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Abstract. A common analytical technique involves using a Coxian dis-
tribution to model a general distribution G, where the Coxian distribu-
tion agrees with G on the first three moments. This technique is mo-
tivated by the analytical tractability of the Coxian distribution. Algo-
rithms for mapping an input distribution G to a Coxian distribution
largely hinge on knowing a priori the necessary and sufficient number of
phases in the representative Coxian distribution. In this paper, we for-
mally characterize the set of distributions G which are well-represented
by an m-phase Coxian distribution, in the sense that the Coxian dis-
tribution matches the first three moments of G. We also discuss a few
common, practical examples.

1 Introduction

Background Approximating general distributions by phase-type (PH) distri-
butions has significant application in the analysis of stochastic processes. Many
fundamental problems in queueing theory are hard to solve when general dis-
tributions are allowed as inputs. For example, the waiting time for an M/G/c
queue has no nice closed formula when ¢ > 1, while the waiting time for an
M/M/c queue is trivially solved. Tractability of M/M/c queues is attributed to
the memoryless property of the exponential distribution. A popular approach to
analyzing queueing systems involving a general distribution G is to approximate
G by a PH distribution. A PH distribution is a very general mixture of expo-
nential distributions, as shown in Figure 1 [21]. The Markovian nature of the
PH distribution frequently allows a Markov chain representation of the queueing
system. Once the system is represented by a Markov chain, this chain can often
be solved by matrix-analytic methods [18,21], or other means.

When fitting a general distribution G to a PH distribution, it is common to
look for a PH distribution which matches the first three moments of G. In this
paper, we say that:

Definition 1. A distribution G is well-represented by a distribution F if F' and
G agree on their first three moments.

We choose to limit our discussion in this paper to three-moment matching, be-
cause matching the first three moments of an input distribution has been shown



Fig. 1. A PH distribution is the distribution of the absorption time in a finite state
continuous time Markov chain. The figure shows a 4-phase PH distribution. There are
n = 4 states, where the ith state has exponentially-distributed sojourn time with rate
Ai. With probability po; we start in the i¢th state, and the next state is state j with
probability p;;. Each state ¢ has probability p;5 that the next state will be the absorbing
state. The absorption time is the sum of the times spent in each of the states.

Fig. 2. An n-phase Coxian distribution is a particular n-phase PH distribution whose
underlying Markov chain is of the form in the figure, where 0 < p; < 1 and \; > 0 for
all 0 <2 < n.

to be effective in predicting mean performance for variety of many computer sys-
tem models [7, 10,23, 29, 33]. Clearly, however, three moments might not always
suffice for every problem, and we leave the problem of matching more moments
to future work.

Most existing algorithms for fitting a general distribution G to a PH distri-
bution, restrict their attention to a subset of PH distributions, since general PH
distributions have so many parameters that it is difficult to find time-efficient al-
gorithms for fitting to the general PH distributions [14, 15, 20,27, 32]. The most
commonly chosen subset is the class of Coxian distributions, shown in Figure 2.
Coxian distributions have the advantage of being much simpler than general PH
distributions, while including a large subset of PH distributions without needing
additional phases. For example, for any acyclic PH distribution P,, there exists
a Coxian distribution C,, with the same number of phases such that P, and
C,, have the same distribution function [5]. In this paper we will restrict our
attention to Coxian distributions.

Motivation and Goal When finding a Coxian distribution C' which well-
represents a given distribution G, it is desirable that C' be minimal, i.e., the
number of phases in C be as small as possible. This is important because it



minimizes the additional states necessary in the resulting Markov chain for the
queueing system. Unfortunately, it is not known what is the minimal number of
phases necessary to well-represent a given distribution G by a Coxian distribu-
tion. This makes it difficult to evaluate the effectiveness of different algorithms
and also makes the design of fitting algorithms open-ended.

The primary goal of this paper is to characterize the set of distributions which
are well-represented by an n-phase Coxian distribution, for each n =1,2,3,.. ..

Definition 2. Let S"") denote the set of distributions that are well-represented
by an n-phase Cozian distribution for positive integer n.

Our characterization of {S(™) n > 1} will allow one to determine, for any dis-
tribution @, the minimal number of phases that are needed to well-represent
G by a Coxian distribution.! Such a characterization will be a useful guideline
for designing algorithms which fit general distributions to Coxian distributions.
Another application of this characterization is that some existing fitting algo-
rithms, such as Johnson and Taaffe’s nonlinear programming approach [15], re-
quire knowing the number of phases n in the minimal Coxian distribution. The
current approach involves simply iterating over all choices for n [15], whereas
our characterization would immediately specify n.

Providing sufficient and necessary conditions for a distribution to be in S
does not always immediately give one a sense of which distributions satisfy those
conditions, or of the magnitude of the set of distributions which satisfy the
condition. A secondary goal of this paper is to provide examples of common
distributions which are included in S for particular integers n.

In finding simple characterizations of S| it will be very helpful to start by
defining an alternative to the standard moments, which we refer to as normalized
moments.

Definition 3. Let ,ukF be the k-th moment of a distribution F for k = 1,2, 3.
The normalized k-th moment mfj of F' for k = 2,3 is defined to be

F F
F Ha F H3
my = . and my = ——.
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Notice the correspondence to the coefficient of variability Cr and skewness vg
F
of F: mf = C% +1 and m{ = vp\/ml, where vp = (uﬁ% (Notice the
2
_F
correspondence between v and the skewness of F', yp, where yp = (ﬂfiﬁ and
2

fir is the centralized k-th moment of F for k = 2,3.)

