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Abstract

The main contributions of this thesis are four-fold. First, a new criterion based

on the Minimum Message Length principle specifically formulated for the task of

polynomial model selection up to the second order is presented. A structured de-

scription of most of the criteria commonly used for polynomial model selection is

also presented. Second, a programmed optimisation search algorithm for second-

order polynomial models that can be used in conjunction with any model selection

criterion is developed. Third, critical examinations of the differences in performance

of the various criteria when applied to artificial vis-a-vis to real tropical cyclone data

are conducted. Three different data sets are used: data generated from known ar-

tificial models, real climatological and atmospheric data from the Atlantic tropical

cyclone basin and artificial data generated based on the covariance matrix of the

real data from the Atlantic basin. Fourth, a novel strategy which uses a synergy

between the new criterion built based on the Minimum Message Length principle

and other model selection criteria namely, Minimum Description Length, Corrected

Akaike's Information Criterion and Structured Risk Minimization is proposed. With

this combinatorial strategy, polynomial models with increasing levels of complexity

can be made available. This enables human experts to study the level of contribu-

tion of each individual variable and make an informed decision on which model to

choose. Thus, whilst the combinatorial strategy converges to one best model in an

xviii



ABSTRACT

automated manner, it still allows human experts to choose models with higher/lower

levels of complexity than the proposed best model.

A concise description of the full application of this novel strategy for building a

tropical cyclone intensity change forecasting model from the collection of variables

involved and data pre-processing to the model selection procedure is outlined. The

forecasting model developed using this new automated strategy has better perfor-

mance than the benchmark models SHIFOR (Statistical Hurricane FORcasting)

and SHIFOR94 which are being used in operation in the Atlantic basin. Unlike

the benchmark models and all the other models in operational use, the new model

uses seasonal variables which have already been proven by atmospheric scientists to

have strong influence on the activity of cyclones in the Atlantic basin. This new

strategy can be used for any domain data which can be represented as second-order

polynomial models.
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Chapter 1

Introduction

This chapter provides a broad overview of polynomial model selection, criteria of

a good model, methods for selecting models, Minimum Message Length principle

for model selection and some background information of tropical cyclone intensity

forecasting research. This chapter also gives an outline of this thesis highlighting the

contributions made to polynomial model selection research and tropical cyclone fore-

casting research1. It provides the setting and motivations for the results presented

in the subsequent chapters of this thesis.

1.1 Polynomial Model Selection for Forecasting

Model selection is about finding structure from data. The goal of model selection

is to use a limited amount of sample data to find a model or a set of models that

best explain the structure of the data population. To achieve this goal, two main

tasks need to be carried out. The first is in selecting the variables that are useful

to be included in the model and the second is in finding the structure of the model.
1 An earlier version of parts of this chapter has been published in [45]



1.1. POLYNOMIAL MODEL SELECTION FOR FORECASTING

Finding the structure of a model involves two tasks. The first is in determining the

form in which the variables collaborate, e.g. Bayesian networks, neural networks,

decision tree, polynomials, etc. The second is in determining the degree of influence

each variable has in the model.

One use of a model is for the purpose of forecasting future values of a particular

variable. For a model that takes the form V?J. polynomial, for example, the values of

the variables of the model measured at one time are used to predict the value of one

other variable which is seen to be dependent on them. The dependent variable is

thus formulated as a polynomial function of the selected set of independent variables.

This thesis is about finding a model selection strategy which includes an optimi-

sation search algorithm to select variables and model selection criteria to evaluate

the ability of a model to predict future values. The form of the model is fixed to

be a second-order polynomial which may use the squares of variables and products

of two variables. For a given form, once the variables are selected, the coefficients

| of the variables are determined by computing a least squares solution to the data.

Hence, the way in which models differ is in the variables they use.

The form of the forecasting model was fixed because models based on the real

data used to test the model selection strategy proposed in this thesis already exist

and are in operational use in the Atlantic basin. Hence, the model to be built using

the new model selection strategy can be benchmarked against these models.

A model can be used to obtain a point estimate of the dependent variable, i.e.

given the values of the selected variables, a single value is obtained for the depen-

dent variable. A model can also be used to predict a probability distribution for the

dependent variable. For example, rather than predicting the intensity of a particu-

lar cyclone 24 hours into the future, the model would assign probabilities that the
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JJ . POLYNOMIAL MODEL SELECTION FOR FORECASTING

cyclone will intensify by up to certain intensity measurements. This kind of forecast-

ing requires an assumption of the type of probability distribution of the dependent

variable. This thesis will focus mainly on the point estimation problem.

In [94], Chris Wallace, the inventor of the Minimum Message Length principle, is

cited to have said that "measurement + modelling = science". Along a similar line,

Peter Tischer said that "measurement + mathematics = science". The task of build-

ing a model often involves data gathered from observations/measurements and data

of derived variables which are calculated based on some deterministic mathematical

modelling techniques. Both types of data are then used as input to some stochas-

tic modelling techniques. For example, for the task of building a tropical cyclone

forecasting model, data from field measurements, e.g. wind speed, humidity, as well

as derived variables such as potential intensity, prediction of cyclone direction, are

used as input to build a model. So in this case, the second component of the above

formulas includes not only the task of finding a model given the variables, but also

the task of generating derived variables from existing measurements.

In this thesis, the pool of variables from which the tropical cyclone intensity

forecasting models will be selected consists of the original set of measured variables

and derived variables calculated from them. Since the form of the models is fixed

to be second-order polynomial as explained earlier in this Section, such variables

include the squares of variables and the product of two variables. Chapter 4 will

discuss the measured variables and derived variables resulting from thermodynamic

computations of the variables.

Apart from for the purpose of forecasting, a model can be selected for the following

other purposes:

PI.



1.2. THE NUMBER OF VARIABLES IN MODEL

• To use variables thnx can be measured more cheaply to estimate the value of

a variable which happens to be expensive to measure

• To provide an explanation of the effects of the selected variables on the de-

pendent variable

The particular task of model selection explained so far is in selecting a model

which, based on the values of the selected variables, is able to determine the value of

the dependent variable. The variables concerned are usually continuous. A different

task of model selection is that of classification. In classification, each value of the

dependent variable represents a category which can be represented as a discrete

variable. A category represents a certain combination of values of the selected

variables. The task of finding a classification model is to find the selected variables

that can be used to determine the category of a given set of their values.

i

I

1.2 The Number of Variables in Model

A good forecasting model is one which yields predictions on future data with

• minimum bias, i.e. the sampling distribution of the prediction errors centers

on zero, and

• minimum variance, i.e. the spread of the sampling distribution of the prediction

errors is small

Given sample sets of data of the dependent and potential independent variables,

it is known that the more independent variables used in the forecasting model, the

better the fit to the sample set of the dependent variable can be. The aim is not
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to find a model that best fits the sample set it is built from, but for the model to

represent the general features of the function of the dependent variable so that it

can make good predictions on different sample sets. This means the model should

include enough of the independent variables to capture the general features of the

dependent variable and exclude those that only capture the features specific to the

particular sample set of the dependent variable from which the model is built.

1.3 The Correct Model

When dealing with a. real-world application domain where observational data are

used to build a model, the true model that represents the dependent variable is not

known. Hence, no model built using the sample data sets available can be said to be

correct. What can be shown is that some models are either consistent or inconsistent

with the data based on certain performance criteria.

In the face of the many forms a model can take, it is a common practice in

model selection research to make an assumption of the form the model should take.

For example, in this thesis, the form that the model is assumed to have is a second-

order polynomial. The model selection strategy will then find the set of independent

variables that constitute the polynomial model and the values of their individual pa-

rameters. The parameters represents the degree of influence an independent variable

has on the dependent variable. If a variable has no influence at all then the value

of its parameter is zero, i.e. the variable is not selected in the model. If, in reality,

the dependent variable is actually not representable in the form that the model is

assumed to have, then the predictive performance of the model may not be very

good.
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Poor predictive power can also be caused by poor quality of the data sets. The

existence of noise and/or erroneous measurements may lead to the wrong model

being selected. The detection and correction of outliers and the choice of a model

selection method that are robust in the presence of noisy data can help.

The absence of some influential independent variables in the pool of variables

to choose from may cause poor predictive power of the forecasting model selected

unless these missing variables can be substituted by a combination of other variables

in the model.

It is intrinsically difficult to build a forecasting model for some problem domains.

This is because the problem domain is chaotic. A slight change in the value of a

particular variable can significantly change the balance of the domain. In such a

domain, the forecasting model built may have limited predictive power but will still

be useful in assisting decision makers in making informed decisions. Examples of

this kind of domain are predicting the outcome of a lotto draw, stock market predic-

tions and tropical cyclone intensity forecasting. A tropical cyclone can strengthen or

weaken depending on the terrain, climatological, synoptic/environmental and sea-

sonal factors in the vicinity of the cyclone and the areas it is predicted to be Heading

to. The current and future states of these factors in these areas are difficult to know

for certain the further into the future the forecasting is to be done.

The starting point of the model selection research done in this thesis is therefore

the assumption that the dependent variable takes the form of a second-order poly-

nomial. The unknown quality and limited quantity of data sets make for a difficult

problem domain. The goal of the research is to design the best model selection

strategy to enable the best second-order polynomial forecasting model to be built

in an automated manner.
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1.4 Methods for Model Selection

Model selection is about comparing one model with another. In building a model, a

good model selection criterion should serve as a stopping rule of the selection process

when the best model has been found amongst all of the models considered.

For the task of automated model selection, the first test of the robustness of a

criterion is in its ability to recover the true model that has generated sets of artificial

data which have additional noise and irrelevant variables included in them. This

test is done in Chapter 3 using a set of true models for the model selection criteria

considered in this thesis.

If a model selection criterion manages to recover true models of artificially gener-

ated data, it has the potential to find a model that is consistent with the real data

presented to it within the assumptions and constraints of the model selection strat-

egy in place. This test is done in Chapter 5 in building tropical cyclone intensity

forecasting model for the Atlantic basin using the atmospheric and climatological

data sets seen to be influential to the tropical cyclone intensity data.

There are at least two categories of model selection criteria:

1. Criteria which require a separate test data set to decide on a model. These

methods require the data set to be divided into 2 parts. The first set of data,

the training data set, is used to calculate the parameters of the variables of a

model. The second set of data, the test data set, is used to compare and make

a choice between two models.

2. Complexity-penalised criteria. These methods require only one data set in

deciding on a model. They penalise more complex models, hence seek to find

the balance between the complexity of the model and the fit of the model to
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the data. When comparing two models with different complexities (number

of variables, order of polynomial, etc), these methods will choose the more

complex model only when the improvement in the fit to the data outweighs

the penalty attributed to the increase in model complexity.

In Chapter 2 of this thesis, model selection methods from both categories are

outlined and a new complexity-penalised criterion based on the Minimum Message

Length principle [19] for the task of second-order polynomial model selection is pre-

served. The performance of the methods are tested using artificial data in Chapter 3.

9

1.4.1 Minimum Message Length Principle

Minimum Message Length principle takes the form of a two-part message. The first

part represents the encoding of the model and the second part represents the encod-

ing of the residual between the origins* ';,-' ^ and the data calculated from the model.

When comparing two models, the more complex model will have a longer first-part

message, but may have a shorter second-part message, due to the improvement of its

fit to the data. The criterion of a better model in MML principle is one which yields

a shorter total two-part message. An MML model selection criterion avoids overfit-

ting the data at hand by choosing the model with the minimum level of complexity

and the maximum fit. This ensures that the fit to the data is due to the general

patterns captured in the model, not the noise pertaining to the particular data set

at hand. This way, the model chosen should perform as well in other sample data

sets taken from the same population. In this sense, MML model selection criterion

follows Occam's Razor principle, "It is vain to do with more when one could do with

fewer".

8
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(SENDER)

dependent variables

independent variables

model

residuals

model

residuals

(RECEIVER)

independent variables

Figure 1.1: MML metaphor of sending data over a communication line for the
problem of polynomial model selection. The task is to find an optimum way to send
data of the dependent variables from the sender to the receiver. MML principle
states that the cheapest way is by sending the optimum encoding of the model and
the residual data. The model is developed from the independent variables and the
residual data set is the difference between the model estimates and the real data of
the dependent variable

From information theory perspective, Minimum Message Length (MML) principle

takes the metaphor of sending data over a communication line between a sender and

a receiver. For the specific problem of polynomial model selection, this metaphor

can be explained with the assumptions that the sender has a data set of a dependent

variable and sets of data of independent variables which are known to be influential

to the dependent variable and the receiver has the data sets of the independent

variables. So, the independent variables are the fixed common knowledge owned by

both the sender and the receiver. The task is to find an optimum way to send the

data of the dependent variables from the sender to the receiver. This metaphor is

illustrated in Figure 1.1.

The most expensive way to get the data set to the receiver, in terms of the number

of bits required, would be to send the encoding of every single data point verbatim.

This is equivalent to what is known as a table lookup. The cheapest way would be

by first developing a model from the independent variables on the sender side and
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then sending the optimal encoding of the model and residual data (i.e. the difference

between the estimates of the dependent variables calculated from the model and the

real values of the dependent variables). The receiver can then calculate the true

values of the dependent variables from the model and residual data sent.

1.4.1.1 Applications of The Minimum Message Length Principle

As outlined in [94], research in the Minimum Message Length principle has always

been motivated by the need to solve real world problems. The article recorded that

MML research started in 1962 when Chris Wallace wrote a computer program to

classify grit particles found in cores drawn from oil wells as requested by an Aus-

tralian geologist. The challenge to build a generic automated classification program

led to the proposal of a two-part message as a measure of the suitability of a classifi-

cation and hence the Minimum Message Length principle [29, 30]. To date, SNOB,

the program built in 1966 [18], has evolved into an automated computer program

which cam quickly classify a large amount of data from a large number of discrete

or continuous variables. SNOB is publicly available and widely used in modelling

research.

Some real-world applications of the MML principle include learning the shape

patterns of megalithic stone circles [56, 60], finding models for DMA sequences [31,

76, 75, 77], predictions of bushfire activity [26], models for footy tipping compe-

tition [1], learning simple grammars [88], and learning prolog programs [107]. A

summary of existing applications of the MML principle can be found in [74],

An application of the MML principle to linear regression polynomial model selec-

tion problems has been discussed in [97]. The tasks in that thesis are in finding the

10
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polynomial-order of the variables from artificial data generated from known mod-

els. In contrast, this thesis deals with the problem of finding variables and their

combinations up to the second-order. To the best of my knowledge, this is the first

time the MML principle is used to find polynomial models from real tropical cyclone

data.

j ;

1.5 Optimisation Search Algorithms

The model selection criteria discussed in Section 2 are used to compare models. In

the selection process, the models to be compared are to be found using an optimisa-

tion search algorithm. A model selection criterion is used as the objective function

of the search algorithm. The task of an optimisation search algorithm is therefore

to find, amongst all the possible models considered in the search space, a model for

which the objective function yields the best/smallest value. This model is called

the global minimum of the search space relative to the objective function used. Ex-

haustive search algorithms which consider every single model available in the search

space will guarantee that the global minimum will be found. However, if the search

space is large, implementations of these algorithms might not be feasible due to the

time and the amount of computation resources required.

In the face of these constraints, research in this area focuses in finding algorithms

which do not consider all the possible models and yet manage to find a global op-

timum, i.e. a model which is good enough for the problem domain being studied.

Sometimes the speed in which this global optimum is four^ Is also taken into con-

sideration. One major criterion of a good optimisation search algorithm is in its

ability to escape or jump away from local minima to converge to a global optimum.

11
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The combination of a good optimation search algorithm and objective function is

imperative in model selection tasks. A programmed optimisation search algorithm

used for all of the objective functions outlined in Chapter 2 is given as a part of

Chapter 3.

1.6 Tropical Cyclones

Tropical cyclones2 are low pressure weather systems in the tropical seas, in which

the atmospheric pressure decreases to a minimum value at the centre ("the eye"),

with the winds blowing in a spiral inward toward this centre [8, p. 255]. This spiral

rotation is sustained by the coriolis force [64, p. 368] which is caused by the earth's

rotation. When viewed from space, the earth rotates clockwise in the southern

hemisphere and counter-clockwise in the northern hemisphere. Therefore tropical

cyclones have a well-defined clockwise wind rotations in the southern hemisphere and

counter-clockwise wind rotations in the northern hemisphere. Because the coriolis

force is zero at the equator, tropical cyclones only form beyond 5 degrees of latitude

from the equator [9, p. 170].

The World Meteorological Organization (WMO) based in Geneva, Switzerland,

divides the coastal areas affected by tropical cyclone around the globe into seven

tropical cyclone basins. Table 1.1 lists the basins together with the areas covered

by each basin and the organisation responsible for the collection of the cyclone data

in each basin. Data for this thesis comes from the North Atlantic Basin therefore

the forecasting model built is for the Atlantic basin. However, the model selection
2Tropical cyclones have different names: Hurricane in the United States, Typhoon in the West-

ern Pacific north of the equator, Baquio in the Philippines, and Kamikaze in Japan

12
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Table 1.1: The seven tropical cyclone basins and the areas covered by each basin
and the organisation responsible for the collection of the cyclone data in each basin.
Source: [39, p. 1.18]

Basin
No.
1

2

3

4

5

6

7

Basin Name

North Atlantic

Eastern North Pacific

Western North Pacific

North Indian

Southwest Indian

Southeast Indian/Australia

Southwest Pacific/Australia

Areal Extent

North Atlantic Ocean,
Caribbean Sea and
Gulf of Mexico
North America to 180° E

West of 180° E,
including South China Sea
Bay of Bengal and
Arabian Sea
South Indian Ocean
west of 100° E
Southern Hemisphere
100- 142° E
Southern Hemisphere

Principal Data Source

National Hurricane Centre (NHC), Florida

National Hurricane Centre (NHC), Florida

Joint Typhoon Warning Centre
(JTWC), Guam
Indian Meterological Department

Meterological Service, Reunion

Bureau of Meteorology (BOM),
Australia
Regional Specialized Meteorological Centre
(RSMC), Fiji

strategy proposed in this thesis can be used to build forecasting models for any of

the basins.

-i

1.6.1 Tropical Cyclone Intensity

IVopical cyclones are characterized by a strong thermally directed circulation with

the rising of warm air near the center and the sinking of cooler air outside. The

low-level inflow is directed down the radial pressure gradient, from higher towards

lower pressure, which the outflow takes place at much higher level where the radial

pressure gradient is very weak [64, p. 430]. Tropical cyclones breed over the warm

tropical seas and do not form unless the sea-surface temperature is above 26.5°C [12,

p. 2].

Tropical cyclones depend on a regular supply of abundant water vapour [9, p.

170]. The warm core of the tropical cyclone serves as a reservoir of potential energy

which is continuously being converted into kinetic energy by the thermally directed

13
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Table 1.2: Saffir-Simpson Scales [103]. Note: The storm surge height is the height
above normal predicted tide level at the time the tropical cyclone crosses the
coast [112]

Magnitude

mild
moderate
severe
very severe
catastrophic

Saffir-Simpson
Scale

1
2
3
4
5

Central
Pressure

(hPa)
>990

970-985
950-965
930-945

<920

Maximum
Wind Gust

(m/s)
20-30
35-40
50-60
65-75
80-90

(km/h)
75-110

125-160
180-215
235-270
290-325

Surge Height
(m)

0-1
1.5-2.5

3-4
4.5-5.5

6-7

circulation [64, p. 430]. Unless disrupted by their surroundings, tropical cyclones

will intensify until they reach a Maximum Potential Intensity (MPI). The variables

seen to positively or negatively influence tropical cyclone intensity will be discussed

in Chapter 4 in this thesis.

There are two ways of measuring tropical cyclone intensity. The first is by taking

the average maximum sustained surface winds over 1 minute period and the second

over 10 minute period. The longer the averaging period used, the lower the maximum

wind speed for a cyclone of a given intensity [39]. Following Simiu and Scalon [34],

the WMO applies a multiplication factor of 0.871 to convert between 1-min and

10-min winds.

Tropical cyclone intensity can be categorised using Saffir-Simpson Scale [103]

shown in Table 1.2. The scale is based primarily on the central pressure to which the

maximum wind speed and maximum storm surge height are approximately related.

i

14
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Figure 1.2: Potential damage caused by tropical cyclones. Source: Adapted from [8,
p. 256]

1.6.2 Damage Caused by Tropical Cyclones

Tropical cyclones cause annual disasters resulting in the loss of lives and property

particularly to communities over the coastal areas around the globe due to stro.ig

winds, flooding, and storm surges. Figure 1.2 illustrates the potential damage from

tropical cyclones.

Effective mitigation measures to reduce the vulnerability to tropical cyclones can

only be achieved by accurate and comprehensive assessment of the hazard levels

and the vulnerability of the coastal communities [37]. Forecastings of the track and

intensity of an incoming cyclone are the first most important steps of the assessment

of the hazard levels. The assessment of the vulnerability of the communities at risk

15
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Figure 1.3: Schematic view of the tropical cyclone warning process. Source: [39, p.
6.4]

is done through up-to-date data recording of the population, properties, community

infrastructure and facilities.

The loss due to tropical cyclones can be minimised with the implementation of

effective warning system. Figure 1.3 gives a schematic view of the tropical cyclone

warning process with the forecasting work station in the centre. False negative in

the form of underforecasting results in the unpreparedness of the population, late

evacuations and maximum loss of lives and property in the area affected. False

positive in the form of overforecasting can be equally damaging due to the economic

interruptions especially to shipping and fishing industries, coastal tourist areas, and

off-shore oil and gas development plants.
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r M

1.6.3 Tropical Cyclone Intensity Forecasting

There are four stages in the life cyclone of a tropical cyclone [12, p. 2], nvamely the

formative, immature, mature and decaying stages. The *veruge life cyclone lasts

about 9 days, some cyclones may last 20 days or more, and some may intensify

explosively to the mature stage in less than 48 hours.

Despite its evident importance, tropical cyclone intensity forecasting is one of the

least understood and the least researched areas in atmospiteric science. This is due to

the high degree of uncertainty in the physics behind tropical cyclone intensifications

and the fact that most atmosphere scientists are not familiar with the various model

selection methods studied by computer scientists.

At present, intensity forecasts are commonly made using manual pattern recog-

nition method using satellite dai,a, multiple linear regression models and subjective

assessment of satellite imagery and environmental conditions. Whilst efforts have

been made to incorporate more variables that might be influential to tropical cy-

clone intensity in building statistical forecasting models, the method used to build

the models tends to remain the same, i.e. the least square multiple linear regression

method using significance tests.

Forecasting models created for cyclones in the North Atlantic basin using the mul-

tiple linear regression method are SHIFOR (Statistical Hurricane FORcasting) [10] ,

SHIFOR94 [24] and SHIPS (Statistical Hurricane Intensity Prediction Scheme) [82].

The multiple linear regression method used to build these models will be discussed

in Chapter 2 in this thesis and the data sets used to build them will be discussed in

Chapter 4.

17
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1.7 Thesis Outline

This thesis proposes a new model selection criterion based on the Minimum Message

Length principle, a programmed optimisation search algorithm and a new strategy

to build a tropical cyclone intensity forecasting model using the combination of

the best state-of-the-art model selection criteria. The data used to build SHIFOR

and SHIFOR94, the forecasting models being used for the North Atlantic tropical

cyclone basin, is used in this thesis, therefore the new models built are benchmaxked

against these two models.

Chapter 2 gives a structured overview of a wide range of criteria commonly used

in the literature. In this chapter, the model selection criteria are divided into two

categories, i.e. the criteria which need test data sets to decide on a model, and

the complexity-penalised criteria. A novel complexity-penalised criterion based on

the Minimum Message Length (MML) principle is proposed. All of the statistical

tropical cyclone forecasting models available to-date have been built using the first

category of criteria. This thesis explores the feasibility of using the complexity-

penalised criteria, the second category of criteria to build tropical cyclone forecasting

models. The performance of the new MML criterion is compared against most of the

other complexity-penalised criteria and benchmarked against the existing forecasting

models.

As explained in Section 1.5 above, the best way to find variables to be included in

a model would be to use exhaustive search algorithms which examine every possible

combination of variables. However, these algorithms are often prohibitive in terms

of the demand in time and computing resources. A programmed optimisation non-

backtracking search algorithm used in this thesis which has been designed to be less

resource-intensive but cover more areas in the search space than a simple greedy

18
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search algorithm is outlined as a part of Chapter 3. This enables the search to

converge to a better result.

The experiments in Chapter 3 serve as a screening procedure to test the robust-

ness of each of the complexity-penalised polynomial selection criteria outlined in

Chapter 2. This chapter uses these criteria and the optimisation search algorithm

outlined in the previous paragraph for the task of recovering true models from the

artificially generated data in an automated manner. The experiments also test if

the programmed optimisation search algorithm proposed does cover enough area in

the search space to recover the true models from which artificial data sets have been

generated.

The criteria that have passed the test using artificially generated data in Chap-

ter 3 would need to be further tested in their ability to select forecasting models

using real data. The forecasting models to be built in this thesis are for the purpose

of tropical cyclone intensity forecasting. Chapter 4 gives an overview of tropical

cyclones and research in tropical cyclone intensity forecasting. The kinds of data

involved in the research and the data pre-processing methods employed to come

up with potential regressors are outlined. This chapter serves as an overview of the

variables used to build the tropical cyclone intensity forecasting models in Chapter 5.

