7 ◦ 80.4 85.2 74.4 79.3 ◦ • 79.6 83.3 84.1 81.9 • 85.2 84.4
iono 88.6 89.7 • 92.6 91.2 86.6 87.2 • 91.4 89.2 83.2 84.6 89.7 87.2
iris 94.0 92.7 94.0 92.7 95.3 93.3 93.3 93.3 95.3 92.7 • 94.0 92.7
kr-v 99.5 99.3 99.5 99.5 96.5 97.4 ◦ ◦ 98.3 96.9 88.0 90.4 ◦ • 94.0 90.4
lymp 78.3 74.9 77.7 76.3 79.7 77.0 83.0 77.8 83.8 83.8 81.8 83.8
segm 97.0 96.9 96.8 96.9 97.0 97.1 97.1 97.1 80.0 87.2 ◦ 87.2 87.2
sona 72.6 73.5 75.0 72.2 85.5 84.6 81.3 87.5 67.8 73.5 74.9 73.5
spli-2 94.4 94.0 94.0 94.2 73.9 90.0 ◦ 90.0 90.0 95.3 96.1 96.3 95.8
vehi 73.5 72.6 72.7 73.7 70.1 70.7 71.2 69.3 44.3 44.3 • 48.5 44.3
vowe 82.9 81.7 82.7 81.0 99.4 99.2 99.0 99.2 66.1 68.7 ◦ 69.2 69.1
wave 76.6 77.6 78.1 77.4 73.8 79.1 ◦ 78.2 79.1 80.0 80.7 • 81.4 80.7
zoo 93.1 94.1 93.1 92.1 96.0 97.0 95.0 95.0 95.0 95.0 91.0 92.1

we get two hundred and eighteen results ((1+3) × 3 × 18 = 216). Now we are
going to analyze these results to obtain some conclusions about the performance
of the different methods.

Table 3 shows a summary of the results of the classification using C4.5,
1NN and NB. Table shows how often each method performs significantly better
(denoted by ◦) or worse (denoted by •) than data without reduction (column
named 1), and better or worse than ReliefF (RLF) and Information Gain (IG)
(column 2 and 3 respectively). Then, we obtain fifty four results comparing NLC
with data without reduction (18 data sets × 3 classifiers = 54) and one hundred
and eight comparing NLC with RLF and IG (18 data sets × 3 classifiers × 2
= 108). NLC measure is better than data without reduction in twelve of the
fifty four cases, and in forty one are equal and only in one is worse than data
without reduction. Furthermore, in four of the one hundred and eight cases, the
set of attributes selected by the NLC measure yields better accuracy than the
two other methods. In ninety three they are equal, and in eleven they are worse
than the other.

We select the set of attributes with the best accuracy. Applying each classi-
fier, we obtain a different set. Therefore, we get three set of attributes for each
reduction method for each data set. We obtain the percentage of the original
features retained and we calculate the average over the eighteen data sets (nine
results). All the methods are between 50% and 60% of the original features.

The experiments show that by applying NLC, the knowledge attained in
the original training file is conserved into the reduced training file, and the
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Table 4. Accuracy obtained with C4.5, 1NN and naive Bayes, selecting the three first
attributes of the ranked list

Data C4.5 1NN NB
C4.5 NLC 1 2 RLF IG 1NN NLC 1 2 RLF IG NB NLC 1 2 RLF IG

anneal 98.6 89.9 • 92.5 90.6 99.3 91.1 91.6 91.6 86.3 84.0 • • 90.0 88.9
balance 78.4 69.4 69.4 69.4 86.9 68.0 69.6 67.7 88.8 74.2 73.6 73.3
g credit 71.1 70.9 71.5 72.2 72.4 61.2 • • 70.6 70.6 74.8 71.6 71.3 73.9
diabetes 76.7 74.6 74.7 75.1 70.9 69.8 66.7 69.3 76.2 77.1 76.4 76.8
glass 69.2 71.9 67.7 65.4 70.5 66.3 66.3 64.5 45.8 53.8 ◦ 45.8 49.1
glass2 77.8 81.4 77.9 81.4 79.2 77.9 83.4 77.9 61.9 68.7 63.8 68.7
heart-s 78.5 72.6 • 73.3 85.2 74.4 67.8 • • 73.3 84.8 84.1 74.8 • 74.8 79.6
ionosphe 88.6 80.4 • • 88.3 90.0 86.6 84.3 85.7 88.6 83.2 78.3 • 83.5 86.6
iris 94.0 94.0 94.0 94.0 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3
kr-vs 99.5 90.4 90.4 90.4 96.5 90.4 90.4 90.4 88.0 90.4 90.4 90.4
lymph 78.3 77.7 79.7 77.7 79.7 75.7 83.7 75.0 83.8 75.0 80.3 72.3
segment 97.0 90.5 ◦ ◦ 85.6 85.5 97.0 91.8 ◦ ◦ 85.3 88.5 80.0 77.0 ◦ ◦ 72.5 64.3
sonar 72.6 68.8 70.2 70.7 85.5 73.1 66.8 70.2 67.8 73.1 70.6 70.6
splice-2 94.4 80.5 81.4 80.8 73.9 80.2 81.2 80.6 95.3 79.6 81.1 80.7
vehicle 73.5 53.5 • • 62.4 61.4 70.1 53.7 56.0 57.7 44.3 40.4 42.8 40.8
vowel 82.9 69.1 70.6 72.1 99.4 79.6 80.1 82.8 66.1 57.9 56.0 58.7
waveform 76.6 66.2 64.5 65.3 73.8 57.0 56.3 56.4 80.0 65.1 66.1 64.9
zoo 93.1 84.2 ◦ 72.3 85.2 96.0 83.2 ◦ 71.3 87.2 95.0 84.2 ◦ 71.3 84.2

dimensionality of data is reduced significantly. We obtain similar results with
the other method, but needing much more time.

It is very interesting to compare the speed of attribute selection techniques.
We measured the time taken in milliseconds to select the ranking of attributes.
NLC is an algorithm with a very short computation time. NLC takes 792 mil-
liseconds in reducing 18 data sets whereas ReliefF takes 566 seconds and IG 2189
milliseconds. We obtain the percentage of reduction time of each data sets, and
we calculate the average. NCL reduce the computational cost to the 99% of the
time needed by ReliefF and 50% of the time needed by IG.

In order to compare the first attributes in the ranking list of each method,
we obtain Table 4 where the data sets are reduced to the first three attributes of
each ranking list. we observe the accuracy for each reduction method applying
the three classifiers. We obtain similar results with the three methods. Table
shows how often each method performs significantly better or worse than ReliefF
(RLF) and Information Gain (IG) (column 1 and 2 respectively). In ten of the
one hundred and eight cases, the set of attributes selected by the NLC measure
yields better accuracy than the two other methods. In eighty they are equal, and
in fourteen they are worse than the other.

6 Conclusions

In this paper we present a deterministic attribute selection criterion. The main
advantages are its speed and simplicity in the evaluation of the attributes. The
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measure allows features to be sorted in ascending order of relevance. A con-
siderable reduction of the number of attributes is produced. It is not based on
calculated measures between attributes, or complex and costly distance calcula-
tions. The computational cost is lower than other methods O(m × n × log n).

We conclude that by applying NLC, the knowledge attained in the original
training file is conserved into the reduced training file, and the dimensionality of
data is reduced significantly. We obtain similar results with the other method,
but needing much more time.
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