Chapter 5 proposes a novel strategy in finding forecasting models using a com-

bination of the polynomial model selection criteria that have passed the tests both

in Chapter 3 and in Chapter 5. These criteria are used as the cost functions of the

optimisation non-backtracking search algorithm which has been proposed and tested

in Chapter 3. The strategy using a combination of these criteria has the ability to

rank the performances of good models with increasing levels of complexity. It is

found that whilst the strategy has the ability to select the best model from the data
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at hand in an automated manner, it still provides an option for the experts to make

the final informed decision on which of the good models will ultimately be used.

vm This chapter comes up with new tropical cyclone intensity forecasting models for

cyclones in the Atlantic basin which are better in terms of performance criteria of

parsimony and predictive ability than the benchmark models.

Results shown in Chapter 5 suggest that the behaviour of cyclones in the Atlantic

basin has changed significantly between the periods observed. This means that

the practice of partitioning of the data as training and test data sets based on a

chronological order that has always been done in building tropical cyclone models

is flawed since the training and test data sets do not capture the same features.

This chapter shows a better way of partitioning the data which contributes to the

discovery of better forecasting models than the benchmark models.

Chapter 6 further tests the new strategy proposed in Chapter 5 using sets of

artificial data generated from the covariance matrix of the data used to build the

tropical cyclone forecasting models discussed in that chapter. This test shows the

minimum number of data needed for the model selection strategy to converge to

the model from which the data is generated and the maximum level of noise it can

sustain while still converging to the model. The experiments shows that if the model

to be discovered indeed is the model that has generated the data, the new model

selection strategy is able to recover the model from a very limited amount of data

which contains high level of noise.

Chapter 8 gives the summary of the main contributions of this thesis to poly-

nomial model selection research and tropical cyclone intensity forecasting research.

The new method based on the Minimum Message Length principle and the new op-

timization search algorithm are summarized. Remarks on the results of the critical
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examinations of the differences in performance of the various criteria when applied

to artificial vis-a-vis to real tropical cyclone data are given. The novel model selec-

tion strategy using the combination of the four criteria proven to be the most robust

of all criteria tested in Chapter 3 and the search strategy used is summarised. Final

comments on the successful application of the strategy for building tropical cyclone

intensity change forecasting model are given.

The new model selection strategy proposed in this thesis can be used for any

domain data which can be represented as second-order polynomial models. Areas

for future research in tropical cyclone intensity forecasting in terms of new types of

data and new tropical cyclone basins to be explored is outlined in Chapter 7.
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Chapter 2

Methods For Polynomial Model

Selection

2.1 Introduction

This chapter describes the form of the polynomial models considered in this thesis

and the various model selection methods employed in the experiments done in this

thesis1. A new model selection method based on the Minimum Message Length

principle is explained.

Section 2.2 gives the form of the standardized second-order polynomial regres-

sion models considered in this thesis. We restrict ourselves to linear second-order

polynomials because the practical aim of this thesis is to find a method that will

yield a better tropical intensity forecasting model than the existing models used

in operation in the Atlantic Basin. Since the existing models are all in the linear
1 An earlier version of parts of this chapter has been published in [42]
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second-order polynomial form, we choose this form for ease of comparison. This does

not mean that the methods used cannot be used for other forms of polynomials.

Section 2.3 provides descriptions of the methods considered in this thesis. Those

methods belonging to the family of criteria that require division of the data sets

into training and test data sets to decide on a model are outlined in Section 2.3.2.

In particular, the least squares method used to build the existing tropical cyclone

intensity forecasting models used in operation in the Atlantic basin is outlined.

Those methods belonging to the family of complexity-penalised criteria are given

in Section 2.3.3. All of the experiments done in this thesis are done using methods

belonging to this family. The new method built based on the Minimum Message

Length principle is given in Section 2.3.3.1 on page 32.

2.2 Second-order Polynomial Models

Polynomial regression concerns with the task of estimating the value of a target vari-

able from a number of regressors/independent variables. The standardized second-

order polynomial regression models considered in this thesis typically take the form

p p

p = l p=l q>p

where for each data item n:

K

(2.1)
k=l

yn : the nth value of the target variable y

unp : the nth value of the single regressor/independent variable up

Cp : the coefficient of single regressor up
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ft

: the coefficient of compound regressor up x uq

: the nth value of the regressor xk\ xnk = unp or xnk = unpung; q>p

: the coefficient of regressor xk; K = 2P + P\/2\(P - 2)! = (P2 + 3P)/2

: the ntA value of the noise/residual/error term r

The values of the error term r is assumed to be uncorrelated, normally and in-

dependently distributed rn ~ NID(0,a2). For a given set of xk, this assumption

causes y to have the same normal distribution form and variance as r, that is,

The standardized values of each dependent variable are calculated using the fol-

lowing formula

wn =
yn-y (2.2)

where:

: a standardized value of the nth value of the dependent variable y

: the nth value of the dependent variable y

: the sample mean of the dependent variable y

: the sample standard deviation of the dependent variable y

The standardized values of each regressor/independent variable are calculated

using a similar formula

(2.3)
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where:

uTip

znp

: a standardized value of regressor p

: the original value of regressor p

: the sample mean of regressor p

: the sample standard deviation of regressor p

The standardized variance of the product of variables is also kept to unity by

standardizing the product of the standardized single variables in the same way it is

done for the single variables.

The subsets of potential regressors that may form the second-order polynomial

models are chosen from the model space using the optimisation search method out-

lined in Section 3.2.2 on page 57. The coefficients for the regressors of each model

can be calculated using using Equation 2.15 on page 29 for ordinary least squares

method and Equation 2.40 on page 42 for a modified least squares method, which

still yields a set of coefficients which represents uncorrelated regressors when the

covariance matrix of the regressors is ill-conditioned (i.e. having small eigenvalues).

For this reason, Equation 2.40 will be used in this thesis for all of the model selection

criteria outlined in Section 2.3.

2.3 Model Selection Criteria

The sample data set available to be used for building models that can explain the

structure of the data population is usually just a small proportion of the population.

Hence, the model to be built should capture only the general properties found in
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the sample data set and not the specific properties or noise pertinent only to the

particular sample data set at hand.

For data sets generated from a multi-variate second-order polynomial, for exam-

ple, the structure of the data is expressed in some combination of variables included

in the model. If the data contains some degree of noise and exogenous variables,

the model selection process should ensure that these are not included in the model.

This way, the model can be used to explain the structure of any other data set sam-

pled from the same population. In other words, the model should generalise well on

unseen data.

Two polynomial models can be compared using various methods which can be

categorised into two main categories: criteria that require a test data set to decide

on a model and complexity-penalised criteria. Methods in the first category decide

between models based on model performance for test data which was not used to

create the model. Methods in the second category decide on models based on their

ability to describe the data that was used to derive the model. The two categories

will be discussed in the following sections.

2.3.1 Probability and Code Length

The task of a model selection method is to select the model with the highest pos-

terior probability given a data set. Following Shannon's information theory [14], a

probability can be conveniently represented as a code length by taking the negative

logarithm of the probability. This way, the range of the probability values from 0

up to 1 is replaced with the range of the code length from infinity down to 0. This
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means, maximising probability corresponds to minimising code length.

L = -log P{D) where Le(0, oo)

for P(D)e{0,l)

Code lengths are measured in bits when the logarithm is taken to base 2 and in

nits when natural logarithms are used. For convenience, some method comparisons

done in this thesis are done in the code length representations of the measurements.

2.3.1.1 Maximum Likelihood Method

Maximum likelihood is a method to find the best fit of a model to a data set. This

is represented in the probability of the data given the model. For the polynomial

model represented in Equation 2.1, the model consists of K variable coefficients /^

and the data consists of N target data points. The maximum likelihood estimate of

the model is then calculated from the residuals of the fitted model to the data, i.e.

Tn = Vn~ ]CjfcLi AjZnfc. With the assumption that rn ~ NID(0,a2) the maximum

likelihood estimate of the model becomes its least squares estimate.

Since the residuals are assumed to be uncorrelated, normally and independently

distributed as explained in Section 2.2 above, the likelihood is equal to the joint

probability of the residuals given the model which is simply the product of the

probability of the residuals of each data point given in the following equation. For

encoding purposes, as outlined in [16, 98], each data point in the sample is to be

measured to any accuracy ±S/22 where 6 « a. The area occupied by 6 under the

probability density distribution curve of the residuals is then approximated by mid-

point rule as a rectangular area with width 5 and length —4=e~(y"~£*

2The accuracy term ±5/2 is discussed in more detail in Section 2.7 of [63]

27



2.3. MODEL SELECTION CRITERIA

I
1

I

P(data\model) = P{y\cr,

N

(2.4)

(2.5)

(2.6)

Since 5 is constant and hence has no effect in the comparisons of the code lengths

of models, it is usually dropped from the code length representation of Equation 2.5

given below.

L(D\9) = - logP(data\model)

- -log n
N

N ^ r2

-N log 6 + — log 2TT + Â  log a + V , —̂

(2.7)

(2.8)

(2.9)

(2.10)

where:

rn : the error of the model of the nth data item

The first two terms in Equation 2.10 are constant over the values of the data we

consider and play no role in the construction of the model, hence can be omitted.
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I

I

I
1I
i

The variable coefficients of the model are the values that minimise Equation 2.10

with respect to pk. They are calculated by taking the partial derivative of Equation

2.10 with respect to pk:

d{L{D\9))

d/3k

N

n = l

0

= 0

= 0

(2.11)

(2.12)

(2.13)
n = l

Resubstituting rn = yn — X)fc=1 Pk%nk into Equation 2.13 we get

N K

n = l

Vn ~

N K

= 0 (2.14)

N K

Xnkyn

n = l fc=l n = l fc=l

To calculate the estimates of the coefficients, Pi,..., PK, we represent Equation 2.15

in a matrix format, where for brevity, ( X ) T is written as X T .
NXK NXK

(XT X ) P
NXK NXK K X,

= X T y
NXK

KX1

NX1

NXK NXK
XT y
NXK N X 1

(2.15)

The spread of the distribution of the data y represented by a is calculated by

taking the partial derivative of Equation 2.10 with respect to a:

I
I
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= 0 (2.16)
da

'1 = 0 (2.17)

Hence, a, the estimate of the spread, a, is

n = l

2.3.2 Criteria Which Require a Test Data Set to Decide on

i a Model
i

$ These criteria choose a model which best fits the data at hand. For each potential

| combination of variables considered for the model given in Equation 2.1 on page

I 23, the variable coefficients can be calculated from a sample data set, called the

I training data, using the maximum likelihood approach outlined in Section 2.3.1.1

I which, if the residuals are assumed to be normally distributed, is the same as the

I least squares method. Comparison between models is then done based on the per-

I formance of each model on test data, i.e. a separate data set that is not used to

\ calculate the coefficients. One performance criterion used is the average squared

I error of the model on the test data, (%2n=i rn)/N = ]C^=i (Vn ~ l>2k=i PkXnk)2/N.
* •

Other methods belonging to this category, among others, are Predictive sum of

squares (PRESS) [28], Adjusted Coefficient of Determination {Radj) [84], F-ratio

Statistics [87], and Mallows' Cp [13].
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All of the statistical tropical cyclone intensity forecasting models in operational

use for the Atlantic basin have been built using the least squares method outlined

in Section 2.3.1.1 on test data. Two of the models, namely Statistical Hurricane In-

tensity FORcasting (SHIFOR) [10], SHIFOR94 (a modification of SHIFOR) [24] are

used as benchmark models for the proposed forecasting model found in the exper-

iments done in Chapter 5 using some of the complexity-penalised criteria outlined

in the next section.

2.3.3 Complexity-Penalised Criteria

It is understood that the more complex the combination of variables included in

the model, the more the model fits the particular sample data set at hand. So,

to ensure that the model does not overfit the sample data set to the point that it

performs poorly on unseen data, the complexity-penalised criteria seek to balance

between model complexity and quality of fit. These criteria typically manifest in cost

functions that sum up the reward for fitting the data and the penalty for increased

model complexity.

Because of this balancing mechanism, it is possible to compare two models with

different complexities using only the training data, the data used to derive the

model. A more complex model is preferred only when the fit to the data outweighs

the penalty for increased complexity. It is because of the existence of the penalty

term for model complexity that these criteria are categorised as complexity-penalised

criteria.

Some of the most commonly used complexity-penalised criteria listed below are

discussed in the subsequent sections. A new model selection criterion based on
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the Minimum Message Length (MML) principle applicable to finding second-order

polynomial models is proposed in Section 2.3.3.1.

• Minimum Message Length (MML) Criterion [19]

• Predictive Minimum Message Length (PMDL) Criterion [59]

• Minimum Description Length (MDL) Criterion [59]

• Akaike's Information Criterion (AIC) [46]

• Corrected Akaike's Information Criterion (CAICF) [50]

• Bayesian Information Criterion (BIC) [38]

• Structural Risk Minimization (SRM) [109]

2.3.3.1 A New Minimum Message Length (MML) Criterion

From a Bayesian perspective, the MML principle states that amongst all of the

competing models under consideration, the best model is one that yields the highest

posterior probability by maximizing the product of the prior probability of the model

and the probability of the data given the model. Since in this problem, a model

has real-valued coefficients, a conventional Bayesian approach can ascribe only a

prior probability density to a specific model. MML instead assigns a finite prior

probability to a model by considering the code length needed to decribe it.

As explained in Section 1.4.1 on page 8 and Section 2.3.1 on page 26, following

information theory, the best model according to the MML principle is one that

gives the shortest two-part message L{D). The first part of the message L(9) shows

the cost of encoding the model 9 and the second part L(D\9) shows the cost of

32



2.3. MODEL SELECTION CRITERIA

encoding the sample data D given the model 9. This generic MML principle can be

represented in the following equation.

L(D) = L{9) + L{D\9) (2.19)

- log P(D) = -log P{9) - log P{D\9) (2.20)

In the search for the best model, the MML principle dictates that a new more

complex model will be seen as a better model than the model at hand if it results in

a shorter two-part message L{D). This can only be achieved when the increase in

model complexity reflected in the increase in the message length that encodes the

model L{9) is less than the decrease in the message length that encodes the data

given the model L(D\9).

The first part of the message L(9), the cost of encoding the model 9, is composed

of two parts. The first is the cost of encoding the model structure (i.e. which

combination of variables makes the model) Ls and the second is the cost of encoding

the model parameters Lp. Hence the total message length shown in Equation 2.20

becomes

(2.21)

This thesis proposes a new formula for estimating the cost of encoding the model

L(9). This new formula is specific to the particular model selection problem consid-

ered in this thesis, i.e. the second-order polynomial models, where the models may

be formed using single and products of independent variables.
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Taking the metaphor of sending data over a communication line between a sender

and a receiver (illustrated in Figure 1.1 on page 9), this thesis proposes that the

cost of sending the model structure La comprises three parts listed below. The

new formula has a prior expectation that it is more expensive to send compound

variables than it is to send single variables.

1. the cost of sending the single variables

2. the cost of sending the compound variables (i.e. products of variables)

3. the cost of sending the combination of single and compound variables

The cost of sending the model structure Ls is thus:

Ls = - log h(u, j) - log M£, 1) ~ log -^—PT (2.22)

where:

Ls : the cost of encoding the model structure

h(y,j): a suitable prior probability function on the integer range 0 . . . J

for choosing j number of single variables

J : the maximum number of single variables

, /) : a suitable prior probability function on the integer range 0 . . . L

for choosing / number of compound variables;

: the maximum number of compound variables

; : the number of possible combinations of j single variables

taken out of J total number of single variables

: the number of possible combinations of I compound variables

taken out of L total number of compound variables
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It is then proposed that for the costs of sending the number of single and compound

variables, — \ogh(v, j) and — log/i(£,Z) respectively, the prior probability functions

h(u,j) and h(£,l) should follow the geometric series. It is assumed that a single

variable is more likely to be chosen than a compound variable, hence it is cheaper

to send a single variable than a compound variable. For this reason, the term v is

given a bigger value than £ in the experiments done in this thesis.

where: v > £

For the cost of sending the combination of single and compound variables, Peter

Tischer (personal communication) has pointed out that having calculated the costs

of sending the numbers of single and compound variables in Equations 2.23 and 2.24,

we need to use the information of the numbers of available single and compound

variables in the formula given below

J! L\

where:

the number of possible combinations of j single variables

taken out of J total number of single variables

the number of possible combinations of / compound variables

taken out of L total number of compound variables
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Equation 2.25 was however not used in the experiments in this thesis because it

was discovered in hindsight. Instead, the experiments reported in Chapters 3, 5 and

5 were done using the following equation

(2.26)

where:

K-Cfc : the number of possible combinations of k variables

taken out of K total variables where: K = J 4- L and k = j -\-l

The full derivation of Equation 2.22 is given in Appendix A on page 145.

Whilst Equation 2.26 is certainly a better formula than Equation 2.25, Equation

2.25 is a good enough encoding to have performed well in the experiments in the

model selection tasks outlined in Chapter 3 (i.e. using artificial data) and in Chapter

6 (i.e. using artificial data generated from the covariance matrix of a set of real data).

The experiments using the real tropical cyclone data outlined in Chapter 5 show

that the MML formula which incorporates Equation 2.25 may have caused the search

strategy (outlined in Chapter 3), when using MML as the cost function, to stop at

a less complex model with longer message length than the better but more complex

model model. Incorporation of Equation 2.26 instead of Equation 2.25 in the MML

formula shown in Equation 2.21 will result in a shorter message length for a model,

enabling the MML method to choose more complex models which fit the data better.

To calculate the cost of sending the model parameters, Lp, we follow Wallace and

Freeman [19]. The formulae to calculate Lp outlined below has also been used in

[20], [21] and [22] for causal models.
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It is assumed that the sender and receiver of the message have some prior knowl-

edge/expectation about the possible models with real-valued parameters, 6 = (fa, a).

Taking the assumption that the parameters are normal distributed, N(0, a2a2), and

a prior for a is proportional to i , the prior probability density h(9) on the space of

possible models is

h(9) = prior{a, {fa})

= prior (a)prior({fa\a})

1 ^ 1 #2

= - F T — T = e ^ (2.27)

where a is a hyper-parameter reflecting the a priori expected strength of causal

effects relative to unexplained variation [21]. The significance of a is explained later

on page 42.

The adoption of a discrete message/code string of length L for some model 9 is

equivalent to regarding 9 as having a prior probability of 2~L. Prior probability 2~L

is a discrete probability, not the probability density function h(9). For this reason,

the MML principle assigns to 9 a prior probability h(9) x v(9) where v(9) is the

volume of a region of the search space which includes 9 and other models so close

to 9 that the data cannot be expected to distinguish among them.

As shown in [19] the whole message length shown in Equation 2.20 is minimised

when v(9) is chosen to be proportional to

(2.28)

where 1(9) is the Fisher information associated with the real-valued parameters of

the model 9 [19]. The Fisher information is the determinant of the expected second
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derivative of the negative log likelihood function, — \ogP(D\9), given in Equation

2.10 on page 28. After the differentiations done in Appendix B on page 148, the

Fisher information for the second order polynomial models under consideration in

this thesis takes the form

NXK NXK
(2.29)

where:

|XT X I : the determinant of the covariance matrix of the independent variables
NXK NXK1

Xk for k = 1,.. .,K

N : the number of data items

K : the number of independent variables

The effect of quantization of v{9) (i.e. the discretization of 9) in forming the

optimum code [62, pp.59-61] is given in the last three geometric terms of Lp in

Equation 2.30. These terms result in an increase in the message length.

Lp = - l o g
h(9)

)*-l (2.30)
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Substituting Equations 2.27 and 2.29 into Equation 2.30 gives

Lp = i
2

X T X | ) - log (l
\0

It—1

l) Iog27r + ^log{K + 1)TT -

~\{K + I)log27r+ hog(K + 1)TT -

K
logor + — Iog27r + K\oga + Kloga

2

l)Iog27r + hog(K + 1)TT -

I)log27r+ h 1)TT -

e)
ft J

f-logi- f>g

K

f
K— 1

(2.31)

The second part of the message length, the cost of encoding the data given the

model L{D\9) is sirapiy the likelihood function given in Equation 2.10 on page 28.
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Thus by substituting Equations 2.22, 2.31 and 2.10 into Equation 2.21, the total

message length becomes

L(D) =

i log 2N + \ log |XTX| + | log 2TT + K log a + — L j

AT

K

C ^ 1

n=l

= - log h(v,j) -\ogh(£,l) -log——-

I log 2/V + I log |XTX[ + K * N log 2?r + K log a + JV log a

(2.32)

where: h(u,j), h(£,l) and - ^ are respectively given in Equations 2.23, 2.24 and

2.26. As given in Equation 2.10, rn=yn — X̂ fcLi

We examine the partial derivatives of Equation 2.32 with respect to a and /?* to

find the values of these parameters that will minimise the total message length.

The partial derivative of Equation 2.32 with respect to a is

dL{D)
= 0

N
—
a

5a

h 1 = 0

(2.33)
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We therefore obtain a, the estimate of a

N K

(2.34)

The partial derivative of Equation 2.32 with respect to /?* is

dL(D)
= 0 (2.35)

n = l

N

*• n=l a '

R N

M ft ^
& - ^ - / ^ rnXnka2 ^-f

n=l

= 0

= 0

= 0 (2.36)

Substituting rn with yn Equation 2.36 becomes

N

n = l

K

= 0

Representing Equation 2.37 in matrix format, we get

where:

p -XT y +(XT ) £
KXl N X K NXl N X K NXK K x ,

= 0

(XT X + i I )
NXK NXK CK KXK

(
NXK NXK

) ^
KXK K x ,

KXl

• * y
NXK N x ,

= (XT X
NXK NXK KXK

(2.37)

x y
N X K N X 1

(2.38)
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KXl

X
NXK

: the row matrix of K parameters /?*

: the matrix of K independent variables for N data items

(XT X ) : the covariance matrix of K independent variables
NXK NXK

a : a hyper-parameter reflecting the a priori expected strength of causal

effects relative to unexplained variation [21]

I : the identity matrix K x K

: the row matrix of the dependent variable y for N data items

K X K

y
NXl

Hence from Equations 2.34 and 2.38, the parameter estimates are:

a2

K X l
(XT X

NXK NXK

\-lvT
QT KXK NXK N x ,

(2.39)

(2.40)

where rn = yn- J^k=i PkXnk-

As in [21], the experiments in this thesis uses a2 = 1. Since no one knows how

much unexplained variation play a role in the data at hand (unless the data is

generated from a true model with no noise), the value a2 = 1 is seen as a reasonably

compromise. It says that it is assumed that the strength of the causal effect (of

the known variables) is approximately the same as the strength of the effect of the

unexplained variation (of the unknown variables).

With the use of the term ^ in Equation 2.40 some people may think that we

have been using ridge regression [3, 5, 4] shown in the equation below

(X
klVK X l NXK NXK

X +k I )-1X' y
KXK'

-1XT ^
N X K NXl

(2.41)
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It turns out to be the case, with a few comments. The origin of the term a in

Equation 2.40 is different from that of the term k in Equation 2.41. The term a in

Equation 2.40 is directly derived from the use of a prior for the parameters shown

in Equation 2.27 on page 37. The term k in Equation 2.41, on the other hand, is

introduced as a way to eliminate the effect of collinearity/correlations among the

independent variables in solving a regression problem. The way to eliminate the

effect of collinearity among the independent variables used in this thesis is by using

orthogonal transformation of independent variables outlined in Section 3.3.1 on page

60.

The MML principle gives the best explanation of why one should use the addi-

tional term k in ridge regression, that is because we need to encode the parameters

necessitating the use of a prior for them, hence the need to use the additional term

k = -\. Another logical explanation for the advantage of using the additional term

k = ^j in Equation 2.40 is that the equation will yield a set of coefficients ft
KXl

which represents a set of uncorrelated regressors even if the matrix XT X is ill—
NXK NXK

conditioned, (i.e. having small eigenvalues). Because of these observed advantages,

Equation 2.40 are used for all of the model selection criteria used in the experiments

in these thesis. This is despite the fact that all of the other model selection criteria

outlined in this thesis originally use the Maximum Likelihood method to calculate

the parameter estimates of a model.

2.3.3.2 Predictive Minimum Description Length (PMDL) Criterion

Rissanen [57, 59] introduced the concept of Stochastic Complexity to measure the

amount of uncertainty in data. Stochastic Complexity is a the generic term used for

Predictive Minimum Description Length (PMDL) and Minimum Description Length
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(MDL) criteria. PMDL is given in this section and MDL is given in the next section.

Interestingly enough, the term Minimum Description Length (MDL) is more widely

used to refer to Stochastic Complexity (SC) theory.

Minimum Message Length and Stochastic Complexity are the two prominent

learning theories which use the minimum encoding principle from Information the-

ory. The similarities and differences of MML and SC are discussed in [99] and [97].

The two basic concepts in the Stochastic Complexity theory [59] are a paramet-

ric class of probabilistic models where the number of parameters may range over

all natural numbers and a utility function whose minimised value is its stochastic

complexity. Rissanen gives three different interpretations of stochastic complexity:

1. Stochastic complexity as the greatest lower bound for the description length

which can be taken as a formal measure of the amount of randomness in the

data, defined relative to the selected class of models. This randomness comes

both from the sampling uncertainty and the uncertainty due to the distribution

of the data

2«. If stochastic complexity, I(x), denotes the infinum of the code lengths from the

data x, relative to a class of models, then P(x) = 2~T^ gives the probability

distribution that is the most likely explanation of the data that can be obtained

with the same class.

3. In forecasting tasks, stochastic complexity is the shortest code length defined

5<f§ using the accumulated prediction errors.

Rissanen [59, page 226] defines the stochastic complexity of the data x of length

n, relative to a class of distributions, as follows: let {f(x\k, 9)\9 = (90,..., 9k), k =

0 ,1 , . . . } denote a parametric class of distributions represented by densities, such
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that for each f(-\k,9) the marginality conditions required for a random process are

satisfied. For each k, let n(9\k) be a strictly positive distribution in the fc-dimensional

parameter space. Then the stochastic complexity can be defined as

R

f(x\k,0)d*{9\k) (2.42)
k=Q

where Q(k) = 1/(R+1), and R < n is the range of the number of parameters. The

stochastic complexity I{x) is defined only relative to a class of models consisting of

f{x\k,9) and n{9\k).

Rissanen then gives several model selection criteria, each of which gives a code

length as an upper bound approximation of the abstract quantity yielded by the

stochastic complexity Equation 2.42. Two of these criteria are used in this thesis.

The first is Predictive Minimum Description Length (PMDL) [58, 59] shown below

in Equation 2.43. This criterion is used when there exists a sequential ordering in

the data. The second is the more general Minimum Message Length shown in the

next section.

where:

= £ tag £ .* + i tag |
n = l

2 NXK NXK
(2.43)

N

|XT X |
NXK NXK

: the error of the estimate of the nth data item of

the dependent/target variable y

r — ii — X~*K R, T .' n — Un Z-/fc=l yk^nk

: the number of sample data items

: the determinant of the covariance matrix X T X of
NXK NXK
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K independent variables for N data items

,-ra)

2.3.3.3 Minimum Description Length (MDL) Criterion

When the data are modelled as independent without any proper ordering imposed,

then the upper bound of the stochastic complexity measure shown in Equation 2.42

is given below [57, 59]

CodeLengthMDL78 = - log/(Z?|0) + j log TV + ( y + 1) \og(K + 2) (2.44)

where:

f(D\9) : the likelihood function given in Equation 2.5 on page 28.

The result of — \og f(D\9) is given in Equation 2.10 on page 28

K : the number of independent variables in the model

N : the number of sample data items

2.3.3.4 Akaike's Information Criterion (AIC)

Like all the other approaches in the category of complexity-penalised criteria, Akaike's

Information Criterion (AIC) [46, 47, 48, 49] takes the form of penalised likelihood

functions. The AIC Equation 2.45 used in this thesis is taken from [46].

AIC = -2{\og f(D\9)-K) (2.45)

where:
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f{D\9) : the likelihood function given in Equation 2.5 on page 28.

The result of — log/(.D|0) is given in Equation 2.10 on page 28

K : the number of independent variables in the model

The first term in Equation 2.45 measures the fit of the model to the data and the

second term penalises complex models. The goal is to minimise the Kullback-Leiber

distance of the selected density from the true density. Despite being a pioneer in the

learning theory research, AIC is criticised for its expectation that the true distribu-

tion is non-existent (see [59]). AIC is shown in [73] and [101] to be asymptotically

optimal if the true distribution was not in the finite dimensional family of models

being considered.

2.3.3.5 Corrected Akaike's Information Criterion (CAICF)

Bozdogan, a student of Akaike, extends AIC criterion to the criterion called Cor-

rected Akaike's Information Criterion (CAICF) [50, page 23]. CAICF penalises

complex models more severely than AIC by using the Fisher Information.

CAICF = -
K

(2.46)

where:

f{D\9) : the likelihood function given in Equation 2.5 on page 28.

The result of - log/(.D|0) is given in Equation 2.10 on page 28

1(9) : the Fisher information given in Equation 2.29 on page 38

K : the number of independent variables in the model

N : the number of sample data items
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2.3.3.6 Bayesian Information Criterion (BIC)

Bayesian principle says that models should be compared using their posterior prob-

ability distributions (see [35]). Schwarz [38] assumes that the prior probabilities

of all models were equal and derived Bayesian Information Criterion (BIC) as an

asymptotic expression of the likelihood of a model

BIC = -2{\og f(D\6) - -KlogN) (2.47)

where:

f(D\6) : the likelihood function given in Equation 2.5 on page 28.

The result of — log/(.D|0) is given in Equation 2.10 on page 28

K : the number of independent variables in the model

N : the number of sample data items

2.3.3.7 Structural Risk Minimization (SRM)

Vladimir Vapnik [109] describes the general model of learning from examples through

three components as illustrated in Figure 2.1:

Generator which produces random vectors x e Rn drawn independently from a

fixed but unknown probability distribution function F(x)

Supervisor which returns an output value y to every input vector x according to

a conditional distribution function3 F(y\x), also fixed but unknown
3This is the general case which includes the case where the Supervisor uses a function y = f(x)

[109, page 15]
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i

Generator

F(x)

X
Supervisor

F(ylx)

Learning
Machine
f(x,a), a€A

y

• \

y

Figure 2.1: Vapnik's model of learning from examples. During the learning process,
the Learning Machine observes the pairs (x, y) (the training set). After training,
the machine must return a value y on any given x. The goal is to return a value y
which is close the Supervisor's response y. Source: modified from [109, page 16].

Learning Machine which is capable of implementing a set of functions /(z,/3),

j3 e A, where A is a set of parameters.

The problem of learning is that of choosing from the given set of functions f(x,/3),

ft e A, the one which best approximates the Supervisor's response. The selection

of the desired function is based on a training set of N independent and identically

distributed (i.i.d) observations drawn according to F(x,y) = F(x)F(y\x):

(2.48)

To solve this problem, one measures the discrepancy/loss L(y,f(x,/3)) between

the response y of the Supervisor to a given input x and the response /(x, (3) provided

by the Learning Machine. The expected value of the loss, is given by the risk

function:

1
= JL(y,f(x,P))dF(x,y) (2.49)
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The goal is to find the function f(x, j30) which minimises the risk function R{P)

over the class of function f(x,j3),j3e A, in the situation where the joint probability

distribution F(x, y) is unknown and the only available information is contained in

the training set shown in Equation 2.48.

For the problem of regression estimation, the Supervisor's answer y is taken as a

real value and /(z , /?), ft e A as a set of real functions which contains the regression

function

f{x, fa) = JydF(y\x) (2.50)

This regression function is known to be the function which minimises the risk

function shown in Equation 2.49 with the loss function:

(2.51)

Thus, according to Vapnik, the problem of regression estimation is the problem of

minimising the risk function (Equation 2.49) in the situation where the probability

measure F(x,y) is unknown but the training data (Equation 2.48) are given.

The risk function (Equation 2.49) is then replaced by the empirical risk function

which is constructed on the basis of the training set

N

(2.52)
n=l

Vapnik [109, pages 18-19] says that the Empirical Risk Minimization inductive

principle (ERM principle) states that the function L(y,f(x,(3o)) which minimises

the risk function R(j3) shown in Equation 2.49 is approximated by the function
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training set size, N

Figure 2.2: Both the value of empirical risks Remp (PN) and the values of risk for
functions that minimise the expected risk R(/3N) converge to minimal possible risk
R{(3Q). Source: modified from [110, page 8].

L{y,f{x,l3N)) which minimises the empirical risk function Remp{f}) shown in Equa-

tion 2.52.

For A < L{y, f(x, /?)) < B, jSeAa set of bounded loss functions, it is necessary

and sufficient that the empirical risk Remp{P) converges uniformly and rapidly to

the actual risk R(/3) over the set L(y,f(x,/3)), ft e A for the ERM principle to

be consistent for any probability measure P(x) of the data x. This condition is

illustrated in Figure 2.2.

The necessary and sufficient condition for consistency of ERM principle and fast

convergence is described in the following equation [110, page 11]

lim
iV

(2.53)
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where GA(N) is the growth function.

Equation 2.53 is satisfied if the growth function GA(N) for the set of functions

L(y, f(x,/3)), j3 e A is bounded by a logarithmic function with coefficient h shown

in the following equation [110, page 12].

GA(N) (2.54)

where h is an integer for which

GA{h) =/iln2,

^ (/i + l)ln2

The term /i in Equation 2.54 is called the VC-dimension (i.e. Vapnik-Chervonenkis

dimension). Vapnik (see [109, page 75] or [110, page 12]) asserted that the finiteness

of the VC-dimension of the set of functions implemented by the Learning Machine

forms the necessary and sufficient condition for consistency of the ERM principle

and fast convergence.

The VC-dimension of the set of linear functions (see [109, page 78] or [110, page

13])

K

3o, Po,...,pK € (-00,00) (2.5,5)

in K-dimensional coordinate space X = (xi,...,XK) is equal to h — K + 1 , because

the VC-dimension of corresponding linear functions is equal to K + 1 . For the set of

linear functions, the VC-dimension equals the number of free parameters / 3 0 , . . . , /3K-
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Vapnik [109, page 90] then says that the ERM principle is however intended for

dealing with large sample sizes. When the sample size is small, a small Remp{^N)

does not guarantee a small value of the actual risk. For this reason, Vapnik pro-

poses a new principle, called Structural Risk Minimization (SRM) inductive princi-

ple. SRM principle is intended to minimise the risk function with respect to both

empirical risk and VC-dimension of the set of functions. For this reason, it is clear

that the SRM principle defines a trade-off between the quality of the approximation

of the given data and the complexity of the approximating function.

Using the VC-dimension for the set of linear function shown above, the risk

function for the linear second-order polynomial models evaluated in this thesis is

shown in the equation below [110, page 17]

(2.56)
4/ (K+i)(l,T7iPL-T.n)-i,,

1 V N

^ £ r (2.57)
1 N

where:

: the estimate of the prediction risk for a linear polynomial with coefficients

rn : the error of the estimate of the nth data item

' n Un / -«fr—i Pk^nk

(K + 1) : the VC-dimension of polynomials with K number of parameters

r) : a probability constant 77 = 0.125. Vapnik asserted that the inequality

R(P) < ®{P) holds t rue with probability a t least 1 - r).

In this thesis, we use 77 = 0.125 following [110]

(see [109, pages 79-82, 85-87])
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-4 K : the number of independent variables in the model
M
,? N : the number of sample data items

i
J A

2.4 Conclusion
i

=f This chapter presents the model selection methods most commonly used in the
pi

t* literature. Based on the existence of the term that quantifies model complexity, the

# criteria can be divided into two categories: those which require a test data set to
3

$ decide on a model and complexity-penali^d criteria. The first category calculate

i the model parameters using the training data set and makes the decision whether or

^ not the model will be selected based on its performance on a separate test data set.
v

5 The second category claims to have a term to quantify model complexity, hence is

I able to make the decision solely based on the performance of the model on training

j data. This chapter proposes a new model selection criterion based on the Minimum

4 Message Length (MML) principle which includes the cost of using the combination of
\

single and compound variables in a model in the quantification of model complexity.

Given an optimisation search algorithm which finds models with increasing degree

of complexity from the search space, the goal of automated model selection is to have

an objective function which serves as a stopping rule of the search when the global

optimum has been reached, i.e. the search can stop because a model with the right

combination of variables and degree of complexity has been found. Chapter 3 tests

the robustness of each of the model selection criteria discussed in this chapter when

used as a stopping rule in an automated model selection process. The optimisation

search algorithm used for the process is also discussed in the chapter in Section 3.2.2

on page 57.
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Chapter 3

Automated Second-order

Polynomial Model Discovery

i

3.1 Introduction

The aim of this chapter is to test the ability of the complexity-penalised model

selection methods outlined in Chapter 2.3.3, to discover, in an automated manner, a

model that has generated the data under consideration1. Of particular interest is the

ability of the methods to discover second-order independent variables, independent

variables with weak causal relationships with the target variable given a small sample

size, and independent variables with weak links to the target variable but strong links

from other variables which are not directly linked with the target variable.

What is involved in the model selection task is outlined in Section 3.2. A sum-

mary of the model selection criteria tested is given in Section 3.2.1. Section 3.2.2

outlines the common non-backtrackii5g search strategy that has been programmed
xAn earlier version of this chapter has been published in [42]
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;l

for this thesis and is used with all of the model selection criteria. Another search

algorithm, namely simulated annealing[89], has actually been programmed and used

to do the same model selection task. However, we have been unable to find the right

initial temperature to enable a search process to converge to the true model. This is

consistent with what has been reported in the literature, that is the implementation

of simulated annealing is more of an art than a science. Avoidance of entrapment in

local minima is dependent on the "annealing schedule", the choice of initial temper-

ature, how many iterations are performed at each temperature, and how much the

temperature is decremented at each step as cooling proceeds [92]. The difficulties

in automating the setting of the above variables in simulated annealing prompted

us to disregard the search strategy for the second-order polynomial model selection

task at hand.

1
i

i

3.2 Model Selection: What It Involves

The task of model selection involves three key features. The first key feature is in

deciding the form of the models to be considered. The second is measuring the cost

of selecting a particular model. The third is the search for a model through the

space of all possible models.

The models considered in this thesis are of the form of the linear second-order

polynomials shown in Equation 2.1 in Section 2.2 on page 23. The cost function can

take the form of any of the model selection methods discussed in Section 2.3. The

search strategy is given in Section 3.2.2.
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Table 3.1: Model selection methods tested in this chapter for the task of discovering
the true model that has generated a set of artificial data

Method
Complexity-penalised

Minimum Message Length MML
Predictive Minimum Description Length PMDL
Minimum Description Length MDL
Akaike's Information Criterion AIC
Corrected AIC CAICF
Bayesian Information Criterion BIC
Structured Risk Minimisation SRM

Reference
Methods

[19]
[59]
[59]
[46]
[50]
[38]

[109]

Equation

2.32
2.43
2.44
2.45
2.46
2.47
2.57

Page No.

40
45
46
46
47
48
53

3.2.1 Model Selection Methods Tested

In thid chapter, all of the model selection methods discussed in Section 2.3 are tested

for the task of discovering the true model that has generated a set of artificial data.

The summary of the methods tested is given in Table 3.1.

3.2.2 Optimisation Search Algorithm

A non-backtracking search algorithm has been developed to be used as a common

search engine for the different stopping criteria. This algorithm starts with an empty

model. The variable which gives the lowest model cost amongst all of the potential

variables in the search space as reflected by the model selection criterion used, will

be chosen as the first variable for the model.

At any stage thereafter, consider all models formed by adding one new variable.

Choose the variable which leads to the best new model. Now consider deleting a

variable from the model. Examine all models which are formed by deleting one

variable. Find the best such model which is better than the current best model. If

we can improve the current model by removing that variable, then remove it from
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)

jj the current best model. The search terminates when we can no lor^er add a variable

| to get a better model.

1
4 Appendix C on page 152 gives a pseudocode of the search algorithm. In case

1$. a model selection method overfits the data, a limit in the maximum number of

2 variables that a model can have is imposed to enable the search to terminate in a

i reasonable amount of time. To automate termination of a model selection search

that is seen to have overfitted the data, in this thesis, a model is set to have a

maximum of 70 variables. An example of the trace results of an experiment of

running the search algorithm using MML as the cost function is given in Appendix

D on page 157.

3.3 Experimental Design

Three true models as shown in Figure 3.1, 3.2 and 3.3 have been designed for the

experiments. Each true model consists of a target variable and a set of single and

compound independent variables. Not all of the variables are necessarily directly

or at all connected to the target variable. Each value of an independent variable is

chosen randomly from a normal distribution iV(0,1)2. For each model, 6 training

and test data sets comprising 500, 1000, 2000, 4000, 6000 and 10000 instances

respectively are generated.

The product of two independent variables is calculated from the standardized

values of each variable. Each value of the target variable is calculated from the

values of all of the independent variables directly linked to it multiplied by the

respective link weights plus a unit normal noise value, e ~ NID(0,1).

2The unit normal random data sets U\,..,,UK used in this thesis are generated using the
random number generator program FastNoria2.c written by Chris Wallace [17].
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Figure 3.1: Model 1. The independent variables and the link coefficients to be
discovered are in the dashed-line box, i.e. only variables with direct links to the
target variable. Hence the polynomial model to estimate variable 19 is y = xs +
0.05x9 + 0.37x8 + 0.15x(iiil2) + 0.09xi3 + 0.19xi4 + 0.13xi5 + 0.25xi6 + 0.15xi7 +
0.90xi8 + e,with e e JV(O.l). The link between two independent variables indicates
the correlation coefficient between the variables. For example, 1 —•> 2 indicates the
correlation coefficient between variable 1 and variable 2 is 0.43.
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Figure 3.2: Model 2. Variable 1 is directly linked to all of the variables with direct
links (some of which are very weak) to the target variable. Hence, the polynomial
model to estimate variable 30 is y = 0.26xi9 + 0.32xi8 + 0.73xi7 + 0.48xi6 + 0.13xi3 +
0.29x14 + 0.45x13 + 0.86xi2 + 0.29xn + 0.45xi0 + 0.74x9 + 0.08x8 + 0.14x7 + 0.64x6 +
0.44x5 + 0.15x4 + 0.91x3 + 0.88x2 + e, with e e iV(O.l). Large link coefficients are
deliberately placed between variable 1 and these variables to see if this will cause
variable 1 also to be chosen.

The search engine is presented with the data of the target variable and all of the

available independent variables and the possible products of the single variables.
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Figure 3.3: Model 3. The polynomial model to estimate variable 32 is y = 0.20xi9 +
0.90x4 + 0.35x5 + 1.00x6 + 1.00x7 + 0.12x(8i9) + 0.83x(i0)ii) + 0.90x20 + 0.79z(i4)i5) +
0.20xi8 + e^vith e t: A^(O.l). Unit normally distributed random values with no link
to the target variable are generated for variables 21 to 31 are included in the pool
of potential variables

3.3.1 Orthogonal Transformation of Independent Variables

A high degree of correlation among independent variables (or regressors) can cause

ordinary Gaussian least squares regression method to yield inaccurate coefficients for

the correlated regressors. The inaccuracy can tcke the form of wrong coefficient signs

or coefficient values that do not solely reflect the influence of individual regressors to

the dependent variable but also the influence of one regressor to the other regressors

it has high correlation with.

The basic idea of orthogonal transformation of regressors is to find an orthogonal

basis to express the independent variables, perform regression calculations in this

basis, then transform back to obtain regression coefficients in the original basis. Be-

cause the regression is done in an orthogonal basis where the transformed regressors

are uncorrelated to one another (i.e. the covariance matrix of the regressors forms an

identity matrix), the transformed coefficients calculated do not reflect the effect of

the high degree of correlations among the real regressors. The next section explains

the way orthogonal transformation is done in the experiments in this thesis and the
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way the coefficients for the real regressors are calculated through this transformation

process.

3.3.1.1 The Orthogonal Transformation Used

A. Problem Definition

We start with a set of observations of regressors

. . . , x K = X
NXK

(3-1)

the target variable

y
NX1

(3-2)

and we would like to infer a polynomial prediction model from the regressors

y = X 0
NXl N X K KX1

with sum squares of the residuals defined as

N N K

n=l n=\ k=\

= ( y - X
NX

y £
NXl N X K KX1

61

(y - X fi
NXl N X K KX1

(3.3)

(3.4)

(3.5)



3.3. EXPERIMENTAL DESIGN

The task is to choose an orthogonal transformation P (i.e. P T P = P P T = I)
KXK

that we can use to calculate a set of transformed regressors from the original regressor

w i , . . . , w K = W = X P
NXK NXK KXK

(3.6)

I

I
h

which satisfies the following requirements:

1. All of the transformed regressors are uncorrelated, W T W = Ar I, with N =

the number of observations, used as a scaling factor.

2. The sum squares of the prediction errors of the original polynomial prediction

model, X)^=i rn> aT1d those of the transformed rnodel,X^=1 e£, should be the

same.

The coefficients for the transformed regressors

r
KX1

(3.7)

(3.8)

are to be used to calculate the coefficients for the original regressors of the polynomial

prediction model to be found in the experiments in this chapter

KXl
(3.9)

(3.10)

B. Solution: How to define the transformed regressors Wk, the trans-

formed coefficients 7* and the coefficients for the original regressors fa
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We first establish the fact that a given symmetric square matrix, 4 A = X T X ,
KXK NXK NXK

by definition has K pairs of eigenvalues and eigenvectors, namely

A , Q
K X K KXK

(3.11)

where

A : a diagonal matrix with the eigenvalues of matrix -̂  A as its diagonal elements
CXK JV K X K

Q : a K x K matrix with the eigenvectors of matrix jr A as its columns
K X K KXK

With the existence of the eigenvalues and eigenvectors3, defined in Equation 3.11

above, the following equation holds

- A Q = Q A
iV KXK K X K K X K KXK

(3.12)

since Q is orthonormal, square and assumed to be nonsingular Q 2 = Q T and

~TZ -A.
JV KXK

N A
KXK

Q
KXK KXK KXK KXK

QT A Q
KXK K X K KXK

(3.13)

(3.14)

We will use the above equations in the proofs of the following results.
3In the experiments done in this thesis, the eigenvalues and eigenvectors of a square matrix are

calculated using the Jacobian diagonalization of real symmetric matrix program Jacob, c written
by Chris Wallace. The program will terminate and return an error message if the eigenvalues of
the square matrix equal zero
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Result 3.1 If we define the new transformed regressors Wk as

W = X Q A~5
NXK NXK K X K KXK

Qm,k

m=l

where

(3.15)

(3.16)

Vn,k '• nth data point of the transformed regressor

£n,m '• nth data point of the original regressors xm

\m : the mth diagonal element of A , the diagonal eigenvalue matrix of XT X
KXK NX

7m k '• the mth element of column k of Q the eigenvector matrix of XT X
1 MVI/ KIVI/

NXK NXK

KXK NXK NXK

the regressors Wi,...,WK will be uncorrelated to one another.

Proof. If regressors x; and Xj are uncorrelated, then xiT • Xj = 0 if i ^ j and

T • xk = 1

WT W
NXK NXK

(X Q A-̂
N X K KXK K X K NXK K X K KXK

W
NXK NXK

Q A-^)
<XK K X K

-5 QT XT X Q A-h
X K K X K N X K N X K K X K KXK

W
NXK NXK

WT W
NXK NXK

W
NXK NXK

KXK K"^K NXK NXK K X K

= A~5 QT A Q A-2
KXK K X K KXK K X K KXK

. _ I - r . . _ 1

= A 2 iv A A 2
KXK KXK KXK

N I
KXK
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Result 3.2 The polynomial prediction model inferred from the transform

regressors defined in Equation 3.16 yields the same sum squares of prediction errors

as the model inferred from the original regressors.

Proof. In the new orthogonal basis, the sum squares of prediction errors of

the original model defined in Equation 3.5 transforms to those of the transformed

model, that is

- X
n=l

N X ! KXl NX1
- X

NXK K X l

(3.19)

transforms to

w r ) T ( y - w r)
n = l

N X l NXK KXl NX1 N X K
(3.20)

where F are the coefficients for the transformed regressors.

As derived in Equations 2.13 and 2.15 on page 29, it is known that the sum

squares of residuals £ ^ = 1 ej - E^=1(yn - Y,k=i wn,klkf is minimised when

wT w r
NXK NXK KXl

=J> r
KXl

if we define D = W T y , we get
NXK

y
NXK N X 1

NXK NXK

N X 1

r = (wT w)-1 D
KXl NXK NXK

y
NXK N x ,

(3.21)

(3.22)

(3.23)
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'I

I

"i

We now define the sum squares of residuals in terms of the value of V derived in

Equation 3.23

N

n = l
AT

(y - w r ) T ( y - w r )
NX1 N X K K X 1 NX1 N X K K X 1

-rTwTy-y
Twr

(3.24)

(3.25)
n = l

Substituting T = (WTW)" 1 W T y from Equation 3.22 gives

N

e2
n = yTy

n-l

T1 WT y]T WT y - yT W (WTW)-> W T y

+ [(WTW)-X WT y]T WT W ( W ^ ) - 1 WT y
N

y^el = yT y - yT W (WTW)"1 WT y - yT W (W
1=1

+ yT W ( W ^ ) " 1 [WT W (WTW)"]] WT

(3.26)

-1 WT

(3.27)

Since W T W must be symmetric, (WTW) 1 must also be symmetric.

Thus,

-yTwr
n = l

(3.28)

(3.29)
n = l

If we instead of doing the orthogonal transformation, we had used" the original

regressors, we would 'uave got their coefficients as

= (XT

KXl N X K
(XT X ) ~ l X T y

N X K NXK NXK N X ,
(3.30)
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4

tv

i

4
4

and if we define C = XT y , we get
NXK N X 1

K X 1

= (XT X )"' C
NXK NXK

(3.31)

this would have given us sum squares of residuals as shown in Equation 3.5, which,

derived in a similar manner as the sum squares of residuals of the transformed model

shown in Equation 3.29, takes the form

N

Vr*=yTy -C (3.32)
n=l

So, from Equations 3.22 and 3.32 we know that the sum squares of residuals

of the transformed model should be the same as those of the original model if

DT F = CT p. To prove this, we expand Equation D T V

(WTy)T(WT W)" 1 (WT y)

yT W(W T W)" 1 W T y

yT XP (PT XT XP)~lPT XT y

yT XP [PT (XT X)"1 P] P T XT y

yT X P P T (XT X)-1?^ XT y

yT x(xT

cT a

by Equation 3.6, W = XP

because P " 1 = P T

because P P T = I

So,

N

n=l

N

= 2^r:

n=l

(3.33)

q.e.d
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The definition of the transformed coefficients F shown in Equation 3.22 is correct

if we use ordinary least squares method. As explained on page 43, we actually

use a modified least squares shown in Equation 2.40 to calculate the coefficients

for the regressors of all of the models considered in this thesis. Hence, with the

transformation, the original parameter estimates d2 and (3 shown in Equations 2.39

and 2.40 and, for clarity, replicated in Equations 3.34 and 3.35 below

N K

fc=l a2

and

P = (XT X + -2 I )" lXT y
K X 1 NXK NXK Ct KXK NXK N X j

transform to

N K

fc=l

and

(3.34)

(3.35)

(3.36)

KX1 KXK NXK
(3.37)

Note that rn shown in Equation 3.34 and en shown in Equation 3.36 are calculated

using ths coefficients shown respectively in Equations 3.35 and 3.37.
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3.3.2 Performance Criteria

The performance criteria for the true model discovery task are whether or not a

model selection method manages to select a model with the same set of variables

and corresponding coefficients as those of the true model, as reflected in the following

measures:

1. K: The Size of the Discovered Model

The size of the discovered model is represented in the number of variables

selected, K. Since the size of the true model is known, the size of the discovered

model can be used as an indication of its degree of fit to the data.

2. Model Error

Model error shows how close the coefficients of the discovered model, $ : , are

with those of the true model, fa.

^ (3.38)
fc=i

3. Model Predictive Performance

Model predictive performance (on test data) is quantified by two measures:

(a) Root of the mean of the sum of squared deviations of the predictions, j / ,

from the true values of the dependent/target variable, y.>

RMSE = ,
n = l

where:
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i f

rn : the error of the estimate of the nth data item of

the dependent/target variable y

AT : the number of sample data items

K : the number of independent variables

(b) Coefficient of determination which represents the percentage of the vari-

ability in y (as represented in Xm=i(^« ~~ ^)2 *n Equation 3.40), that is

explained by using x to predict y (as re?v.o>';r.ted in ]T)£Li rn m Equation
f t 3.40).

. I( «2 = 1 - ^»T?= 1 " - . (3-40)

3.4 Results and Discussions

The results of the experiments with artificial data sets for the true models 3.1,

3.2 and 3.3 are respectively given in Tables 3.2 end 3.3, 3.4 and 3.5, and 3.6 and

3.7. The results show that the search engine using model selection methods MML,

MDL, CAICF, SRM or PMDL manages to home in to the true models (i.e. all of the

variables with direct links to the target variable shown in the number of variables

discovered. Due to a space constraint, the variables and their coefficients are not

shown).

The other methods, namely AIC and BIC tend to choose wrong and much more

complex models. The fact that the models selected by AIC and BIC for Model

2 and 3 have 70 variables for all of the sample sizes suggests that the search has
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been stopped before convergence. Prom tbe performance criteria and the number of

variables chosen for Model 1, 2 and 3, it is clear that AIC and BIC have over fitted

the training data. Hence, this implies that in those model selection methods, the

penalty for chosing a more complex model is too small compared to the reward of a

better data fit.

Nonetheless, it has been observed that all of the methods selected some of the

significant regressors early on in the search process and assigned relatively large

coefficients to them and small coefficients to the variables chosen which do not exist

in the true model. These results suggest that if a model selection procedure is to be

fully automated, MML. MDL, CAICF, SRM and PMDL can reliably converge to

the true model (if one exists), or to a reasonably parsimonious model estimate. The

models selected by the AIC and BIC may need further judgements in deciding on the

final model which can take two forms. First, a model can be chosen halfway through

the search process just before a more complex model with worse performance on some

test data set is chosen. If this approach is taken, then it means we treat AIC and

BIC as methods which need test data sets to decide on a model outlined in Section

2.3.2. Second, some of the variables with small coefficients are pruned ont from

the model. The need for these manual adjustments explains the real reason behind

the traditional common practice of specifying beforehand the maximum number of

variables for a model (e.g. [108], [6]).

3.5 Conclusion

The performance of the new Minimum Message Length model selection criterion

proposed in Section 2.3.3.1 alongside with the other model criteria most commonly

cited in the literature outlined in 2.3 are tested in their ability to recover true models
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vfl

from artificial data sets with varying sample sizes and levels of noise using a common

non-backtracking search strategy outlined in Section 3.2.2. The robustness of these

model selection criteria h- performing the task of selecting models that balance

model complexity and goodness of fit is examined.

Based on the experiments with artificial data, it has been shown that MML,

MDL, CAICF, SRM and PMDL methods are good candidates for fully automated

model selection tasks. Given a noisy data set, the methods can reliably converge to

a true model (if one exists) or to a reasonably parsimonious model.

The fact that AIC and BIG have overfitted the training data suggests that when

comparing two models with different complexity, the increase in the penalty terms

for model complexity is not sufficient compared to the decrease in the terms for

goodness of fit. This prompted the doubt that the balancing mechanism of the

methods might not be robust enough for automated model selection task.
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Table 3.2: Performance of the different model selection methods on the task of
discovering Model 1 using GOO, 1000 and 2000 sample sizes

•I

Sample
Size

500

1000

2000

Method

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

nvar

6
6
6
6
8

40
40
8
8
8
8

10
30
30
9
7
7
7
9

31
31

Model 1 (nvar= 10)
ModelErr

0.0109
0.0109
0.0109
0.0109
0.0045
0.0093
0.0093
0.0049
0.0049
0.0049
0.0049
0.0057
0.0035
0.0035
0.0014
0.0047
0.0047
0.0047
0.0014
0.0014
0.0014

RMSE

1.0399
1.0399
1.0399
1.0399
1.0320
1.1858
1.1858
1.0367
1.0367
1.0367
1.0367
1.0427
1.0684
1.0684
1.0103
1.0224
1.0224
1.0224
1.0103
1.0316
1.0316

W

0.7285
0.7285
0.7285
0.7285
0.7337
0.6713
0.6713
0.7567
0.7567
0.7567
0.7567
0.7544
0.7473
0.7473
0.7636
0.7577
0.7577
0.7577
0.7636
0.7562
0.7562
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Table 3.3: Perfonnance of the different model selection methods on the task of
discovering Model 1 using 4000, 6000 and 10000 sample sizes

Sample
Size

4000

6000

10000

Method

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

Model 1 (nvar= 10)
nvar

9
9
9
9

10
38
38
10
10
10
9

10
32
32
10
10
10
10
10
32
32

ModelErr

0.0005
0.0005
0.0005
0.0005
0.0009
0.0011
0.0011
0.0002
0.0002
0.0002
0.0006
0.0002
0.0006
0.0006
0.0001
0.0001
0.0001
0.0001
0.0001
0.0005
0.0005

RMSE

1.0013
1.0013
1.0013
1.0013
1.0016
1.0151
1.0151
1.0106
1.0106
1.0106
1.0131
1.0106
1.0182
1.0182
1.0116
1.0116
1.0116
1.0116
1.0116
1.0162
1.0162

w-

0.7743
0.7743
0.7743
0.7743
0.7742
0.7697
0.7697
0.7697
0.7697
0.7697
0.7686
0.7697
0.7672
0.7672
0.7702
0.7702
0.7702
0.7702
0.7702
0.7686
0.7686

I *a
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I
Table 3.4: Performance of the different model selection methods on the task of
discovering Model 2 using 500, 1000 and 2000 sample sizes

8

J

Sample
Size

500

1000

2000

Method

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

Model 2 (nvar= 18)
nvar

14
14
14
17
22
70
70
17
17
17
17
23
70
70
17
17
17
17
20
70
70

ModelErr

0.0068
0.0068
0.0170
0.0048
0.0077
0.0130
0.0130
0.0012
0.0012
0.0012
0.0012
0.0024
0.0059
0.0059
0.0013
0.0013
0.0013
0.0013
0.0011
0.0027
0.0027

RMSE

1.0563
1.0563
1.0762
1.0635
1.1264
1.4311
1.4311
0.9894
0.9894
0.9894
0.9894
1.0123
1.1577
1.1577
1.0011
1.0011
1.0011
1.0011
1.0090
1.0767
1.0767

R2

0.9453
0.9453
0.9432
0.9449
0.9388
0.9112
0.9112
0.9539
0.9539
0.9539
0.9539
0.9521
0.9403
0.9403
0.9509
0.9509
0.9509
0.9509
0.9502
0.9447
0.9447
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Table 3.5: Performance of the different model selection methods on the task of
discovering Model 2 using 4000, 6000 and 10000 sample sizes

i

Sample
Size

4000

6000

10000

Method

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

nvar

18
18
18
18
22
70
70
18
18
18
18
19
68
68
18
18
18
18
20
70
70

Model 2 (nvar= 10]
ModelErr

0.0004
0.0004
0.0004
0.0004
0.0009
0.0013
0.0013
0.0002
0.0002
0.0002
0.0002
0.0002
0.0007
0.0007
0.0001
0.0001
0.0001
0.0001
0.0002
0.0005
0.0005

RMSE

0.9885
0.9885
0.9885
0.9885
0.9955
1.0221
1.0221
1.0018
1.0018
1.0018
1.0018
1.0026
1.0245
1.0245
1.0014
1.0014
1.0014
1.0014
1.0024
1.0159
1.0159

I

0.9535
0.9535
0.9535
0.9535
0.9529
0.9509
0.9509
0.9518
0.9518
0.9518
0.9518
0.9517
0.9500
0.9500
0.9513
0.9513
0.9513
0.9513
0.9512
0.9502
0.9502
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i

Table 3.6: Performance of the different model selection methods on the task of
discovering Model 3 using 500, 1000 and 2000 sample sizes

V

p

I

Sample
Size

500

1000

2000

Method

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

Model 3 (2ivar= 10)
nvar

10
10
11
17
20
70
70
10
10
10
13
16
70
70
9

10
10
10
19
70
70

ModelErr

0.0027
0.0027
0.0050
0.0108
0.0120
0.0145
0.0145
0.0008
0.0008
0.0008
0.0035
0.0049
0.0062
0.0062
0.0022
0.0006
0.0006
0.0006
0.0030
0.0025
0.0025

RMSE

1.0245
1.0245
1.0475
1.1242
1.1624
1.5098
1.5098
1.0453
1.0453
1.0453
1.0722
1.0875
1.2322
1.2322

0.9945
0.9857
0.9857
0.9857
1.0025
1.0745
1.0745

K*

0.9266
0.9266
0.9234
0.9129
0.9074
0.8601
0.8601
0.9256
0.9256
0.9256
0.9220
0.9200
0.9029
0.9029
0.9307
0.9319
0.9319
0.9319
0.9299
0.9216
0.9216
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Table 3.7: Performance of the different model selection methods on the task of
discovering Model 3 using 4000, 6000 and 10000 sample sizes

1

Sample
Size

4000

6000

10000

Method

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

MML
MDL

CAICF
SRM

PMDL
AIC
BIC

Model 3 (nvar= 10)
nvar

10
10
10
10
12
70
70
10
10
10
10
10
70
70
10
10
10
10
11
70
70

ModelErr

0.0002
0.0002
0.0002
0.0002
0.0005
0.0011
0.0011
0.0006
0.0006
0.0006
0.0006
0.0006
0.0CO8
0.0008
0.0001
0.0001
0.0001
0.0001
0.0002
0.0005
0.0005

RMSE

0.9899
0.9899
0.9899
0.9899
0.9907
1.0287
1.0287
1.0055
1.0055
1.0055
1.0055
1.0055
1.0318
1.0318
1.0207
1.0207
1.0207
1.0207
1.0211
1.0349
1.0349

R2

0.9316
0.9316
0.9316
0.9316
0.9315
0.9272
0.9272
0.9300
0.9300
0.9300
0.9300
0.9300
0.9270
0.9270
0.9290
0.9290
0.9290
0.9290
0.9290
0.9275
0.9275
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Chapter 4

An Overview of Tropical Cyclone

Intensity Forecasting Modeling

4.1 Introduction

Tropical cyclones, also known as typhoons or hurricanes, are severe weather systems

in the form of intense circular vortices which account for the strongest sustained

winds observed anywhere in the earth's atmosphere. For the Atlantic basin which

covers the areas of North Atlantic Ocean, Caribbean Sea and Gulf of Mexico, trop-

ical cyclone intensity is defined as the near-surface sustained wind speed (1 minute

averaged speed) around its eye (center).

This chapter gives an overview of the current tropical cyclone (TC) intensity

forecasting models used operationally in the Atlantic basin in particular those which

are built using the multiple linear regression techniques, namely Statistical Hurricane

Intensity FORcasting (SHIFOR) [10], SHIFOR94 (a modification of SHIFOR) [24],

and Statistical Hurricane Intensity Prediction Scheme (SHIPS) [82]. The motivation
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4.2. TC INTENSITY FORECASTING MODELS FOR THE ATLANTIC BASIN

for the move of atmospheric scientists from numerical to stochastic modelling in the

attempts to build tropical cyclone intensity forecasting is also explained.

The data used to build SHIFOR and SHIFOR94 are used in the experiments

done in Chapter 5. For this reason, SHIFOR and SHIFOR94 are used as benchmark

models for the experiments. This chapter gives an explanation of each variable of

the data used.

4.2 TC Intensity Forecasting Models for the At-

lantic basin

There have been a number of modeling techniques applied by atmospheric scientists

in building tropical cyclone intensity forecasting models. As shown in Table 1.1

on page 13, the Atlantic basin is one of the seven tropical cyclone basins in the

world. This section outlines two categories of forecasting modeling techniques used

for tropical cyclone intensity in the Atlantic basin, namely numerical and multiple

linear regression modeling techniques. There are a few other modeling techniques

used which will not be discussed in this thesis, namely pattern recognition (e.g. the

Dvorak technique [111] which uses visible satellite pictures of a tropical cyclone to

estimate its intensities), expert systems (e.g [104]) and a method that combines the

Dvorak technique and other forecaster rules (e.g. [39, pp.2.24-2.27]), among others.

4.2.1 Numerical Modeling of TC Intensity Forecasting

Whilst atmospheric scientists have been able to come up with good forecasts of

tropical cyclone motions using numerous numerical and statistical models which

have been in operational use at the various tropical cyclone forecast centres around
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If the world (documented in [65]), the state of the research in tropical cyclone intensity

Cf forecasting has not been as advanced. Jarvinen and Neumann [10] explains that the

^f disparity is partly due to the difficulty in establishing cause and effect relationships

"p- for intensity changes because of the lack of historical data to be used for building

*f the intensity change models.

'\ Attempts to build tropical cyclone intensity forecasting model using determinis-

i tic numerical thermodynamic modelling techniques have not met with success when
*#

, the models were tried in operational use1. The numerical model built by Bender et
4

C al. [85, 86] consistently underforecasts intensifying tropical cyclones and overesti-

y mates intensifying tropical storms [124]. Fitzpatrick [93] suspected that the errors

%l were associated with the lack of consensus amongst experts on how to treat prop-

•f erly the cumulative effects of convective clouds on the large-scale temperature and

4 moisture fields. He explains that tropical cyclone development is sensitive to the

J% specification of grid-scale condensation and the parameterised condensation. Cumu-
A

% lus parameterisation schemes assume that there is a spectral gap between resolvable
si

' f and sub-grid scales, which does not exist in nature. This makes partitioning their
A
I separate contributions to tropical cyclone intensity in a numerical model unclear

The problem of numerical modelling of tropical cyclone intensity becomes more

difficult with the observed sensitivity of tropical cyclone simulations to different

control parameters in a particular parameterisation scheme. Baik et al. [53] in

his simulation experiments using the Betts-Miller convective system [7] reported

that a tropical cyclone would develop faster when an "adjustment time scale" was

decreased or if a "stability weight" of the moist adiabat2 in the lower atmosphere is
1A similar review can be found in [93]
2Adiabatic Process is defined as the thermodynamic transformation which occurs without the

exchange of heat between a system and its environment [64, 122]
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increased. However, adjustments to these parameters could not be confidently done

since they had non-consistent effects to the grid-scale convection and parameterised

convection.

Baik et al. [54] also found that simulated tropical cyclones evolve differently

across separate parameterisation schemes. For example, in their experiments, tropi-

cal cyclones developed faster in the Kuo parameterisation schemes [51, 52,102] than

in the Betts-Miller scheme [7]. Other researchers (e.g. [66, 69, 67]) have reported

similar observations with regards to the problems in adjusting control parameters

and the different behaviours of simulated tropical cyclones in different parameterisa-

tion schemes. All of these reasons motivate atmospheric scientists to try stochastic

modeling approaches like multiple linear regression.

4.2.2 Multiple Linear Regression Technique in TC Intensity

Modeling

This section gives overviews of three forecasting models being operationally used

to forecasting tropical cyclone intensities in the Atlantic basin, namely Statisti-

cal Hurricane Intensity FORcasting (SHIFOR) [10], SHIFOR94 (a modification of

SHIFOR) [24], and Statistical Hurricane Intensity Prediction Scheme (SHIPS) [82].

These models were all built using the standard least squares method to multiple

linear regression outlined in Section 2.3.1.1.

This section in particular describes the data sets used to build each of the models.

The data sets used to build SHIFOR943 are used in the experiments to build the

forecasting model reported in Chapter 5.
3The data sets were provided by Chris Landsea
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4.2.2.1 Statistical Hurricane Intensity FORcasting (SHIFOR) Model

In 1979, Jarvinen and Neumann [10] used a data set extracted from the North

Atlantic tropical cyclone data tape [11] of the National Hurricane Center (NHC)

to build SHIFOR. The tape contains the dates, the tracks (the global positions),

wind speeds and central pressure values (if available) for all of the tropical cyclones

occurring from 1886 to 1977. The information on this tape was recorded at 6-hourly

intervals and was based on post analyses of all available data. These are referred

to as "best track" and "best wind" data. The dates and tracks of a cyclone are

categorised as the climatology variables and its intensity is defined as persistence,

due to the belief that if a storm has been strengthening/weakening in the past few

hours, it is most likely to continue strengthening/weakening.

Tropical cyclone intensity is recorded in terms of wind speed and central pressure.

; | Prior to the introduction of aircraft reconnaissance flights into tropical cyclones by

"j the United States Air Force and Navy in 1944, the amount of central pressure data
• " * • /

^4 recorded is small. Maximum sustained wind speeds, on the other hand, have been
0 I

' { measured or estimated by various means for all of the tropical cyclones, although in

j.'J many cases, there has been doubt that the maximum wind speed values had really

been obtained [10]. For this reason, wind speed is commonly used in modeling

tropical cyclone intensity.

For the Atlantic basin, tropical cyclone wind speed is measured as the maximum

sustained (1 minute) surface wind speed in knots. This is measured to the nearest

5 knots. Fitzpatrick [93] explains that this is because the best track data are often

estimated from satellite images (e.g. using the Dvorak technique [111]) and it is dif-

ficult to determine a representative wind speed value in a large, often asymmetrical

tropical cyclone. Miller and Fritsch [27] pointed out that the areal pixel counts may

83

I



4.2. TC INTENSITY FORECASTING MODELS FOR THE ATLANTIC BASIN

be skewed in situations when the tropical cyclone is far from the satellite subpoint.

Because of the low level of precision in the tropical cyclone data, it is common prac-

tice to predict intensity change rather than intensity in tropical cyclone forecasting

models.

SHIFOR was built using the tropical cyclone data from 1900 to 1977. Data prior

to 1900 were not used because of fragmented documentation [10]. The data set was

divided into two parts: data from 1900 to 1972 as the training data set and data

from 1973 to 1977 as the test data set. Forecasting models for 12 through to 72

hours into the future were built.

Several constraints were placed upon the data set:

1. Only the tropical cyclone data records within the geographical area bounded

by 45°C latitude on the north, the equator on the south, 5°C longitude on

the east, and the North, Central and South American Continents on the west,

were accepted.

2. Only those tropical cyclone data which were not within 30 nautical miles of

land and had previous 6- and 12-hour positions not within 30 nautical miles

of land were accepted.

3. All wind values had to equal or exceed 35 knots (i.e. at tropical storm strength

or greater).

4. If a storm moved inland and later moved our over water, its records that could

not meet constraints 1, 2, or 3, were eliminated.

There are seven regressors basic regressors used in SHIFOR:
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1 - Julian Date The number of days since the start of the year in Julian Calendar.

The effect of leap years is neglected in the Julian date variable. Here the end

of each month from December to November is represented respectively by the

numbers 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304 and 334. The Julian

Date is calculated by adding the day of the cyclone data item to the number

associated with the end of the previous month.

2,3 - Initial Latitude and Longitude The global position of a cyclone (in de-

grees North and West, respectively)

4 - Average zonal speed past 12 hours The average speed of a cyclone in the

east to west direction (in knots)

5 - Average meridional speed past 12 hours The average speed of a cyclone

in the north to south direction (in knots)

6 - Current maximum sustained wind speed The 1 minute sustained wind

speed of a cyclone (in knots)

7 - Previous 12 hour change in maximum sustained wind speed The cur-

rent wind speed minus the wind speed 12 hours prior (in knots)

The SHIFOR model in operational use in the Atlantic basin has been modified

by Arthur Pike in the late 1980s4. This modified version of SHIFOR which includes

the products of variables is used as a benchmark model in the experiments outlined

in Chapter 5.
4 Chris Landsea, personal communication
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4.2.2.2 Modified Statistical Hurricane Intensity FORcasting (SHIFOR94)

Model

The motivation of SHIFOR94 [24] is to find a forecasting model that can produce

better forecasts 72 hours into the future than SHIFOR5. In addition to the clima-

tology variables and persistence used in SHIFOR, Chris Landsea includes synop-

tic/environmental and seasonal data in the search space to find SHIFOR94. Sea-

sonal variables have been reported (e.g. in [114, 115, 116, 118, 119, 120, 121]) to be

influential to the frequency/activity of tropical cyclones in the Atlantic basin.

SHIFOR94 was built using tropical cyclone data from the period 1950-1994. The

tropical cyclone data will not be used if the cyclone satisfies one of the following

conditions (Chris Landsea, personal communication):

1. Tropical cyclones which did not last for 72 hours

2. Tropical cyclone records which were at either extra-tropical or sub-tropical

stages

3. Tropical cyclone records with winds either at initial or final forecast time were

less than 20 knots

4. Tropical cyclones which occurred before 1 June. This is because Atlantic basin

tropical cyclone activity either before 1 June or after 30 November is nearly

negligible and most cyclones occur between 1 August and 31 October [23].

Upon observations of the recordings of tropical cyclone central pressure and wind

speed, Landsea [23] noticed that for specific wind speed categories, there has been a
5The limited published information on SHIFOR94 can only be found in [24], a short paper.

Explanations on SHIFOR94 and the climatological, persistence and synoptic variables used to
build it outlined in this section are derived from email communications with Chris Landsea, and
the Fortran programs and data files he has made available to us.
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shift to lower observed pressures for the decades of the 1940s to the 1960s. Since there

have been no significant changes in the methodologies to measure actual and extrap-

olated surface pressures in tropical cyclones, Landsea deduced that any changes in

the wind-pressure relationship might be due to alterations in the way sustained wind

speeds were measured or estimated. He concluded that the decades of 1940s to the

1960s had overestimated wind speeds as compared to later years. The tropical cy-

clone data set is then corrected by removing the bias in the wind speed records for

the years 1944 to 1969. The wind speeds between 100 to 124 knots were reduced by

5 knots and those greater and equal to 125 knots were reduced by 10 knots.

The tropical cyclone track position forecasting program called, CLIPER (CLi-

matology and PERsistence) [15], is used to get the forecasts of the latitude and

longitude position and motion of a cyclone 72 hours in the future. CLIPER is the

only purely statistical tropical cyclone track forecasting model still in operational

use. The only inputs to CLIPER are the storm's current and previous positions, its

motion and intensity, and the time of the year. Because CLIPER knows nothing

about the meteorological situation surrounding a storm, the output of CLIPER is

called "no skill" prediction. For the 72-hour forecast period, CLIPER requires that

tropical cyclone must have existed in some form 18 hours prior. The cyclone data

which have transited over land at anytime during the 72 hour period are removed

from the data set.

There are in total 36 single variables in the pool of potential regressors to build

SHIFOR94. The search space used to find SHIFOR94 includes the products and

ratios of these single variables. These 36 single variables and their products are used

in the experiments in Chapter 5. Thus, the second-order polynomial forecasting

model tested takes the form as shown in Equation 2.1 on page 23.
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The climatology and persistence variables are as follows:

1,2 - Julian Date, JulOff Variable Julian Date is the same as the Julian Date

calculated in SHIFOR. JulOff measures the number of days from the peak of

the hurricane season in the Atlantic basin. It is calculated as the absolute

value of substracting 273 from Julian Date shown in the following formula:

JulOff = | JulianDate - 2731 (4.1)

The number 273 is associated with the date September 10, when the peak of

the Atlantic tropical cyclone season in terms of the probability that a storm

exists anywhere in the Atlantic basin is a maximum [82].

3,4 - LatData, LonData LatData and LonData are the values of the initial lat-

itude and longitude global position of a cyclone (in degrees North and West,

respectively) as used in SHIFOR.

5,6 - Vmax, Dell2V Vmax is the current cyclone intensity, also known as "per-

sistence". It is the current maximum (1 minute) sustained wind speed of a

cyclone (in knots). Dell2V is the previous 12 hour change in maximum sus-

tained wind speed.

7,8,9 - UCurr, VCurr, Speed UCurr is the average zonal (i.e. in the east-west

direction) speed/motion of a cyclone for the past 6 hours (in knots). VCurr

is the average meridional (i.e. in the north-south direction) speed/motion of a

cyclone for the past 6 hours (in knots). Speed is the resultant of UCurr and

VCurr. Speed is included because the speed of a motion might be related to

intensity change, independent of the direction of storm motion [82].



4.2. TC INTENSITY FOBECASTING MODELS FOR THE ATLANTIC BASIN

The synoptic environmental variables are:

10,11 - POT, POTend POT is the initial potential intensity (intensification po-

tential) of a cyclone. Potential Intensity is defined as the theoretical maxi-

mum possible intensity that can be sustained for the current environmental

conditions; normally related to ocean temperature and tropopause height and

temperature [70].

Potential Intensity is calculated by taking the difference between the Maxi-

mum Potential Intensity and the current cyclone intensity. Maximum Poten-

tial Intensity (MPI) [105, 71] is the upper bound of the intensity of a cyclone

estimated from the sea surface temperature, SST, at the location of the cy-

clone. For SHIFOR94, and thus the experiments done in Chapter 5 in this

thesis, MPI is determined from the empirical relationship given below which

was developed by DeMaria and Kaplan [81] from a 31-year sample of Atlantic

cyclones.

where:

(4.2)

A

B

C

SST0

SST

= 66.5 knots

= 108.8 knots

= 0.1813CC)-1

= 30.0°C

: the sea surface temperature in °C

Monthly mean values of sea surface temperature (SST) are available on a 1°

latitude-longitude grid. These values are linearly extrapolated in space and

89



4.2. TC INTENSITY FORECASTING MODELS FOR THE ATLANTIC BASIN

time to the position and date of each storm. The SST for the calculation of

POT is averaged over the track of the cyclone during the forecast interval to

account for SST variations along the storm track. For example, for the 72-hour

forecast, the SST for Equation 4.2 is the average of the SST at 0-, 24-, 48-

and 72-hour positions of the cyclone. For the calculation of POTEnd, SST is

taken at the SST at the end of the forecast interval, i.e. at the position for

the 72-hour forecast.

12 - DelSST DelSST is the difference between the current sea surface temperature

and the SST at the end of the forecast interval.

13,14,15 - SSST, SSSTend, DSSST The climatological sea sub-surface temper-

ature data available are averaged for the depths 10m, 30m and 50m. SSST is

calculated as the average of the sub-surface temperatures at 0-, 24-, 48- and

72-hour positions of the cyclone. SSSTend is the sea sub-surface temperatures

at the 72-hour position of the cyclone. DSSST is the difference between the sea

sub-surface temperatures at the initial position of the cyclone and the position

at the end of the forecast period.

16,17,18 - UppSpd, Uppend, DUppSpd Studies, e.g. [113, 106], have shown

that the vertical shear of the horizontal wind has a negative influence on trop-

ical cyclone intensification. It is, however, observed that there is no consensus

on how the vertical shear that has an influence on tropical cyclone intensifi-

cation is defined. For SHIFOR94, the shear is defined as the vertical shear

between the tropical cyclone horizontal wind motion and the climatological

200mb wind. So, UppSpd is the vertical shear defined for SHIFOR94, aver-

aged over the 0-, 24-, 48- and 72-hour positions of the cyclone. Uppend is the
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shear at the position at the end of the forecast period. DUppSpd is the change

in wind shear from the initial to the end of forecast period.

For SHIPS [82], which will be described in the next section, the shear is defined

as the difference between the 850mb and 200mb climatologlcal wind vectors

[82]. The reason for the choice of these two levels to evaluate shear is because

most of the satellite cloud track wind estimates that are used to calculate for

the angular momentum variable used in SHIPS are assigned to these levels.

19,20,21 - Stabil, Stabend, DelStab Stabil is the moist static stability between

1000 and 200mb averaged over the 0-, 24-, 48- and 72-hour positions of the

cyclone. Stabend is the moist static stability at the end of the forecast period.

DelStab is the change in moist static stability from the initial to the end of

forecast period.

22,23,24 - 200mbT, 200Tend, Del200T 200mbT is the temperature at 200mb

averaged over the 0-, 24-, 48- and 72-hour positions of the cyclone. 200Tend

is the temperature at the end of the 72-hour forecast period. Del200T is the

difference between the 200mb temperature at the initial position of the cyclone

and the position at the end of the forecast period.

25,26 - DisLand, Closest DisLand is the initial distance of a cyclone from land

based on the available land database. Closest is the closest approach of a

cyclone to land.

27,28,29 - 200mbU, 200Uend, Del200U 200mbU is the climatological 200mb

wind averaged over the 0-, 24-, 48- and 72-hour positions of the cyclone.

200Uend is the climatological 200mb wind at the end of the forecast period.

Del200U is the difference between the 200mb wind at the initial position of

the cyclone and the position at the end of the forecast period.
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Seasonal variables have been reported (e.g. in [114,115, 116, 118, 119, 120, 121])

to be influential on the activity of tropical cyclones in the Atlantic basin. The

Atlantic tropical cyclone activity is defined in 7 variables: the seasonal total numbers

of named storms (NS), hurricanes (H), intense hurricanes (IH), named storm days

(NSD), hurricane days (HD), intense hurricane days (IHD) and hurricane destruction

potential (HDP). The definitions of these activity variables are contained in [118,

119, 23] and are summarised below:

Named Storms (NS): a hurricane or a tropical storm.

Hurricanes (H): a tropical cyclone with sustained low-level winds of 33 m/s or

greater.

Intense hurricanes (IH): a hurricane reaching at some point in its lifetime a

sustained low-level wind of at least 50 m/s. This constitutes a category 3

or higher on the Saffir-Simpson scale shown in Table 1.2 on page 14.

Named storm days (NSD): four 6-hour periods during which a tropical cyclone

is observed or estimated to have attained tropical storm or hurricane intensity

wind.

Hurricane days (HD): four 6-hour periods during which a tropical cyclone is

observed or estimated to have hurricane intensity winds.

Intense hurricane days (IHD): four 6-hour periods during which a hurricane

has intensity of Saffir-Simpson category 3 or higher.

Hurricane destruction potential (HDP): a measure of a hurricane's potential

for wind and storm-surge destruction defined as the sum of the square of

a hurricane's maximum wind speed for each 6-hour period of its existence.

Values are given in 0.25 x 104(m/s)2.
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The following are the seven seasonal variables included in the search space to find

SHIFOR94. Figure 4.1 gives the locations of these variables. Whilst the influences of

these seasonal variables on the activity of tropical cyclone in the Atlantic basin have

been extensively studied in the past, their influences on the intensities of tropical

cyclones in the basin are much less clear.

30 - U50 U50 is the 50mb Quasi-Biennial Osciallation (QBO). QBO refers to

variable east-west oscillating stratospheric winds which circle the globe near

the equator. Strong stratospheric QBO easterly winds and strong lower-

stratospheric vertical wind shear conditions inhibit lower-latitude tropical cy-

clone formation and intensification [114, 115, 80]. On average, there is nearly

twice as much intense (i.e. category 3,4,5 on the Saffir-Simpson Scales shown

in Table 1.2 on page 14) Atlantic basin hurricane activity during seasons when

equatorial stratospheric winds at 30mb and 50mb (i.e. 23km and 20km alti-

tude, respectively) are more westerly as compared to when they are from a

more easterly direction [116].

31,32 - RainS, RainG The incidence of intense Atlantic hurricane activity is strongly

enhanced during the seasons when the June-July African Western Sahel (5° W-

15°W, 10°N-20°N) and previous year August-November Gulf of Guinea re-

gions of West Africa (0°W-10°W, 5°N-10°N) have above average rainfall[121].

RainS and RainG refer to the rainfall indices in these two regions. Landsea

and Gray [25] have found that the previous-year rainfall along the Gulf of

Guinea and in the Sahel itself provides a very dependable indication of future

Sahel rainfall. This rainfall is hypothesized to lead to earlier vegetation growth

and greater amounts of soil moisture and evapotranspiration on the following

August and September period. This extra moisture source appears to lead to
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a higher percentage of stronger and more concentrated waves coming off West

Africa to the Atlantic.

Landsea and Gray [25] have also found that there is a strong statistical relation-

ship between western Sahelian rainfall and Caribbean basin upper-tropospheric

zonal winds during the height of the hurricane season in September. Upper-

tropospheric zonal winds are typically weak westerlies or actual easterlies dur-

ing times of heavy western Sahelian rainfall. Inversely, they are typically strong

westerly winds during western Sahelian drought conditions. The influence of

the Caribbean basin upper-tropospheric zonal winds (ZWA) on the Atlantic

tropical cyclone activity is explained in the next point. Gray et al. [120] con-

clude that interannual variability of easterly waves and the general circulation

over the Atlantic appears to be the mechanism that ties the western Sahelian

rainfall to Atlantic tropical cyclone activity.

33,34 - SLPA, ZWA SLPA and ZWA are the Caribbean Sea Level Pressure Anoma-

lies and 200mb (12km altitude) Zonal Wind Anomalies, respectively. Sta-

tions located throughout the Caribbean basis show an inverse relationship of

April and May sea level pressure (SLPA) to subsequent tropical cyclone ac-

tivity [120]. In general, higher pressure precedes quiet conditions, while lower

pressure indicates more activity to come [68, 61, 78, 115]. Surface pressure

variations are observed to be associated with interannual shifts of the loca-

tion and/or fluctuations of the intensity of the intertropical convergence zone

(ITCZ)6. Negative SLPA values typically indicate a shift of ITCZ farther to

the north of its normal position, which might favour tropical cyclone gene-

sis. It is presumed than anomalous conditions occuring in April and May
6intertropical convergence zone (ITCZ) is a discontinuous belt of thunderstorms paralleling the

equator and marking the convergence of the northern and southern hemisphere surface trade winds
[90]
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have a tendency to persist through the main months of the hurricane season

(August-October) [120].

Tropospheric vertical wind shear has long been recognised as a major inhibit-

ing factor for tropical cyclonegenesis and intensification [113]. Gray et al.

[120] explains that because of the circulation regime of the tropical North At-

lantic, tropospheric vertical shear is dominated by the variations in the upper

troposphere. Thus with the nearly constant trade-wind flow (e.g. easterlies)

near the surface, 200mb ZWA adequately describe vertical wind shear. That

is, positive anomalies (westerly) indicate enhanced shear and less tropical cy-

clone activity, while negative anomalies (easterly) indicate reduced shear and

more tropical cyclone activity.

Gray et al. [120] further explains that, similarly to the Caribbean SLPA, the

April and May ZWA are useful as predictors because of their tendency to

persist into the heart of the hurricane season. Also, because ?f the anomalous

circulation forced by ENSO events (see the explanation on ENSO in the next

point) and the location of the Caribbean stations chosen, the 200mb ZWA are

good measures of the ENSO effect upon the Caribbean and the western North

Atlantic [95, 114].

35,36 - EINino, SOI EINino is the ENSO (El Nino-Southern Oscillation) influ-

ence. ENSO characterises the sea surface temperature anomalies (SSTA) in

the eastern equatorial Pacific and the surface pressure gradient between Tahiti

and Darwin, i.e. the sea level pressure of Tahiti minus that of Darwin, also

known as the Southern Oscillation Index (SOI). As explained in [121], a moder-

ate or strong El Nino event (i.e. warm water and low surface pressure gradient

between Tahiti and Darwin) in the eastern equatorial Pacific is observed to
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/CARIBBEAN
BASIN

strong

Figure 4.1: Locations of the seasonal/environmental variables reported to be influ-
ential on tropical cyclones in the Atlantic basin. Source: [121]

have inhibiting effects on the Atlantic basin hurricane activity. On the other

hand, more active Atlantic basin hurricane seasons happen during La Nina

years (i.e. cold water and high surface pressure gradient between Tahiti and

Darwin).

The above observation is explained in a wider context in [95, 114, 79, 117, 119,

120]. These papers explain that there is a strong relationship between ENSO,

the 200mb (12km) circulation over the Carribbean basin and tropical Atlantic

upper-tropospheric zonal winds. In the seasons of warm eastern Pacific SSTA

or when low values of SOI occur, the Caribbean basin and tropical Atlantic

typically have positive ZWA. This inhibits Atlantic activity. Opposite or weak

upper-tropospheric zonal winds occur in the seasons of cold easter Pacific SSTA

and high SOI. This latter conditions enhance Atlantic activity.

4.2.2.3 Statistical Hurricane Intensity Prediction Scheme (SHIPS) Model

SHIPS [82] was built using the same climatological, persistence and synoptic7 vari-

ables which would later be used in building SHIFOR94 outlined in the previous
7Except that wind shear for SHIPS is defined differently from that for SHIFOR94 as discussed

in Section 4.2.2.2
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section. Instead of using CLIPER [15], VICBAR [83], is used to get the tropical

cyclone track forecasts. VICBAR replaces the complex dynamics of the atmosphere

with a layer of fluid with constant density representing the average motions between

850mb and 200mb.

Three additional variables were also used in SHIPS namely, the 200mb relative

and planetary angular momentum flux convergence, REFC and PEFC respectively,

and the 850mb relative angular momentum, SIZE. The data used are for the period

1989 to 1992 with a few additional cases from 1982 and 1988. DeMaria and Ka-

plan [82] explain that the momentum flux variables (REFC and PEFC) are included

to account for positive interactions between the tropical cyclone and synoptic-scale

weather systems (i.e. 50km - 5,000km). They further explain that the theoreti-

cal results in [41] and the observational results in [55] suggest that when a storm

interacts with the large-scale flow in a way that makes the upper-level flow more

cyclonic, the intensification rate of the storm may be increased. The integrated

relative angular momentum, SIZE, is included as a measure of the extent of the

outer circulation of a tropical cyclone. SIZE is calculated using satellite cloud track

winds at 850mb representing the outer circulation of a storm. SHIPS is not used as

a benchmark model in this thesis because the data required to calculate the three

additional independent variables mentioned above were not available.

4.3 Conclusion

This chapter gives an overview of some of the models used to forecast tropical cyclone

intensity change in the Atlantic basin. Of particular importance to this thesis are

the explanations of the 36 variables used to build SHIFOR94 [24]. The same data

set used to build SHIFOR94 is used in the experiments to build a new forecasting
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model done in Chapter 5. Of particular interest are the seasonal variables (variables

30-36), i.e. QBO, African rainfall, Current ENSO conditions, Caribbean pressures

and 200mb winds. These variables had never previously been used to build tropical

cyclone intensity forecasting model. This is despite the strong observed relationships

between these seasonal variables and the Atlantic tropical cyclone activity, as has

become obvious from the explanations of each individual variable in this chapter.

Chapter 5 gives the comparisons between the new model proposed in this thesis and

SHIFOR and SHIFOR94.



Chapter 5

A New Tropical Cyclone Intensity

Forecasting Model: Balancing

Complexity and Quality of Fit

5.1 Introduction

Building forecasting models for tropical cyclone intensity is one of the most chal-

lenging area in tropical cyclone research. As explained in Section 4.2 (see also [24]),

numerical models have not been able to demonstrate real-time improvement over no-

skill predictions (i.e. simple extrapolation of the trend in tropical cyclone intensity

data, known as persistence) because of the strong interactions between mesoscale

and synoptic features in the atmosphere leading to tropical cyclone intensity change.

Tropical cyclone intensity data are recorded in sparse intervals of 5 knots prompting

the common use of intensity change (strengthening or weakening) within a specified
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amount of time into the future, e.g. 12, 24, 48, 60, or 72 hours, as the dependent

variable of tropical cyclone forecasting models.

As explained in Section 4.2, there are three statistical tropical cyclone forecasting

models in operational use in the Atlantic basin: SHIFOR [10]), SHIFOR94 [24] and

SHIPS [82]. All of the three statistical tropical cyclone forecasting models have been

built using the least squares method, a variant of the Maximum Likelihood (ML)

approach outlined in Section 2.3.1.1, which belongs to the first category of model

selection criteria outlined in Section 2.3.2. With this method, separate 'test' (i.e.

'semi' independent) data sets are needed to guide the search for a set of independent

variables to form an optimum forecasting model. This implies that the predictive

performance reported on the test data sets should not be seen as reflecting perfor-

mance on a completely independent data sets. The need to partition data into two

sets for model development is seen to be one of the drawbacks of the ML approach

in the face of limited available data.

This chapter1 uses the four complexity-penalised model selection criteria, namely

MML, MDL, CAICF and SRM to build tropical cyclone intensity forecasting models.

These criteria which are outlined in Section 2.3.3, have been proven to be robust

for fully automated model selection tasks in the experiments using artificial data in

Chapter 3. The data sets used to build SHIFOR94 [24] are used in the experiments

in this chapter. Each variable in the data sets is explained in Section 4.2.2.2 in

Chapter 4. The models discovered in this chapter are compared with SHIFOR [10]

and SHIFOR94 [24].

The experiments in this chapter started with running the common non-backtracking

optimisation search algorithm using each of the four model selection criteria on 10

*An earlier version of this chapter has been published in [43]
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pairs of training-test data sets. The four criteria have produced competitive fore-

casting models, making it hard to choose which model to pick. This has prompted

us to propose a new model selection strategy that builds new forecasting models

based on the results of the four model selection criteria.

>%

1 ?®S

5.2 Building the TC Intensity Forecasting Models

The forecasting models to be built typically take the form of a polynomial regression

model to the second-order by considering products of two single variables as well

as the single variables as shown in Equation 2.1 on page 23. Table 5.1 summarizes

the set of methods used in this chapter. The non-backtracking optimisation search

algorithm explained in Section 3.2.2 is used for all of the methods. The performance

criteria for model comparison are

1. Parsimony, reflected in the number of regressors chosen and the model cost

calculated using any of the cost functions given in Table 5.1 (on training data).

In this chapter; the MML message length is used to reflect model cost.

2. Model predictive performance (on test data), the square root of the mean of

the sum of squared deviations (RMSE) and the coefficient of determination

(R2) respectively given in Equations 3.39 on page 69 and 3.40 on page 70.

Two types of experiments are done in this chapter. The first is to find forecasting

models by running the search method with one of the four model selection methods

as the cost function on a number of data sets. The second is to find forecasting

models based on the results of the first type of experiments. Procedure 1 gives the

proposed procedure for the second type of experiments. This procedure is proposed

to be used in a situation where we have a number of competitive model selection
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methods and all of them have produced different but equally good forecasting mod-

els. To help us make a decision as to what model to use operationally, we can

build new models based on the the results of all of the competitive model selection

methods. This way we can make an informed decision based on how far the model

selection methods agree on a model.

Procedure 1 Searching for a forecasting model using an integrated approach con-
sisting of a number of model selection criteria

Step 1 Using random subsampling, create m pairs of training and test data sets.

Step 2 For each of the methods in Table 5.1, search for forecasting models on
each training data set using the optimisation search algorithm proposed in
Chapter 3.

Step 3 Count the frequency of each independent variable's being chosen in any of
the forecasting models discovered in the previous step. Create a set of new
models where each new model comprises a set of variables which have been
chosen in the forecasting models at least a certain total number of times.
Calculate the set of coefficients for each model using all of the available data.

Step 4 Compare the models with increasing complexity based on all of the per-
formance criteria.

Although subsampling is used to produce both training and test data sets in Step

1 in Procedure 1 above, the test data is not used in Procedure 1. However results

from running the models found using Procedure 1 on the test data are presented in

this chapter to see if the models generalize well.
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Table 5.1: Summary of the model selection criteria used in this chapter for the
task of finding a tropical cyclone intensity change forecasting model from a set of
climatology, persistence, synoptic/environmental and seasonal data sets.

Method
Minimum Message Length MML
Predictive Minimum Description Length PMDL
Minimum Description Length MDL
Structured Risk Minimisation SRM

Reference
[19]
[59]
[59]

[109]

Equation
2.32
2.43
2.44
2.57

Page No.
40
45
46
53

Ms

i4

5.3 Experimental Design

For the task of building hurricane intensity change forecasting models, it is actually

possible to reduce the search space considerably by using only the combinations of

variables that would likely be influential to the target variable and, after consulta-

tions with meteorologists, removing the combinations that are implausible. This in

fact has been the common approach in hurricane research due to the limitations of

the multiple linear regression methods used.

Based on the results of their experiments, most atmospheric scientists have come

to the conclusion that the search space should be limited to potentially significant

variables because it is believed that even random numbers will inadvertently be

selected as significant predictors, e.g. [10, 96, 82]. This approach however is not

taken in this chapter for two reasons:

• It has been proven using artificial data sets in Chapter 3 that the methods

used in this chapter managed to choose parsimoniously a handful of significant

regressors amongst a large pool of variables
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• Part of the goal of these experiments is to test whether or not the above

conclusion applies to real and more complex problem domains like the tropical

cyclone systems.

5.3.1 Potential Predictors

The task of building tropical cyclone intensity change forecasting models is difficult

due to the following reasons:

• The fact that exact relationships amongst the variables are not known

• A lot of the independent variables are highly preprocessed, either using a

thermodynamic formula chosen from a number of possibilities (e.g. Potential

Intensity as a function of sea surface temperature, see [82] or a completely

stochastic procedure)

• Noise inherent in observational data.

Table 5.2 gives the summary of the independent variables used to build the trop-

ical cyclone intensity change forecasting models which can be categorized into four

groups as explained in Section 4.2.2.2:

1. Persistence: the tropical cyclone intensity in knots (Regressors 5,6)

2. Climatology: Julian date (Regressors 1,2), global position (Regressors 3,4)

and motion in knots (Regressors 7,8,9)

3. Synoptic environmental features: potential intensities (Regressors 10,11),

sea surface temperature (Regressor 12), sea sub-surface temperatures (Regres-

sors 13-15), wind shear (Regressors 16-18), moist stability (Regressors 19-21),
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Table 5.2: Basic regressors used to build the Atlantic tropical cyclone intensity
change forecasting models summarised from Section 4.2.2.2. The target variable is
the change of intensity (wind speed) 72 hour into the future. To get the average, at
end and change values of a variable, the tropical cyclone track/location (longitude
and latitude) forecast out to 72 hours is required: average means the average of the
values at the location forecast at 0, 24, 48 and 72 hours, at end means the value at
72 hours and change means the difference between the current value and the value
at 72 hours. Figure 4.1 on page 4.1 illustrates the location of the seasonal variables,
i.e. variable 30 to 36

No Basic Regressor: acronym and explanation

1,2
3,4
5,6
7,8,9
10,11
12
13,14,15
16,17,18
19,20,21
22,23,24
25,26
27,28,29

30
31
32
33
34
35
36

Julian, JulOff - date: Julian, |Julian - 253|
LatData, LonData - position: latitude (deg N), longitude (deg W)
Vmax, Dell2V - intensity (in knots): initial, previous 12 hour change
UCurr, VCurr, Speed - motion (in knots): east-west, north-south, resultant
POT, POTEnd - potential intensity: initial, at end
DelSST - change of sea surface temperature
SSST, SSSTend, DSSST - sea sub-surface temperature: average, at end, change
UppSpd, Uppend, DUppSpd - windspeed at 200mb: average, at end, change
Stabil, Stabend, DelStab - moist stability 1000mb to 200mb: average, at end, change
200mbT, 200Tend, Del200T - temperature at 200mb: average, at end, change
DisLand, Closest - distance from land: initial, closest approach
200mbU, 200Uend, Del200U - east-west motion at 200mb: average, at end, change

U50 - 50mb Quasi-Biennial Oscillation (QBO) zonal winds
RainS - African Western Sahel rainfall index (5W-15W, 10N-20N)
RainG - African Gulf of Guinea rainfall index (0W-10W, 5N-10N)
SLPA - April-May Caribbean basin Sea Surface Pressure Anomaly
ZWA - April-May Caribbean basin Zonal Wind Anomaly at 200mb (i2 km)
EINino - Sea surface temperature anomaly in the eastern equatorial pacific
SOI - Surface pressure gradient between Darwin and Tahiti

< 4

temperature at 200mb (Regressors 22-24), distance from land (25-26), and

motion in the east-west direction (Regressors 27-29)

4. Seasonal variables: QBO, Rainfall (RainS and RainG), SLPA, ZWA, EINino

and SOI (30-36)

i
1

In this chapter, the target variable is the intensity change 72 hours into the future,

he tropical cyclone track forecasting model CLIPER [15] is used to provide future

forecast positions for which the climatological independent variables are calculated

as explained in Section 4.2.2.2.
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5.3.2 Sample Sets

There are in total 4347 data items available. The experiments are conducted on

data sets built using two types of sampling method. Ten training-test data sets

were built using a 2 : 1 random sampling method. An eleventh data set was built

so that the training data was taken from the years 1950-1987 and the test data

from the years 1988-1994. Convenient separation of data based on consecutiveness

is common practice in hurricane intensity change forecasting. SHIFOR (modified

by Pike from [10]) and SHIFOR94 [24] have both been built using training data

from 1950 to 1987 and test data from 1988 to 1994. The purpose of using these

two categories of data sets in this chapter is to see whether or not the possible

changes in atmospheric dynamics from year to year should be taken into account in

experimental design.

We have been unable to come up with exactly the same parameter coefficients for

the variables in SHIFOR and SHIFOR94 as reported in [10] and [24] despite the fact

that the same data sets and least squares method have been used. It is not clear how

the coefficients in SHIFOR and SHIFOR94 were normalized/standardized. Within

this thesis, coefficients are standardized by subtracting from each variable value its

mean and then scaling the result by its standard deviation as shown in Equations

2.2 and 2.3 on page 24. Because of the previously mentioned problem, with respect

to the benchmark models, it was decided to run two types of experiment. In the first

type of experiments, new coefficients for the variables were found using each train-

ing data set and tested using the corresponding test set. The new coefficients were

calculated using the orthogonal transformation and the hyper-parameter a shown

in Equation 3.37 on page 68, as it was done with the other methods considered in

this thesis. The benchmark models with the new coefficients are named SHIFOR'
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and SHIFOR94'. In the second type of experiments, the models SHIFOR and SHI-

FOR94 as reported in the papers were simply run on the test data sets. Because

the Fortran program made available to us to run these experiments only calculates

RMSE, B? values are not reported for these experiments. Because message length

is calculated using standardized data and coefficients and it is not clear how the

data were standardized for SHIFOR and SHIFOR94, the message lengths for these

models cannot be calculated.

The fact that the models were built using the maximum likelihood method (with

the test data being used to guide the search for model) implies that SHIFOR and

SHIFOR94 have 'seen' all of the data items available. This means that the resulting

predictive performance should be less conservative than if the models have been

tested on completely independent data sets.

5.4 Results and Discussions

Tables 5.3 and 5.4 show the models chosen by each method for each of the 10 data

sets. Although Predictive Minimum Description Length criterion (PMDL) has been

proven to be a good candidate for automated model discovery using artificial data in

Chapter 3, it failed to converge to an optimum model before the maximum number

of variables set for a model has been reached. Therefore, it is decided not to use nor

show the results of PMDL.

Comparing the performance of MML against the other three methods of the

complexity-penalised criteria in Tables 5.3 and 5.4, we see that MML consistently

picked less complex models with either better or slightly worse performances based

on message length and generalisation ability on the test data. The fact that the

search strategy using MML as a cost function chose less complex models with worse
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performance in data sets 4 and 10 for example, shows that the search strategy did not

find model with the minimum message length. With improvements in the message

length calculation (like by using Equation 2.25 instead of 2.26 on pages 35 and 36,

respectively) and the search strategy by letting it to start from different points in

the search space, MML might have chosen slightly more complex models than the

ones it had picked but with better performance than the ones chosen by the other

three methods.

The consistent performance of SHIFOR and SHIFOR94 across all of the data

sets including the last data set (where the training and test data sets are taken from

consecutive years) should be taken with caution because of the way the models were

built. As has been explained in Section 5.1, the performance on test data set has

been used to guide the search strategy in building SHIFOR and SHIFOR94. Hence,

the test data has been used as a part of the 'training' data set. This implies that

the performance of SHIFOR and SHIFOR94 on the 'test' data set cannot be seen

as an indication of its performance on a completely independent data set. So, it is

not surprising to see that there no significant difference between the performances

of SHIFOR' and SHIFOR94' on the training data and their performances on the

test data.

All of the complexity-penalised methods perform substantially worse on the last

data set than on the first 10 data sets. This phenomenon can be observed both

by comparing their predictive performance between the training and test data for

the last data set and by comparing the level of model parsimony and predictive

performance on test data across the 11 data sets. The difference in RMSE values of

MML, MDL, CAICF and SRM between training and test data sets for data sets 1

to 10 is always much less than 1 knot. Th** difference for data set 11, on the other

hand, is around 6 knots. This difference between the performance on the training
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data and that on the test data is more pronounced in the R2 values. It is clear from

these observations, that partitioning training and test data based on consecutiveness

like in data set 11, the data set used to build SHIFOR and SHIFOR94, has resulted

in two non-homogeneous data sets. A lot of the regularities learned by a model from

the training data set are not present in the test data set resulting in much reduced

performance.

Test data sets are created in Step 1 of Procedure 1 not for the purpose of model

development but to see whether or not the performance of a method on unseen data

is much different from that on training data. For each of the first 10 data sets,

there is not too much difference between the predictive performance of MML, MDL,

CAICF and SRM on the training data and on the test data. This confirms the

findings in Chapter 3 and strengthens the belief that all of the available data can

be used as training data since overfilling is not a problem for these methods. The

competitive performance amongst all of the four methods on the first 10 data sets

prompts us to propose Procedure 1 shown on page 102 to make use of the results of

the four methods to build a new model.

Following the third step of Procedure 1, Table 5.5 shows the models built by

categorizing variables based on the frequency of being chosen in all of the 10 data

sets in Tables 5.3 and 5.4. It is not surprising that Potential Intensity (variable 10

- POT) and intensity change during the previous 12 hours (variable 6 - Dell2V)

have been chosen by all of the methods for the 10 data sets. Potential Intensity as

a function of sea surface temperature indicates the maximum wind speed to which

a tropical cyclone can intensify should the system not be perturbed by dampening

factors in the environment.
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Table 5.6 shows the performance of the models built in Table 5.5 using all of

the available data following Step 3 of Procedure 1. All of the cost values calculated

using MML, MDL, CAICF and SRM show that Models is the best model. However,

since both SHIFOR and SHIFOR94 comprise 9 variables, Table 5.7 compares them

with Model7, the model with the best 9 variables. All of the three models, Model7,

SHIFOR and SHIFOR94, only agree on one compound intensity variable, variable

(6,5) or (Dell2V*Vmax). Among the independent variables explained in Section

5.3.1, SHIFOR was built using persistence and climatology. SHIFOR94, on the

other hand, was built using all of the variables in Table 5.2. On top of the single

and products of variables as considered in this thesis, both SHIFOR and SHIFOR94

also used ratios of variables in the search space.

As explained above, it is not a surprise that POT and DeI12V are included in

both SHIFOR94 and the new model. As explained in Section 4.2.2.2, the verti-

cal shear of the horizontal wind has been reported to have a negative influence on

tropical cyclone. One of the shear variables between the 200mb climatological wind

and the cyclone horizontal wind, Uppend is chosen in SHIFOR94. None of the

three shear variables is chosen in the new model. Instead, two of the three vari-

ables of the climatological horizontal wind namely, 200mbUend and Del200U, are

included in the new model. As explained in Section 4.2.2.2, there is no consensus

on how the shear should be defined. Therefore, we think that the inclusion of vari-

ables (200mbUend,Vmax) with coefficient -0.119977 and Del200U with coefficient

0.109351 in the new model can be seen as a representation of the influence of shear

on tropical cyclone intensification.

It is interesting to note, that in contrast of the prevalence of the seasonal pre-

dictors in the new model, none of them is chosen for SHIFOR94 despite the fact

that they have successfully been used as predictors of Atlantic cyclone activity (in
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terms of named storms, named storm days, hurricanes, hurricane days, intense hur-

ricanes, intense hurricane days, etc) as described in Section 4.2.2.2. For example, it

has been reported that the effect of moderate or strong EINino (warm water) and

low SOI values reduces Atlantic basin hurricane activity. This is because during

EINino seasons, ZWA and SLPA are enhanced creating strong vertical shear over

the Atlantic. By contrast, cold water and high SOI values (i.e. La Nina) enhances

Atlantic basin hurricane activity. The correlation between SOI and the Atlantic

tropical cyclone activity is picked in the new model in the inclusion of compound

variables (SOI*SOI) and (ElNino,Del200U). The negative coefficient of-0.123373 of

(SOI*SOI) might mean that with high values of SOI, the frequency of cyclones in

the Atlantic basin increases. More cyclones may mean that the intensity of each

cyclone might be reduced as a consequence.

Another example is, that according to Gray [116], Gulf of Guinea rainfall dur-

ing the prior autumn season (August to November) is likely to be related to the

strength of the West African monsoon (June to July) in the following year through

positive feedbacks of evapotranspiration and soil moisture. RainS and RainG com-

bined (known as "early season combination rainfall index") is very good predictor

of intense hurricane activity during the period from August to October. When the

western Sahel region has above-average rainfall, Atlantic hurricane activity is greatly

enhanced. The inclusions of RainG with a coefficient of 0.067429 and (SLPA,RainG)

with a coefficient of 0.108001 in the new model is consistent with this finding.

To see the models the search algorithm could come up with if we used all of

the available data, we ran more experiments using MML, MDL, CAICF and SRM

individually as the cost function. Tables 5.8 and 5.9 show the results of these

experiments. The results of Model7, Models and SHIFOR94 that have been shown

in Table 5.7 are included in Table 5.8 for clarity of comparison. We can see from
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Table 5.8, that all of the penalty-penalised methods can improve on the performances

of Model7 and indeed on SHIFOR94 when they are allowed to select a more complex

model than a model with 9 variables. The fact that MML has chosen a less complex

model with slightly worse performance that the models found by MDL and CAICF

is consistent with the results shown in Tables 5.3 and 5.4. These results have been

discussed earlier in the second paragraph of this section.

We can see in Table 5.9 that all of the variables chosen for Model7 are a subset of

each of the variable sets of the models chosen by MML, MDL, CAICF. The variables

are also a subset of the SRM model except for one variable, (SLPA, RainG). This

confirms that Step 3 of Procedure 1, in which we create new models with increasing

complexity from all of the models found independently by MML, MDL, CAICF and

SRM in the order of most frequently occuring to least frequently occuring variables,

is a good way of presenting good models with increasing complexity. The decision

to be made by a human decision maker is how complex a model is allowed to be.

The point is that using a good optimisation search algorithm, a good complexity-

penalised model selection criterion will eventually converge to an optimum model,

and will never overfit the training data set. If the optimum model, e.g. Models,

is seen to be too complex, the decision of which less complex model will be chosen

should be based on the economic principle, i.e. whether or not the improvement

on predictive performance warrants the increase in model complexity. The model

selection procedure outlined in Procedure 1 allows a human decision maker to make

an informed decision on this matter.

Tables 5.8 and 5.9 also show that Models with 27 variables which is found as the

best model using Procedure 1 on the 10 data subsets has worse performance than

the model with 26 variables found by CAICF using all of the available data. It is

possible that if we use all of the available data in Step 1 of Procedure 1 and run a
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number of experiments using different starting points in the search space instead of

using the random subsampling method, we will be able to come up with a better

model. As seen in Table 5.8, the four complexity-penalised methods do not overfit

the data. Hence, it is definitely possible to forget about test data sets and use these

methods to build the forecasting models using all of the available data.

This thesis proposes Model7 shown in Table 5.7 for two reasons. First, it consists

of 9 variables, the same model complexity as SHIFOR and SHIFOR94, the bench-

mark models. If, however, the model is allowed to be more complex that 9 variables,

then the model with 26 variables found by CAICF should be used. Note that this

model also has the minimum message length. Second, the prevalence of the seasonal

variables in Model7 has already provided evidence that the seasonal variables indeed

influence tropical cyclone intensity in the Atlantic basin. This finding is consistent

with the findings published in the atmospheric science literatures which report that

the seasonal variables influence tropical cyclone activity in the basin.

5.5 Conclusion

In this chapter we start with having four model selection criteria, i.e. MML, MDL,

CAICF and SRM, and a non-backtracking search strategy which have been proven

to perform well on artificial data in the experiments reported in Chapter 3. W)

use these methods in two types of experiments to build models for tropical cyclone

intensity change forecasting. The first is finding models by running the search

strategy using one of the four model selection method as tho cost function. The

second is finding new models by ranking the regressors included in the models found

by the four model selection methods in the first approach, from the most to the least

popular.
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We notice that the search strategy will not always converge to a global optimum.

For example, the best model acco/ding to MML message length (i.e. the model with

the shortest message length) was found by using CAICF as the cost function. This is

despite the fact the non-backtracking search strategy has been designed to be more

exhaustive than a simple greedy search in that it considers every available variable

when trying to add a variable to a model or delete a variable from a model. This

confirms the known fact that any optimisation search strategy will run the risk of

getting trapped in a local minimum.

In all of the experiments done in this chapter, all of the good models selected

by all of the four model selection methods have large number of regressors. For

example, Model18 yielded by the experiments using Procedure 1 and the best model

with the shortest MML message length and CAICF cost yielded by the experiments

using all of the data have 27 and 26 variables, respectively. This is not unreasonable.

The regressors were chosen in the first place because they are thought to be useful by

the experts in the atmospheric science community. The large number of regressors

in the good models is justifiable for two reasons. First, by only using 3.85% of all of

the possible regressors, we can be assured that the models are not overly complex.

The models have around 27 variables out of 702 possible regressors in 2702 possible

models. Second, the good models were more likely to use single/simple variables

variables than compound variables, given that there are 36 single variables and 666

compound variables.

In a nutshell, the experiments reported in this chapter highlight the following

important points:
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1. That the four model selection methods, i.e. the proposed MML method, MDL,

CAICF and SRM, together with the proposed non-backtracking search strat-

egy managed to discover good forecasting models in an automated manner.

These models are a bit too complex to have been discovered by human inspec-

tion.

2. That the proposed procedure of building and ranking new models based on

the degrees of popularity of the regressors included in the models found by the

search strategy with each of the four methods used as the cost function, can

be used to study how each variable contributes to the forecasting ability of a

model.

3. That the often unavoidable practice of using a non-exhaustive search strategy

on large search space introduces the influence of selection bias in determining

to which local optimum a model selection method will converge. There is no

guarantee that a non-exhaustive search strategy will converge to a local global

optimum all the time. At times, it can get stuck in a local minimum.

4. That it is important to have homogeneous data (i.e. those coming from the

same probability distribution) for training and test data sets for a model se-

lection method to pick up regularities in the training data that can be extrap-

olated into the test data set and beyond.

5. That in contrast to SHIFOR94, there is strong presence of the seasonal pre-

dictors in the new model discovered using the proposed procedure. These

predictors have been proven in the literature to have strong correlation with

to the Atlantic cyclone activity.
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1

5.6 Epilogue

Although it is impossible to explain all of the interactions between the variables

stochastically chosen for tropical cyclone intensity change forecasting models, one

would hope that, to a certain extent, the reasons why some variables were chosen

and some were not could be explained. The total absence of the seasonal predictors,

which have been proven to be influential to Atlantic tropical cyclone systems, from

the tropical cyclone intensity forecasting models being used in operation begs a closer

look into the way the models have been built. New models built using scientifically

better methods like the ones proposed in this chapter should be tested in operational

use over a period of time.
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Table 5.3: Models selected for Atlantic hurricane intensity change forecasting. See
the caption of Table 5.4 for further explanations

i

IS)

Data set

1

2

3

4

5

6

Method

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFO1194

Tot
Reg

14
22
14
14
9
9
9
9

17
17
17
17
9
9
9
9

16
22
22
14
9
9
9
9

15
22
22
34

9
9
9
9

16
22
21
29

9
9
9
9

19
22
22
28

9
9
9
9

Message
Length

3568.3599
3571.9245
3568.3599
3568.3599
4146.1623
3675.8142

n/a
n/a

3470.3483
3494.2895
3494.2895
3494.2895
4121.8865
3609.8455

n/a
n/a

3501.8237
3525.6188
3526.8604
3541.3063
4113.0345
3631.5392

u/a
n/a

3544.6713
3527.0303
3E27.0303
3529.3299
4160.5295
3670.4534

n/a
ii/a

3517.5771
3526.3994
3515.7079
3534.6611
4137.0499
3649.0758

n/a
n/a

3541.8138
3551.1410
3551.1410
3548.9379
4144.5904
3658.2100

n/a
n/a

training
RMSE

21.5337
21.0042
21.5337
21.5337
26.3637
22.9202

24.64
22.50

21.1317
21.1978
21.1978
21.1978
26.6905
22.8881

25.15
22.58

21.3013
21.0137
21.0067
21.6404
26.4903
22.9458

24.78
22.59

21.5543
20.9527
20.9527
20.2208
26.8368
23.1806

24.95
22.85

21.0877
20.7077
20.7330
20.3360
26.3244
22.7536

24.41
22.39

21.1563
21.0008
21.0008
20.6145
26.5266
22.9404

25,60
22.68

; data
R*

0.4451
0.4734
0.4451
0.4451
0.1668
0.3703

n/a
n/a

0.4874
0.4842
0.4842
0.4842
0.1800
0.3970

n/a
n/a

0.4741
0.4892
0.4896
0.4569
O.U'i-3
0.3883

n/a
a/a

0.4585
0.4895
0.4895
0.5264
0.1589
0.3725

n/a
n/a

0.4698
0.4897
0.4883
0.5090
0.1718
0.3812

n/a
n/a

0.4723
0.4806
0.4806
0.5005
0.1677
0.3775

n/a
n/a

test data
RMSE

21.9360
21.7157
21.9360
21.9360
27.0951
23.1839

25.08
22.97

22.0990
22.2196
22.2196
22.2196
26.3002
23.2677

25.24
22.78

21.7768
21.9255
21.9845
22.1669
26.7255
23.1232

25.17
22.76

21.3028
21.4421
21.4421
21.2702
25.9770
22.5890

25.39
22.13

22.4091
22.3168
22.2483
21.6955
27.1136
23.5695

24.88
23.20

21.9039
21.9859
21.9859
21.4804
26.6490
23.2089

25.10
22.53

R*

0.4578
0.4719
0.4578
0.4578
0.1695
0.3920

n/a
n/a

0.3960
0.3894
0.3894
0.3894
0.1392
0.3263

n/a
n/a

0.4272
0.4220
0.4189
0.4055
0.1326
0.3506

n/a
n/a

0.4581
0.4539
0.4539
0.4677
0.1904
0.3878

n/a
n/a

0.4321
0.4394
0.4424
0.4731
0.1642
0.3684

n/a
n/a

0.4460
0.4431
0.4431
0.4709
0.1736
0.3732

n/a
n/a
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Table 5.4: . . . continued from Table 5.3. SHIFOR and SHIFOR94 are the original
benchmark models. SHIFOR' and SHIFOR94' are models with the same variables
as those of the original models but with coefficients recalculated to fit the training
data of each data set. The last set has training data from the year 1950 to 1987 and
test data from the year 1988 to 1994.

;i

Data set

7

8

9

10

years:
1950-87
1988-94

Method

MML
MDL

CAIU?
SUM

SHIFOR'
SHIFOR941

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

MML
MDL

CAICF
SRM

SHIFOR'
SHIFOR94'

SHIFOR
SHIFOR94

Tbt
Reg

16
20
20
20

9
9
9
9

16
18
18
18
9
9
9
9

17
22
17
27

9
9
9
9

14
18
18
18
9
9
9
9

23
26
26
26

9
9
9
9

Message
Length

3550.5365
3555.6959
3555.6959
3555.6959
4129.8202
3664.3147

n /a
n/a

3547.1234
3557.4183
3557.4183
3557.4183
4150.8674
3670.8837

n /a
n /a

3516.6721
3522.0461
3513.9074
3525.8268
4122.9112
3637.2253

n /a
n/a

3545.9281
3542.4352
3542.4352
3545.8094
4155.6197
3645.6768

n/a
n/a

4131.9872
4127.9430
4127.9430
4127.9430
5036.0730
4432.1653

n/a
n /a

training
RMSE

21.4161
21.1497
21.1497
21.1497
26.3546
22.9488

25.10
22.64

21.4495
21.3424
21.3424
21.3424
26.6377
23.0851

25.31
22.73

21.3600
21.0540
21.3405
20.7391
26.6371
23.0412

25.37
22.42

21.7222
21.4043
21.4043
21.4065
26.8147
23.0106

25.97
22.73

20.1489
19.9376
19.9376
19.9376
26.6455
22.8928

25.18
22.44

; data

0.4570
0.4711
0.4711
0.4711
0.1757
0.3750

n / a
n /a

0.4593
0.4651
0.4651
0.4651
0.1642
0.3723

n/a
n / a

0.4738
0.4896
0.4747
0.5056
0.1795
0.3860

n /a
n / a

0.4507
0.4674
0.4674
0.4673
0.1616
0.3826

n / a
n / a

0.5162
0.5267
0.5267
0.5267
0.1507
0.3731

n /a
n / a

test data
RMSE

21.6605
21.4657
21.4657
21.4657
27.0755
23.1047

25.01
22.64

21.3224
21.3072
21.3072
21.3072
26.3814
22.8126

24.99
22.42

21.3381
21.0350
21.2465
20.8957
26.4400
22.9308

25.17
22.80

21.7164
21.3084
21.3084
21.3807
26.0096
22.9506

25.24
22.42

26.6464
27.7543
27.7543
27.7543
26.3322
23.7897

24.64
23.74

w-
0.4609
0.4722
0.4722
0.4722
0.1531
0.3833

n/a
n/a

0.4683
0.4699
0.4699
0.4699
0.1816
0.3880

n/a
n/a

0.4442
0.4620
0.4489
0.4711
0.1413
0,3541

n/a
n/a

0.4333
0.4561
0.4561
0.4524
0.1839
0.3646

n / a
n /a

0.2345
0.1735
0.1735
0.1735
0.2361
0:3765

n/a
n/a
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Table 5.5: Models as collections of variables with the £.ume minimum frequency of
being chosen to form a model by MML, MDL, CAIF, or SRM for the 10 data sets
in Table 5.3 and 5.4

Model

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

SHIFOR
SHIFOR94

Size

2
3
4
5
7
8
9

10
11
12
13
15
16
17
18
19
25
27
30
35
42
43
50

9
9

Min.
Freq.

40
38
36
33
30
28
25
24
23
19
18
17
16
15
12
11
10
9
8
7
6
5
4

n/a
n/a

Commonly chosen regressors in models
(the + sign means plus the variables in the rows above)
6 10
+ (36,36)
+ (28,5)
+ (33,32)
+ (6,5) 29
+ 32
+ (35,29)
+ 31
+ (3,2)
+ (32,11)
+ (34,11)
+ 7 (32,15)
+ (9,3)
+ 2
+ 4
+ (30,22)
+ 39 (9,4) 13 25 (29,29)
+ 15 (32,31)
+ (4,4) (8,6) 35
+ 5 (5,5) (9,1) (22,9) (35,33)
+ (4,1) (11,5) 30 (34,17) (34,21) (34,28) (35,28)
+ 18
+ (7,2) (13,2) (13,13) (27,14) (31,3) (32,21) (36,35)

7 (3,1) (5,1) (6,1) (4,3) (5,3) (7,5) (5,5) (6,5)
10 11 5 16 (16/4) 25 (10,10) (4,5) (6,3)

•4
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Table 5.6: Performance of each model in Table 5.5 calculated using all of the available
data (following Step 3 of Procedure 1)

Model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

SHIFOR'
SHIFOR94'

Size

2
3
4
5
7
8
9
10
11
12
13
15
16
17
18
19
25
27
30
35
42
43
50

9
9

MML

5227.1275
5213.8092
5202.4689
5183.3942
5144.7799
5137.7611
5128.5315
5116.4937
5095.5560
5069.3557
5060.4083
5070.1827
5063.9349
5058.9406
5040.9346
5045.0687
5001.3226
4996.8836
5000.6515
5031.1451
5070.0102
5069.8073
5111.5253

5871.9392
5179.8152

MDL

5215.0073
5195.3430
5178.5372
5154.5672
5109.8437
5101.6132
5088.4975
5075.6970
5051.2319
5021.7370
5009.7104
5016.4281
5007.5211
5002,0561
4984.9951
4986.7331
49414237
4937.5439
4939.6237
4966.6092
5002.0126
5004.1261
5042.4039

5825.8890
5178.5030

CAICF

5225.0946
5207.7612
5193.1246
5171.1571
5130.0198
5123.4250
5111.8294
5100.4513
5077.2850
5048.9831
5038.1178
5047.0496
5039.1089
5035.1638
5018.3082
5020.8790
4980.2451
4976.2822
4979.5095
5007.9117
5044.0818
5046.1716
5083.8683

5850.9167
5202.0420

SRM

0.6944
0.6937
0.6929
0.6891
0.6810
0.6808
0.6788
0.6767
0.6707
0.6630
0.6606
0.6646
0.6627
0.6619
0.6571
0.6581
0.6460
0.6444
0.6444
0.6505
0.6569
0.6567
0.6625

0.9529
0.7075

RMSE

23.2945
23.1557
23.0321
22.8707
22.5659
22.4872
22.3830
22.2806
22.1187
21.9322
21.8345
21.7933
21.7109
21.6487
21.5229
21.4933
21.0455
20.9444
20.8375
20.7698
20.6588
20.6285
20.5259

26.5225
22.8515

&

0.3588
0.3666
0.3735
0.382.?
0.3990
0.4033
0.4089
0.4145
0.4231
0.4329
0.4381
0.4405
0.4448
0.4481
0.4546
0.4563
0.4794
0.4846
0.4902
0.4941
0.5003
0.5019
0.5077

0.1701
0.3840
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Table 5.7: Model7 (consisting the best 9 variables), SHIFOR94 and SHIFOR: vari-
able names and their respective coefficients

Chosen Variable
No.

(6,5)
10
6
(36,36)
(28,5)
29
(33,32)
(35,29)
32
12
(10,10)
26
17
(4,7)
(17/6)
(5,5)
7
(5,3)
(3,1)
(4,3)
(7,5)
(5,1)
(6,1)

Acronym

(Dell2V,Vmax)
P O T
Del 12V
(SOI.SOI)
(200Uend,Vmax)
Del200U
(SLPA.RainG)
(ElNino,Del200U)
RainG
DSSST
(POT.POT)
Closest
Uppend
(LonData.UCurr)
(Uppend/Vmax)
(Vmax,Vmax)
UCurr
(Vmax.LatData)
(LatData,Julian)
(LonData,LatData)
(UCurr.Vmax)
(VmaXjJulian)
(Dell2V,Julian)

Normalized Coefficient
Model7

-0.099445
0.649806
0.165545

-0.123373
-0.119977
O.iO9351
0.108001
0.075820
0.067429

SHIFOR94'

-0.085522
0.644563
0.180562

-0.105468
-0.101357
0.074916
0.023286
0.013477

-0.006972

SHIFOR1

0.900026

-0.314015
-0.294385
-0.069982
-0.069132
0.069030

-0.C54350
-0.017290
0.012620

Table 5.8: Performances of Model7, SHIFOR94' and Models (from Table 5.6) com-
pared with those of MML, MDL, CAICF and SRM when the search algorithm is run
on all of the available data. Columns 3 to 6 show the costs of each model based on
the calculations of the four model selection methods. Columns 7 and 8 show RMSE
and R2.

Model

Model7
SHIFOR94'
Modeli8

MML
MDL
CAICF
SRM

Size

9
9

27
18
27
26
18

MML

5128.5315
5179.8152
4996.8836
4978.9114
4969.3988
4968.0812
4980.5410

MDL

5088.4975
5178.5030
4937.5439
4938.7904
4896.1398
4896.3251
4951.9334

CAICF

5111.8294
5202.0420
4976.2822
4971.0337
4934.6116
4934.3544
4985.1020

SRM

0.6788
0.7075
0.6444
0.6427
0.6323
0.6324
0.6391

RMSE

22.3830
22.8515
20.9444
21.2326
20.7458
20.7851
21.2257

Kz

0.4089
0.3840
0.4846
0.4692
0.4944
0.4923
0.4696
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S f l

Table 5.9: Model7 and Models (from Table 5.7) and the models yielded by the
search on all of the available data shown in Table 5.8: variable names and their
respective coefficients. The order of the variables from the top to the bottom of the
table follows the order in which each variable appears in the models shown in Table
5.5

Chosen Variable
No.

6
10
(36.36)
(28,5)
(33,32)
(6,5)
29
32
(35,29)
31
(3 ,2 )
(32,11)
(34,11)
7
(32,15)
(9 ,3)
2
4
(30,22)
3
9
(9,4)
13
25
(29,29)
15
(32,31)
(8 ,6)
35
(35,33)
(35,28)
(32,16)
(33,22)
(35, 2)
33
(36,35)
(26,26)

Acronym

Dell2V
POT
(SOI.SOI)
(200Uend,Vmax)
(SLPA,RainG)
(Dell2V,Vmax)
Del200U
RainG
(ElNino,Del200U)
RainS
(LatData, JulOff)
(RainG, POTend)
(ZWA, POTend)
UCurr
(RainG, DSSST)
(Speed, LatData)
JulOff
LonData
(U50, 200mbT)
LatData
Speed
(Speed, LonData)
SSST
DisLand
(Del200U, Del200U)
DSSST
(RainG, RainS)
(VCurr, Del 12V)
EINino
(EINino, SLPA)
(EINino, 200Uend)
(RainG, UppSpd)
(SLPA, 200mbT)
(EINino, JulOff)
SLPA
(SOI, EINino)
(Closest, Closest)

Model7

0.165545
0.649806

-0.123373
-0.119977
0.108001

-0.099445
0.109351
0.067429
0.075820

Modeli8

0.167516
0.762634

-0.116110
-0.151762
0.095510

-0.097937
S.112490
0.093559
0.065408
0.056894
0.081782
0.072127
0.088700

-0.061550
0.047407

-0.033333
-0.046875
-0.094644
0.068787
0.156105
0.045668

-0.060584
0.003643

-0.049317
-0.077878
-0.138307
-0.049317

Normalized
MML

0.170748
0.749576

-0.121128
-0.157228
0.079034

-0.099032
0.116458
0.082605
0.064796
0.077050
0.074244
0.130398
0.102347

-0.071669
-0.059054

-0.156523
0.090532

-0.052226

Coefficient
MDL

0.154972
0.739638

-0.284544
-0.150183
0.074778

-0.086772
0.090777
0.086814
0.140820
0.106116
0.075362
0.140085
0.118228

0.068531
-0.066931

0.063724

-0.163369
0.116527

-0.045868

0.091674
-0.123700
0.076416
0.063399
0.071662
0.073865

-0.257329
-0.061172

CAICF

0.155474
0.737958

-0.285706
-0.150318
0.076354

-0.092528
0.090835
0.087316
0.145080
0.105726
0.076064
0.138693
0.117873

0.067274
-0.065315

0.062727

-0.161464
0.117286

0.091991
-0.128778
0.075250
0.063001
0.070609
0.074714

-0.257280
-0.063483

SRM

0.170557
0.760658

-0.135621
-0.164793

-0.099625
0.103970
0.092783
0.060216
0.079129
0.075711
0.128291
0.104532

-0,062871
-0.052871

-0.164559
0.106286

0.092112

-0.058905
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Chapter 6

MI

Sampling of Highly Correlated

Data for Polynomial Regression

and Model Discovery

6.1 Introduction

The experiments done in Chapter 3 tested the abilities of various model selection

criteria to recover true second-order polynomial models from artificial data. The

experiments done in Chapter 5 used the model selection criteria that had passed the

tests done in Chapter 3 to build a tropical cyclone intensity change forecasting model

from a set of real climatological and environment data gathered from the North

Atlantic tropical cyclone basin. The experiments in this chapter1 test the model

selection criteria used to build the forecasting model in Chapter 5 in their, abilities

to recover the forecasting model from artificial data sets of a set of variables whose
1 An earlier version of this chapter has been published in [44]
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6.2. THE COVARIANCE MATRIX AND THE TRUE MODEL

covariance matrix is the same as the covariance matrix of the real climatologicaJ

and environment data from which the model has been inferred. The aim is to see

if the model selection criteria will still infer the same model as the one proposed

in Chapter 5 in the face of varying sample sizes and levels of noise in the target

variable.

This chapter derives a formula to generate the artificial data sets of a pool of

variables from which the model is to be inferred. The artificial data sets are gen-

erated using a combination of random data generated from the standard normal

distribution and the covariance matrix of the real observation data.

6.2 The Covariance Matrix and the True Model

The source of the set of observation data whose covariance matrix is used in this

chapter is the 36 climatological and environmental variables used to build the trop-

ical cyclone forecasting model in Chapter 5. The summary of the variables can be

found in Table 5.2 on page 105.

The tropical cyclone intensity forecasting model proposed in Chapter 5 consists

of 9 regressors. The model and the explanations of the regressors are respectively

shown in Tables 6.1 and 6.2. These tables are extracted from Tables 5.7 on page

121 and 5.2 on page 105. As outlined in Section 5.3.1, the regressors are chosen

from the 36 meteorological and environmental variables and their products. The

search space thus consists of 36 single and 666 products of variables. As mentioned

in Section 5.3.2, the sample size of the observation data is 4347 data points.

The forecasting model combined with a degree of independent random noise r ~

iV(0, a) is used to calculate the data sets of the target variable from the artificial
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6.3. THE MODEL SELECTION CRITERIA TESTED

Table 6.1: The Atlantic tropical cyclone intensity change forecasting model with
9 regressors found in the experiments done in Chapter 5. Compound variable
(Variablel, Variable2) represents a product of two variables. The meanings
of the variables are given in Table 6.2

No

1
2
3
4
5
6
7
8
9

Chosen Regressor

Dell2V
POT
Del200U
RainG
(200Uend,Vmax)
(Dell2V,Vmax)
(ElNino,Del200U)
(SLPA,RainG)
(SOI,SOI)
constant

Coefficient

0.550029
0.551974
0.473030
2.757764

-3.478769
-2.899739
2.314881
2.829764

-2.622052
-30.787608

data of the corresponding regressors generated in this chapter. The task of each

model selection criterion tested in this chapter is to find a model that can predict

this target variable well. It is then to be observed if the model found consists of the

same set of regressors as the 'true': v"*»l, the proposed forecasting model.

6.3 The Model Selection Criteria Tested

The model selection criteria which were involved in the formation of the forecast-

ing model shown in Table 6.1 as described in the integrated model discovery pro-

cedure proposed in Section 1, are individually tested in the experiments in this

chapter. These criteria are Minimum Message Length Principle (MML, see Section
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Table 6.2: The basic regressors of the Atlantic tropical cyclone intensity change
forecasting model shown in Table 6.1. The target variable is the change of intensity
(wind speed) 72 hours into the future

Regressor Explanation

Vmax
Dell2V
POT
Del200U
RainG
200Uend
SOI
SLPA
EINino

the initial cyclone intensity (in knots)
the change of cyclone intensity in the past 12 hours (in knots)
cyclone initial potential intensity
the forecast of the change of eastward wind motion at 200mb
African Gulf of Guinea rainfall index (0W-10W, 5N-10N)
the forecast of eastward wind motion at 200 mb at the end of 72 hours
Surface pressure gradient between Darwin and Tahiti
April-May Caribbean basin Sea Surface Pressure Anomaly
Sea surface temperature anomaly in the eastern equatorial Pacific

2.3.3.1), Minimum Description Length Principle (MDL, see Section 2.3.3.3), Cor-

rected Akaike's Information Criterion (CAICF, see Section 2.3.3.5) and Structured

Risk Minimization (SRM, see Section 2.3.3.7).

The existence of high degree of correlations among regressors and the introduction

of varying degrees of noise in the values of the target variable have been known

to hinder the discovery of true model. In the experiments in Chapter 3, it has

been shown that the orthogonal transformation of regressors method outlined in

Section 3.3.1 manages to find a true model from a search space with highly correlated

regressors. This method will also be used in the experiments in this chapter.

6.4 Methodology

This section derives the formula to be used to generate artificial data of a set of

variables whose covariance matrix is the same as the covariance matrix cf a set of
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r

observation data. This is done by usinp the combination of the covariance matrix of

the set of observation data and random data generated from the standard normal

distribution.

This section then outlines a model discovery procedure using a set of artificial

data of the variables that make up the covariance matrix, a data set of the target

variable calculated from a known true model and a model selection criterion.

fi

6.4.1 Generating Regressor Data from Covariance Matrix

A. Problem Definition

Suppose we are given a set of observation data of K variables,

= X
NXK

(6.1)

where x* is a vector of N data points for the observation variable Xk,

and a set of random independent data generated from the standard normal distri-

bution JV(0,1)

— U
NXK

(6.2)

where u^ is a vector of N data points for the variable Uk\ un,fc ,1).

We would like to find matrix B that can transform U into a new set of data
KXK NXK

z i , . , . , z / r = Z
NXK

(6.3)

127



6.4. METHODOLOGY

where zk is a vector of N data points for the transfonned variable z* whose covariance

matrix, E(ZT Z ), equals the covariance matrix of the observation data X
NXK

E(ZT Z ) = E(XT X )
NXK NXK NXK NXK

The covariance matrix of the observation matrix is by definition:

E(XT X ) =
NXK NXK

(T )
NXK NXK

X

(2:1,1 - A*

(2:2,1 - A*

{xNti - A

1) (2:1,2 — to)

1) (2:2,2 ~ to)

1) (2:2,2 -to) • • •

h) (xN,2 - t o ) •••

(X2,K - VK)

{X\,K ~ UK)

{%N,K — HK)

(6.4)

(6.5)

w h e r e fj>i,...,/J>K a r e t h e m e a n s o f v a r i a b l e s xi,...,

:

B. Solution: Finding the Transformation Matrix B
KXK

Data of variables Uj and Uf are independent and identically distributed as defined

in Equation 6.2. Hence, the following equations hold

(6.6)

(6.7)

(6.8)

M\ VLJ) = 0

= I

NXK NXK
I

KXK
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where I : the identity matrix K x K
KXK

We then find a constant transformation matrix B to transforms the matrix of
KXK

the original unit normal data U to a new data matrix Z
NXK NXK

Z = U B
NXK NXK KXK

(6.9)

The covariance matrix of the new set of data is thus

E{ZT Z )
NXK NXK

(U B)T(U B)
NXK KXK NXK KXK

(6.10)

and because B is constant
KXK

ZT Z ) = B T £ ( U T U ) B
NXK NXK KXK NXK NXK KXK

(6.11)

Equation 6.8

z
NXK NXK

T « •

Z ry i
£j I

NXK NXK

B T I B
KXK KXK KXK

B T B
KXK KXK

(6.12)

(6.13)

This means that by choosing B correctly, we can find the new set of data defined
K X K

in Equation 6.3 that makes Equation 6.4 hold.

To do this, we define the covariance matrix of the observation data E(X.TX.) in

terms of its eigenvalues and eigenvectors

129



6.4. METHODOLOGY

E(XT X)
NXK NXK

X)
NXK NXK

QT A Q
KXK K X K KXK

QT

KXK

A
KXK

A Q
K X K KXK

(6.14)

(6.15)

wherer

NXK NXK
A : a diagonal matrix with the eigenvalues of the covariance matrix E(XT X )

as its diagonal elements

Q : a K x K matrix with the eigenvectors of the covariance matrix E(XT X )
KXK

as its columns

By Equations 6.4, 6.13 and 6.15, we get

NXK NXK

B = /A Q
KXK y KXK

Finally by Equations 6.16 and 6.9, we get

Z = U / X Q
NXK NXK y KXK K X K

(6.16)

(6.17)

That is, a data point for a transformed variable Zk can be calculated using the

following formula2.

Qm,k (6.18)

2The unit normal random data sets Ui,...,u/e used in this thesis are generated using the
random number generator program FastNorm2.c written by Chris Wallace [17]. The eigenvalues
and eigenvectors of the covariance matrix of the observation data are calculated using the Jacobian
diagonalization of real symmetric matrix program Jacob.c also written by Chris Wallace.
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itVS

.14

r

K

where

zn,k '• nth data point of the transformed variable z*

un>m : ntft data point of the random independent variable um generated from

the standard normal distribution, unm ~ iV(0,1)

Am : the mth diagonal element of A , the diagonal eigenvalue matrix of
KXK

the covariance matrix E(XT X )
NXK N)(K

qmik : the rnth element of column k of Q the eigenvector matrix of
KX

the covariance matrix ECX.T X )

KXK

NXK NXK

6.4.2 Model Discovery Process

Procedure 2 is the procedure to generate artificial data for a pool of potential regres-

sors, to calculate their associated target variable from a known true model and to

use a search engine to recover the true model from the pool of potential regressors.

6.5 Experiments and Results

We use the model given in Table 6.1 as the true model that we would like to re-

cover from the newly generated data. We generate five categories of data sets with

increasing levels of noise r ~ iV(0, a2), denoted by DataSetl, . . . , DataSet5. For

each category, we generate train-test data sets each comprising 100, 500, 1000, 2000,

4000, 6000 and 10000 data points. We then follow the procedure outlined in Sec-

tion 6.4.2 to compare the performance of each model selection criterion named in

Section 6.3 for the task of recovering the true model from the data sets.
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Procedure 2 Recover model from artificial data of regressors whose covariance
matrix equals that of the observation data

Step 1 Calculate the covariance matrix of the set of multivariate observation
data.

Step 2 Generate artificial data for the pool of potential regressors using the for-
mula given in Equation 6.18.

Step 3 Calculate the values for the target variable of the true model (e.g. Table
6.1. This is done by multiplying the value of each regressor with its link
weight/coefficient connected to the target variable plus an independent ran-
dom noise value r ~ JV(0, a2). The values of the target variable will be used
to compare the performance of the models found.

Step 4 For each model selection criterion named in Section 6.3, run a search
mechanism, like the optimisation search algorithm given in Section 3.2.2 on
page 57, to recover the true model from the data generated in Step 2. To
eliminate the effect of correlations among regressors in the calculation of
the coefficients of the recovered model, use the orthogonal transformation
outlined in Section 3.3.1.

Step 5 Compare the models found by each criterion using the performance cri-
teria given in Section 3.3.2 on page 69.

Tables 6.3 and 6.4 show the result of the experiments. It is shown that the results

of all of the model selection criteria are quite uniform in that they all managed

to recover the true model with similar degrees of accuracy. Also we can observe

that all of the criteria managed to recover the true model of 9 regressors with a

data set as small as 100 data points regardless of the levels of noise in the target

variable. Increasing the size of the data set as the level of noise is increased does not

significantly increase the accuracy of the results. This finding indicates that most

of the potential regressors do not have direct influence on the target variable.

This finding is valuable in that it confirms that the integrated model discovery

procedure outline in Chapter 5 indeed has the ability to select a parsimonious subset
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of variables from a pool of potential regressors in the absence of prior knowledge of

the problem domain.

6.6 Conclusion

We start with:

1. A set of observation data (e.g. a set data of tropical cyclone, climatological

and environmental factors outlined in Section 5.3.1)

2. A set of model selection criteria that have been previously (e.g. in Chapter 3)

empirically proven to be robust for the task of polynomial model discovery

3. A model that has previously (e.g. in Chapter 5) been empirically found to be

the right model inferred from the data using an integrated approach involving

all of the model selection criteria mentioned above

4. A ncn-backtracking search engine (outlined in Section 3.2.2)

5. An orthogonal matrix transformation method (outlined in Section 3.3.1)

We would like to be able to replicate the observation data so as to be able to

conduct multiple experiments to further test the robustness of the integrated model

discovery procedure outlined in Section 1 on page 102 and the ability of the indi-

vidual model selection criterion involved in the integrated approach to recover the

model that is seen to be the right model in the face of varying sample sizes and

levels of noise.

In this chapter, we outline a procedure to generate artificial data of a set variables

from the covariance matrix of a set of observation data, to calculate the values of the
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target variable based on a true model and to recover the model from artificial data.

The findings from the experiments confirm that the model found by the integrated

model discovery procedure is indeed likely to be a good enough model for the target

variable inferred from the observation data since it is recovered by all of the model

selection criteria individually.

The fact that the criteria only require a relatively small size of data set to recover

the true model, even in the presence of high level of noise in the target variable,

suggests that the non-backtracking search engine used for the experiments covers a

search space extensive enough to converge to an optimum model. It also suggests

that the integrated model discovery procedure indeed has the ability to select a

parsimonious subset of variables from a pool of potential regressors in the absence

of prior knowledge of the problem domain.
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Table 6.3: Model discovered in data sets DataSetl (noise a = 2)

3

i

|

11

I

I

Sample
Size

100

500

1000

2000

4000

6000

10000

Method

MML '

MDL

CAICF

SRM d

MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '
MDL
CAICF
SRM

»

>

>

>

DataSetl
nvar

9

9

9

9

9

9

9

ModelErr

0.0023

0.0009

0.0006

0.0004

0.0005

0.0003

0.0001

RMSE

1.1968

1.0173

1.0076

1.0035

1.0106

1.0024

1.0119

R2

0.9966

0.9972

0.9973

0.9973

0.9972

0.9973

0.9973
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Table 6.4: Model discovered in data sets DataSet2 (noise a — 3)

Sample
Size

100

500

1000

2000

4000

6000

10000

Method

MML >

MDL

CAICF

SRM
MML '
MDL
CAICF
SRM
MML '

MDL

CAICF

SRM ,
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '
MDL
CAICF
SRM
MML '
MDL
CAICF
SRM

•

•

>

DataSet2
nvar

9

9

9

9

9

9

9

ModelErr

0.0100

0.0008

0.0006

0.0001

0.0002

0.0001

0.0001

RMSE

1.2717

1.0014

1.0222

1.0047

1.0130

0.9982

0.9944

R2

0.9963

0.9970

0.9973

0.9974

0.9973

0.9974

0.9974
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Table 6.5: Model discovered in data sets DataSet3 (noise a = 5)

I
Sample
Size

100

500

1000

2000

4000

6000

10000

Method

MML >

MDL
CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML ^

MDL

CAICF

SRM j

MML ^

MDL

CAICF

SRM ,

>

>

DataSet3
nvar

9

9

9

9

9

9

9

ModelErr

0.0075

0.0010

0.0013

0.0005

0.0001

0.0001

0.0000

RMSE

1.1785

1.0050

0.9705

0.9861

1.0116

1.0069

1.0163

KA

0.9959

0.9972

0.9976

0.9974

0.9973

0.9973

0.9973
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Table 6.6: Model discovered in data sets DataSet4 (noise a = 10)

Sample
Size

100

500

1000

2000

4000

6000

10000

Method

MML '
MDL
CAICF
SRM
MML '

MDL

CAICF

SRM
MML '
MDL
CAICF
SRM
MML '

MDL

CAICF

SRM
MML >

MDL

CAICF

SRM
MML '
MDL
CAICF
SRM
MML '
MDL
CAICF
SRM

>

>

>

DataSet4
nvar

9

9

9

9

9

9

9

ModelErr

0.0049

0.0017

0.0015

0.0004

0.0001

0.0002

0.0001

RMSE

1.0821

1.0816

1.0576

0.9926

1.0013

1.0075

1.0176

R2

0.9968

0.9972

0.9969

0.9974

0.9974

0.9973

0.9973
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Table 6.7: Model discovered in data sets DataSet5 (noise a = 25)

1i
I

I

I

I
I'

Sample
Size

100

500

1000

2000

4000

6000

10000

Method

MML '
MDL
CAICF
SRM
MML >

MDL
CAICF
SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM
MML '

MDL

CAICF

SRM

•

>

>

>

DataSet5
nvar

9

9

9

9

9

9

9

ModelErr

2.5592

0.0028

0.0022

0.0007

0.0001

0.0001

0.0001

RMSE

1.4493

1.0112

1.0383

1.0095

1.0102

1.0027

1.0067

R2

0.9950

0.9975

0.9972

0.9973

0.9973

0.9973

0.9973
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Chapter 7

Future Work

The experiments using the real data of atmospheric variables in Chapter 5 show that

when using the proposed MML method as the cost function, the search strategy con-

sistently picked less complex models with either better or slightly worse performance

based on the message length and generalisation ability on the test data. Improve-

ments on the message length calculation as shown in Equation 2.26 on page 36 will

penalise more complex models less severely. This will allow MML to choose more

complex models with longer message length but better fit to the data.

All optimisation search strategies other than the exhaustive brute-force approach

have the potential of getting stuck in local minima. The search strategy proposed

in this thesis has been designed to cover a large search space by trying all possible

variables in making a decision to add/delete a variable to/from the model under

consideration. However, improvements to the search strategy can be made by allow-

ing it to try different starting points in the search space and allowing it to backtrack

in its search process, i.e. try different paths with higher initial costs with the hope

that it would jump particular local minima and converge to an even lower local

minimum.
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FUTURE WORK

Non-homogeneity between the tropical cyclone data of the years 1950-1987 (used

as the training data to built SHIFOR94) and 1988-1994 (used as the test data

to built SHIFOR94) is suspected, based on the experiments on 11 subsets of the

available data done in Chapter 5. With the assumption that the nature of climate

may have changed over time and the way observational data have been collected

may not be uniform from 1950 to 1994, further experiments can be done to see if we

can actually build better forecasting models by not using all of the data from the

earlier years.

There is actually no reason why we have to restrict ourselves to second order

polynomial models. We did this because we did not want to have a larger search

space than the search space used to built the benchmark models, SHIFOR and

SHIFOR94. MML and the other three criteria can readily be used on a wide variety

of models.

The widespread use of linear least squares regression analysis is merely due to

the availability of easy to use tools/softwares, not because it is the best approach to

take. We can consider taking the total least squares curve fitting approach (e.g. see

[36]) which is a better and more robust approach. Instead of trying to fit regressor

data points which are assumed to be correct, the total least squares curve fitting

approach allows for errors in the regressor data points. With the real possibility

of the introduction of human errors in the collection and recording of observational

data required to build forecasting models, an approach that is not affected too much

by errors in the data is likely to yield better models.

The model selection strategy proposed in this thesis can readily be applied to

build tropical cyclone intensity forecasting models for the other basins in the Pacific

and Indian oceans. The database produced by the NCEP/NCAR reanalysis project
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FUTURE WORK

8
I

3$

1
1

I

[100, 32, 91] can be used as a source of high quality historical atmospheric data.

The project is a cooperation between the US NCEP and NCAR (National Centers

for Environmental Prediction and National Center for Atmospheric Research) to

produce a 51-year (1948-1998) record of global analyses of atmospheric variables

in support of the needs of the research and climate monitoring communities [100].

The effort involves setting up a global database as complete as possible of land

surface, ship, rawinsonde, pibal, aircraft, satellite, and other data. Contributors

to the database come from various different countries and organisations which also

provide observations not available in real time for operations. The project also

involves quality controlling and assimilating these data with a data assimilation

system that is kept unchanged over the reanalysis period 1948-1998. This ensures

that researchers can reliably compare recent anomalies with those in the earlier

decade. An updated reanalysis using a state-of-the-art system every five years or so

is planned.

Potential intensity (POT) is known to play a major part in tropical cyclone inten-

sity forecasting. Therefore the use of a good thermodynamic model to the calculation

of Maximum Potential Intensity (MPI) is imperative to statistical tropical cyclone

intensity forecasting modelling. An immediate extension to this thesis is to use the

NCEP/NCAR data with the new MPI thermodynamic model reported in [40] to

build forecasting models for tropical cyclone intensity 24 hours into the future for

the Australian basin. The new MPI model uses a combination of analysis of avail-

able observations and models (e.g.[81, 72, 33]). More studies on relating tropical

cyclone intensity changes with seasonal/environmental aspects, like the study done

in this thesis, and with climate change, e.g. [2], are needed.
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Chapter 8

Conclusions

i1

I

This thesis has contributed to the development of polynomial model selection re-

search in two ways. First, by proposing a new second-order polynomial model

selection model method based on the Minimum Message Length principle derived

in Chapter 2. Second, by proposing a new model selection strategy that uses the

combined results of four model selection methods, namely, MML, MDL, CAICF and

SRM and a common search mechanism in Chapter 5. It has been shown in Chap-

ter 5 that the methods, most notably MML and CAICF, and the model selection

strategy help us explore large variable space and find both justifiably good models

and variables which are common to good models.

This thesis has contributed to tropical cyclone research in two ways. The first

contribution is that new tropical cyclone intensity forecasting models that are better

than the models in operational use namely, SHIFOR and SHIFOR94 have been found

in an automated manner in Chapter 5. With the ability to rank the performances

of good models with increasing complexity, the model selection strategy proposed in

this thesis allows a human expert to make the final decision on which one of the good

models found will ultimately be selected to be used operationally. A model can be
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selected because it has the right number of regressors according to a pre-determined

model complexity. A model can also be chosen because it has the minimum MML

message length, i.e. it is the best model found by the automated procedure.

The second contribution is that for the first time, to my knowledge, pronounced

influence of seasonal variables are shown in a tropical cyclone intensity forecasting

model. These seasonal variables have been reported to influence tropical cyclone

activity in extensive studies in atmospheric science as explained in Chapter 4. This

thesis shows for the first time that they also influence tropical cyclone intensity, as

has been expected but has never been able to be proven before.

The four model selection methods and the optimisation search strategy included

in the proposed model selection strategy have passed the tests in two sets of exper-

iments. First, the experiments of recovering true models from artificial data sets

with varying sample sizes from three true models in Chapter 3. Second, the ex-

periments of recovering the proposed forecasting model from artificial data sets of

varying sample size and levels of noise, generated from the covariance matrix of the

real atmospheric data from which the model has been inferred. These experiments

address the question of whether or not we have enough data to induce the model

that we did induce in Chapter 5. These experiments are outlined in Chapter 6 to-

gether with the new procedure to recover model from artificial data of regressors

whose covariance matrix equals that of the observation data.
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Appendix A

Cost of Encoding Model Structure

for the New MML Model

Selection Criterion

The equation below is Equation 2.22 found on page 34. The equation shows the cost

of encoding the structure of a second-order polynomial model comprising single and

compound variables.

= - log h{v,j) - , I) - log KCk

i

A.I Prior Probability Functions of Sending Single

and Compound Variables

The prior probability function of sending single variables, h(u,j), and compound

variables, h(£,l), are both proposed to follow the geometric series. The difference
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A.I. PRIOR PROBABILITY FUNCTIONS OF SENDING SINGLE AND
COMPOUND VARIABLES

between the two functions is in the assumption that it is cheaper to send a single

variable than a compound variable. Therefore, the term v is given a bigger value

than £ in the experiments.

Given where v < 1 (A.I)

= c5 = 1 (A.2)

I
i

i

i

i

For the calculation of h(u,j), the term c must be given in terms of the known

terms f, j and J.

S = u° -H/ 1 + v2 + ... + v J

v S =

(l-v)S= 1

Substituting S in Equation A.2 gives

1-1/

:i i=o
= ex

1 - 1 /

1 - 1 /

= 1

c =
1 _
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•g A.2. PRIOR PROBABILITY FUNCTION OF SENDING COMBINATION OF
SINGLE AND COMPOUND VARIABLES

Finally, substituting c in Equation A.I gives

i

t
i

A.2 Prior Probability Function of Sending Com-

bination of Single and Compound Variables

The denominator of the prior probability function ~- in Equation 2.22 is the num-

ber of combinations of K variables taken k at a time

K\

•i

i

k\{K-k)\
where: K = J + L and k = j -hi

To avoid having to calculate the factorial of big numbers before taking the loga-

rithm in Equation 2.22, the following simplification is done

- l o g

= log
K\

k\{K-k)\

\ogK\-\og{K~k)\-\ogk\

\og[{K -0)x{K-l)x{K-2)x--'X{K~(k

-\og{K - k)\ - log[(fc - 0) x (k - 1) x (A; - 2) x

log[(lT - 0) x (K - 1) x (K - 2) x • • • x {K - (k

- l o g [ ( f c - 0 ) x { k ~ l ) x ( k - 2 ) x - - - x { k ~ { k -
k-lr

- 0 -
*=o L

-I

- i)

l)}x(K- k)\\ -

• x 1]

1)}] -

(A.3)
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The Fisher Information for the

Polynomial Model

The Fisher information I{9) is the determinant of the expected second derivative of

the negative log likelihood function, — logP(y|0), given in Equation 2.10 on page

28, rewritten below:

I
1

where: rn = yn~ £*= 1 fikx
nk

N
-

n = l

(B.I)

The Fisher information is derived as follows1:
1 Similar derivations can be found in [21] and [97]
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B. THE FISHER INFORMATION FOR THE POLYNOMIAL MODEL

1(9) = i(a,{Pk}) = \~E-^f.^p(y\o)\ = \-1P(y\e)~iogP(y\e)dx\ (B.2)

where: 0 = {9k} = {a, /?*} and i, j = 0 , . . . , k

The first partial derivatives of Equation B.I with respect to a and & respectively

are:

&L _ N__ _1_
da a a3

N

(B.3)
n = l

and

N N

n = l n = l

(B.4)

The second partial derivatives are:

da2 (B.5)
n = l

and

(B.6)

Based on Equation B.5, the expected second derivative of Equation B.I with respect

to a is
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?. THE FISHER INFORMATION FOR THE POLYNOMIAL MODEL

N
(B.7)

n = l

The residual rn comes from a Normal distribution, rn ~ N(0,a2). Therefore

EyT^ = a2. Hence Equation B.7 becomes

(B.8)

The expected second derivative of Equation B.I with respect to /?* remains un-

changed

d2L
N

<r
(B.9)

n = l

The expected derivative of Equation B.4 with respect to a is null since

N x

= 0 (B.10)

This means the values of the off-diagonal blocks of the first row and column in the

Fisher information matrix are null.

The Fisher information is therefore
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1(9) = I(a,

0

0

0

0

Xi

X1

0

(X

(7

C

x2 ..

x2 . .

•x2 ..

•

• * :
1

0

xK

XK

•xK

J.11)

where xi - {xu,x2i,.. .,xNi){i = 1,2, . . . , K)

if Equation B.ll can also be expressed as

1(6) = I(o,
a2 a™

Xi 'Xi\KxK

as given in Equation 2.29 on page 38.
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Appendix C

I
%

1

Non-backtracking Search

Algorithm

i
i

M

The following is a pseudo-code of the non-backtracking search algorithm outlined in

Section 3.2.2 on page 57.

1

!
i

Procedure 3 Search for model in a search space of regressors using a cost function
to compare two models

module nonBacktrackingSearch() {

input training data

input test data

standardize variables of training data

compute product of 2 standardized variables /* e.g. {varo * uaro), (yaro * uari), etc */

standardize product of 2 standardized variables

store all potential regressors to regressorList /* single and compound variables */

initialise modelList to empty

initialise lowestCost to the upper limit of floating point value
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C. NON-BACKTRACKING SEARCH ALGORITHM

findFirstModel(regressorList, modelList, lowestCost) /* find the first model */

loop {

if (regressorList is empty OR model with the lowest cost is found) then

exit loop

addANewVariableToModel(regressorList, modelList, hasBeenAdded, newAddition, lowestCost)

if (hasBeenAdded is true) then

deleteAVariableFromModel(regressorList, modelList, newAddition, lowestCost)

} /* end loop */

} /* end of module nonBacktrackingSearchQ */

M

submodule findFirstModel(regressorList, modelList, lowestCost) {

use the first variable from regressorList to make a model

loop { /* traverse regressorList */

calculate the parameters of the model

calculate the cost of the model modelCost

if (modelCost is less than lowestCost) then {

set lowestCost to modelCost

record the new model newModel

} /* end if */

if (at the end of regressorList) then

exit loop

else

use the next variable from regressorList to make a model

} /* end loop */
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C. NON-BACKTRACKING SEARCH ALGORITHM

put the chosen variable to modelList

remove the chosen variable from regressorList

} /* end of submodule findFirstModel()

submodule addANewVariableToModel (regressorList, modelList,

hasBeenAdded, new Addition, lowestCost) {

initialise hasBeenAdded to false

copy the first variable from regressorList to modelList

copy the variable just added to modelList to justAdded

loop { /* traverse regressorList */

calculate the parameters of the new model

calculate the cost of the new model modelCost

if (modelCost is less than lowestCost) then {

set lowestCost to modelCost

record justAdded in newAddition

set hasBeenAdded to true

if (at end of regressorList) then

exit loop

else {

delete justAdded from modelList

copy the next variable from regressorList to modelList

copy the variable just added to modelList to justAdded

} /* end else */

} /* end loop */

if (hasBeenAdded is true) then

remove newAddition from regressorList
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C. NON-BACKTRACKING SEARCH ALGORITHM

} I* end of addANewVariableToModelQ

submodule deleteAVariableFromModel(regressorList, modelList,

new Addition, lowestCost) {

initialise deletionPossible to false

use the first variable from model for deletion as toBeDeleted

loop { /* traverse modelList */

if (toBeDeleted = newAddition) then

disregard toBeDeleted

else {

delete toBeDeleted from modelList

calculate the parameters of the new model

calculate the cost of the new model modelCost

if (modelCost is less than lowestCost) then {

set lowestCost to modelCost

record the variable in newAddition

set deletionPossible to true

} /* end if */

} /* end else */

if (at end of modelList) then

exit loop

else {

put toBeDeleted back onto modelList

use the next variable from model for deletion as toBeDeleted

} /* end else */

} /* end of loop */
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C. NON-BACKTRACKING SEARCH ALGORITHM

if (deletionPossible is true) then {

delete toBeDeleted from modelList

put toBeDeleted back onto regressorList

} /* end if */

} /* end of delete AVariableFromModelO */
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Appendix D

Sample Trace of the

Non-backtracking Search

Algorithm

The following is an example of the trace of an experiment using the non-backtracking

search algorithm given in Appendix C. It shows how the search algorithm adds and

deletes a variable in the process of finding a model with the lowest cost. In this

example, the cost function used is the MML method. The result of this experiment

is shown for data set 1 in Table 5.3 on page 117. This kind of trace record might be

of interest to domain experts in the tropical cyclone research to see which variables

get added/deleted and in which order they are added/deleted.

Start time: 16:22:20 on Thursday, 15 April 1999

Start Search: 16:22:30 on Thursday, 15 April 1999
Duration (hr:min:sec)= 0:0:10.000
===================
TRACE RECORD

Search Algorithm: Non-backtracking Optimisation Search
Matrix Computation: Jacobi Rotation
Parameter estimates: minimize ML
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D. SAMPLE TRACE OF THE NON-BACKTRACKING SEARCH ALGORITHM

Objective Function: Message Length

Cases: Training= 3042

Dependent Var : DelVmax
Independent Vars:
1-Julian 2-JulOff 3-LatData 4-LonData 5-Vmax 6-Dell2V 7-UCurr
8-VCurr 9-Speed 10-POT 11-POTend 12-DelSST 13-SSST
14-SSSTend 15-DSSST 16-UppSpd 17-Uppend 18-DUppSpd 19-Stabil
20-Stabend 21-DelStab 22-200mbT 23-200Tend 24-Del200T 25-DisLand
26-Closest 27-200mbU 28-200Uend 29-Del200U 30-U50 31-RainS
32-RainG 33-SLPA 34-ZWA 35-ElNino 36-SOI

insert item = 10
modelList: 10 NULL
nvar= 1 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.9997 S/N ratio = 1.0006
PartlML= 14.7083 Part2ML= 3710.3460 TotML= 3725.0543
Training Data: MAE= 18.8861 MSE= 558.4768 RMSE= 23.6321 R"2= 0.3288
trainErrMin = -73.2008 trainErrMax = 79.6092

normCoeffs: 0.573186

insert item = 6
modelList: 6 10 NULL
nvar= 2 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.8194 S/N ratio = 1.4895
PartlML= 24.1115 Part2ML= 3659.0049 TotML= 3683.1164
Training Data: MAE= 18.4746 MSE= 540.1087 RMSE= 23.2402 R"2= 0.3510
trainErrMin = -83.3501 trainErrMax = 83.4524

normCoeffs: 0.149365 0.579024

insert item = (11 5)
modelList: (11 5) 6 10 NULL
nvar= 3 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.8057 S/N ratio = 1.5404
PartlML= 37.0855 Part2ML= 3627.4175 TotML= 3664.5031
Training Data: MAE= 18.1410 MSE= 529.1762 RMSE= 23.0038 R~2= 0.3644
trainErrMin = -84.1088 trainErrMax = 89.1333

normCoeffs: 0.120492 0.133868 0.547719

insert item =31
modelList: 31 (11 5) 6 10 NULL
nvar= 4 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7974 S/N ratio = 1.5727
PartlML= 45.9499 Part2ML= 3603.7014 TotML= 3649.6513
Training Data: MAE= 17.9423 MSE= 521.1563 RMSE= 22.8288 R"2= 0.3742
trainErrMin = -83.4998 trainErrMax = 91.1975

normCoeffs: 0.0994645 0.12869 0.131041 0.550648

insert item = 13
modelList: 13 31 (11 5) 6 10 NULL
nvar= 5 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7912 S/N ratio = 1.5975
PartlML= 54.4731 Part2ML= 3586.4292 TotML= 3640.9023
Training Data: MAE= 17.9660 MSE= 515.4383 RMSE= 22.7033 R~2= 0.3813

trainErrMin = -81.1858 trainErrMax = 90.6144

normCoeffs: -0.107349 0.10717 0.118044 0.144514 0.618286

insert item = (36 36)
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modelList: (36 36) 13 31 (11 5) 6 10 NULL
nvar= 6 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 nonnstddevErr= 0.7866 S/N ratio = 1.6164
PartlML= 66.6803 Part2ML= 3566.2705 TotML= 3632.9509
Training Data: KAE= 17.7305 HSE= 508.8159 RHSE= 22.5569 R~2= 0.3895
trainErrMin = -79.9251 trainErrMax = 93.5904

normCoeffs: -0.0910103 -0.116782 0.10663 0.119114 0.140929 0.631133

insert item = (6 5)
modelList: (6 5) (36 36) 13 31 (11 5) 6 10 NULL
nvar= 7 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7814 S/N ratio = 1.6379
PartlML= 78.4700 Part2ML= 3546.8198 TotML= 3625.2898
Training Data: MAE= 17.5745 HSE= 502.5126 RMSE= 22.4168 R"2= 0.3972
trainErrMin = -71.8852 trainErrMax = 97.152

normCoeffs: -0.100056 -0.0895028 -0.116281 0.105045 0.111905 0.187857 0.644023

insert item = 7
modelList: 7 (6 5) (36 36) 13 31 (11 5) 6 10 NULL
nvar= 8 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7763 S/N ratio = 1.6593
PartlHL= 86.7060 Part2ML= 3532.0455 TotML= 3618.7516
Training Data: MAE= 17.5117 MSE= 497.8166 RMSE= 22.3118 R~2= 0.4030
trainErrMin = -72.6425 trainErrMax = 95.2591

normCoeffs: -0.090999 -0.102919 -0.0859313 -0.154795 0.0991577 0.122989
0.181805 0.630475

insert item = (28 5)
modelList: (28 5) 7 (6 5) (36 36) 13 31 (11 5) 6 10 NULL
nvar= 9 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7726 S/N ratio = 1.6754
PartlML= 98.1906 Part2ML= 3516.3351 TotML= 3614.5257
Training Data: MAE= 17.5035 MSE= 492.8608 RMSE= 22.2005 R~2= 0.4092
trainErrMin = -73.0541 trainErrMax = 95.754

normCoeffs: -0.101474 -0.0951706 -0.118847 -0.090541 -0.196298 0.097955
0.0643029 0.187051 0.665149

delete item = (11 5)
modelList: (28 5) 7 (6 5) (36 36) 13 31 6 10 NULL
nvar= 8 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 nonnstddevErr= 0.9017 S/N ratio = 1.2298
PartlML= 86.7112 Part2ML= 3522.6119 TotML= 3609.3231
Training Data: MAE= 17.6388 MSE= 494.7368 RMSE= 22.2427 R"2= 0.4067
trainErrMin = -73.455 trainErrMax = 94.1551

normCoeffs: -0.13836 -0.0901097 -0.127962 -0.0919673 -0.213527 0.0958663
0.197083 0.692944

insert item = (13 13)
modelList: (13 13) (28 5) 7 (6 5) (36 36) 13 31 6 10 NULL
nvar= 9 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7702 S/N ratio ~ 1.6859
PartlML= 98.2003 Part2ML= 3499.0281 TotML= 3597.2284
Training Data: MAE= 17.4754 MSE= 487.2813 RMSE= 22.0744 R~2= 0.4159
trainErrMin = -73.1377 trainErrMax = 9!5.0036

normCoeffs: -0.145716 -0.145369 -0.113623 -0.125753 -0.0988746 -0.345855
0.101908 0.195974 0.711732

insert item = (35 29)
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modelList: (35 29) (13 13) (28 5) 7 (6 5) (36 36) 13 31 6 10 NULL
nvar= 10 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7640 S/N ratio = 1.7134
PartlML= 109.4572 Part2ML= 3480.0766 TotML= 3589.5338
Training Data: MAE= 17.4447 MSE= 481.4029 RMSE= 21.9409 R~2= 0.4231
trainErrHin = -75.5681 trainErrMax = 93.8188

normCoeffs: 0.0861333 -0.15767 -0.148664 -0.111276 -0.124994 -0.107793
-0.358079 0.102841 0.190231 0.712692

insert item = (32 11)
modelList: (32 11) (35 29) (13 13) (28 5) 7 (6 5) (36 36) 13 31 6 10 NULL
nvar= 11 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7593 S/N ratio = 1.7343
PartlML= 120.5235 Part2HL= 3465.9627 TotML= 3586.4862
Training Data: MAE= 17.3745 MSE= 477.1113 RMSE= 21.8429 R~2= 0.4284
trainErrMin = -74.4932 trainErrHax = 95.4231

ncrmCoeffs: 0.0740721 0.0781943 -0.154267 -0.146956 -0.11136 -0.125287
-0.103434 -0.343371 0.0990517 0.188432 0.704921

insert item = (34 11)
modelList: (34 11) (32 11) (35 29) (13 13) (28 5) 7 (6 5) (36 36) 13 31
6 10 NULL
nvar= 12 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 nonnstddevErr= 0.7559 S/N ratio = 1.7503
PartlML= 131.4335 Part2ML= 3447.0052 TotHL= 3578.4387
Training Data: MAE= 17.2348 MSE= 471.3538 RMSE= 21.7107 R'2= 0.4355
trainErrMin = -72.6279 trainErrMax = 95.8296

normCoeffs: 0.0926964 0.108976 0.0659722 -0.146224 -0.147629 -0.108669
-0.124631 -0.109306 -0.34562 0.0971674 0.187384 0.705484

insert item = 2
modelList: 2 (34 11) (32 11) (35 29) (13 13) (28 5) 7 (6 5) (36 36) 13 31
6 10 NULL
nvar= 13 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7509 S/N ratio = 1.7736
PartlML= 139.4338 Part2ML= 3432.8788 TotHL= 3572.3125
Training Data: MAE= 17.1138 MSE= 467.1480 RMSE= 21.6136 R"2= 0.4407
trainErrMin = -72.4637 trainErrMax = 94.731

normCoeffs: -0.0750469 0.102027 0.116134 0.0649468 -0.147106 -0.156491
-0.0943276 -0.124807 -0.112183 -0.353268 0.0984102 0.19198 0.718202

delete item = (35 29)
modelList: 2 (34 11) (32 11) (13 13) (28 5) 7 (6 5) (36 36) 13 31
6 10 NULL
nvar= 12 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.923S S/N ratio = 1.1723
PartlML= 128.5313 Part2ML= 3443.6745 TotML= 3572.2059
Training Data: MAE= 17.1084 MSE= 470.3221 P-MSE= 21.6869 R*2= 0.4368
trainErrMin = -69.8368 trainErrMax = 95.7729

normCoeffs: -0.0759514 0.111955 0.126686 -0.137223 -0.154106 -0.0955914
-0.125321 -0.105926 -0.343325 0.0971979 0.195955 0.717003

insert item = 35
modelList: 35 2 (34 11) (32 11) (13 13) (28 5) 7 (6 5) (36 36) 13 31
6 10 NULL
nvar= 13 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7498 S/N ratio = 1.7787
PartlML= 136.3430 Part2ML= 3432.3754 TotML= 3568.7184
Training Data: MAE= 17.0446 MSE= 466.9933 RMSE= 21.6100 R"2= 0.4409
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trainErrHin = -71.0721 trainErrMax = 93.3476

normCoeffs: -0.0675735 -0.0764607 0.113963 0.132555 -0.144827 -0.149843
-0.0972769 -0.124134 -0.0898984 -0.352892 0.0938223 0.193789 0.713505

insert item = (35 29)
modelList: (35 29) 35 2 (34 11) (32 11) (13 13) (28 5) 7 (6 5) (36 36)
13 31 6 10 NULL
nvar= 14 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7470 S/N ratio = 1.7921
PartlML= 147.2432 Part2HL= 3421.1167 TotML= 3568.3599
Training Data: MAE= 17.0201 HSE= 463.7004 RKSE= 21.5337 R"2= 0.4451
trainErrMin = -75.1345 trainErrMax = 92.2469

normCoeffs: 0.066083 -0.068704 -0.0755489 0.103895 0.121917 -0.155011
-0.152198 -0.0960192 -0.123591 -0.095996 -0.363169 0.0949993 0.189708 0.714666

Nothing more to insert/delete - end search

Trace Summary:

nvar= 14 meanY= 9.4001 stddevY = 28.8350
normstddevY= 1.0000 normstddevErr= 0.7440 S/N ratio = 1.8066
Penalty WallaceMML: 3568.3599 Part1ML= 147.2432 Part2HL= 3421.1167
TotML= 3568.3599
Training Data: MAE= 17.0201 HSE= 463.7004 RMSE= 21.5337 R"2= 0.4451... _. 0.4578
Test Data:
trainErrMin =
testErrMin =

No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

VarNum

(35,29)
35
2

(34,11)
(32,11)
(13,13)
(28, 5)

7
( 6, 5)
(36,36)

13
31
6
10

MAE= 17.3790 MSE= 481
-75.1345
-77.2743

VarName

( EINino

( ZWA
( RainG
( SSST
( 200Uend

( Dell2V
( SOI

trainErrMax
testErrMax

, Del200U)
EINino
JulOff

POTend)
POTend)
SSST)
Vmax)
UCurr

, Vmax)
SOI)
SSST

RainS
Dell2V

POT

.1881 RMSE= 21.9360 H
92.2469
84.8163

NormCoeff

0.066083
-0.068704
-0.075549
0.103895
0.121917

-0.155011
-0.152198
-0.096019
-0.123591
-0.095996
-0.363169
0.094999
0.189708
0.714666

RealCoeff

2.035125
-0.031417
-0.121078
3.111376
3.506426

-1.682023
-4.347148
-0.336593
-3.542231
-2.040737
-4.290428
4.231230
0.620980
0.606140

Constant: 79.922024

End time: 16:26:38 on Thursday, 15 April 1999
Duration (hr:inin:sec)= 0:4:13.000
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