! One might initially argue that S®, the set of distributions well-represented by a two-
phase Coxian distribution, should include all distributions, since a 2-phase Coxian
distribution has four parameters (pi, p2, A1, A2), whereas we only need to match
three moments of G. A simple counter example shows this argument to be false.
Let G be a distribution whose first three moments are 1, 2, and 12. The system of
equations for matching G to a 2-phase Coxian distribution with three parameters
(A1, A2, p) results in either A; or A2 being negative.



Relevant Previous Work All prior work on characterizing S(™) has focused
on characterizing S®”, where S is the set of distributions which are well-
represented by a 2-phase Coxian™ distribution, where a Coxian™ distribution
is simply a Coxian distribution with no mass probability at zero, i.e. p; = 1.
Observe S C 8§(). Altiok [2] showed a sufficient condition for a distribution G
to be in S®". More recently, Telek and Heindl [31] expanded Altiok’s condition
and proved the necessary and sufficient condition for a distribution G to be in
S While neither Altiok nor Telek and Heindl expressed these conditions in
terms of normalized moments, the results can be expressed more simply with our
normalized moments, as shown in Theorem 1. In this paper, we will characterize
8@ as well as characterizing S, for all integers n > 2.

Our Results While the goal of the paper is to characterize the set S(™) | this
characterization turns out to be ugly. One of the key ideas in the paper is that
there is a set SV(”) C 8™ which is very close to S in size, such that Sy(") has
a very simple specification via normalized moments. Thus, much of the proofs
in this paper revolve around SV(").

Definition 4. For integers n > 2, let SV(") denote the set of distributions, F,
with the following property on their normalized moments:

n n+ 2
mo > m and mg‘ 2 n—ng

(1)

The main contribution of this paper is a derivation of the nested relationship
between Sy, ™ and 8™ for all n > 2. This relationship is illustrated in Figure 3
and proven in Section 3. There are three points to observe: (i) S is a proper
subset of S("*1) for all integers n > 2, and likewise SV(”) is a proper subset
of S, *1). (ii) Sy is contained in 8™ and close to S in size; providing
a simple characterization for S(; (iii) S is almost contained in Sy "*")
all integers n > 2 (more precisely, we will show NN SV(”+1) U E™ ., where
£ is the set of distributions well-represented by an Erlang-n distribution).
This result yields a necessary number and a sufficient number of phases for a
given distribution to be well-represented by a Coxian distribution. Additional
contributions of the paper are described below.

With respect to the set S(?), we derive the exact necessary and sufficient
condition for a distribution G to be in S?) as a function of the normalized
moments of G. This complements the results of Telek and Heindl, who analyzed
S?)" | which is a subset of S?). (See Section 2).

Lastly, we provide a few examples of common, practical distributions included
in the set Sy c 8. All distributions we consider have finite third moment.
The Pareto distribution and the Bounded Pareto distribution (as defined in [8])
have been shown to fit many recent measurements of job service requirements
in computing systems, including the file size requested by HTTP requests [3, 4],
the CPU requirements of UNIX jobs [9,19], and the duration of FTP transfers

3

[24]. We show that a large subset of Bounded Pareto distributions is in Sy,

for



Fig. 3. The main contribution of this paper: a simple characterization of S™ by Sy ™).
Solid lines delineate ™ (which is irregular) and dashed lines delineate Sy ™ (which
is regular  has a simple specification). Observe the nested structure of S and &y ™.

Sy(”) is close to S in size and is contained in S™. S is almost contained in
Sv(n+1)_

We also provide conditions under which the Pareto and uniform distributions
are in Sy(™ for each n > 2. (See Section 4).2

2 Full Characterization of S(?

The Telek and Heindl [31] result may be expressed in terms of normalized mo-
ments as follows:

Theorem 1 (Telek, Heindl). G € S iff G is in the following union of sets:

o _mF3 Fo_
{F‘gm2 12+3\F/§(2 ms ) Smgﬁiti(mzp D and§Sm§<2}
my my 2

U {F‘m§:3 {mdm§:2} U {F‘gm§<m§ {md2<m§}.

We now show a simple characterization for S():

Theorem 2. G € S?) iff G is in the following union of sets:

4 6(mi —1 3
{F\gmi <mj < (1;75) and 5 < mj s2} U s, (2)

where recall Sy is the set: {F‘%mg <mi and 2 < mg}

2 Our results show that the first three moments of the Bounded Pareto distribution
and the Pareto distribution are matched by a Coxian distribution with a small
number of phases. Note however that this does not necessarily imply that the shape
of these distributions is well-matched by a Coxian distribution with few phases,
since the tail of these distributions is not exponential. Fitting the shape of heavy-
tailed distributions by phase-type distributions such as PH distributions is studied
in several recent papers [6,11,12,17, 26, 30].



A summary of Theorems 1 and 2 is shown in Figure 4. Figure 4(a) illustrates

how close 8@ and Sy® are in size. Figure 4(b) shows the distributions which
are in 8 but not S?)",

my mg
3 3
@\ g
2 2
3/2 2 my 3/2 2 my
(a) (b)

Fig. 4. (a) The thick solid lines delineate S*). The striped region shows Sy* c §®.
(b) Again, the thick solid lines delineate & . The shaded region shows S \8(2) .

Proof (Theorem 2). The theorem will be proved by reducing S to S*)" and
employing Theorem 1. The proof hinges on the following observation: an ar-
bitrary distribution G € S®) iff G is well-represented by some distribution?
Z()=X()p+1—p for some X € S It therefore suffices to show that Z is
in the set defined in (2).

By Theorem 1, since X € S?7, X is in the following union of sets:

9mt —12 4+ 3v2(2 — m¥)? 6(mf —1 3
{F o +‘Ff( ma) gmggLF)and—gm5<2
m., my 2

LJ{F‘m?’,v =3 and mg :2}U{F‘gm§ <m§v and2<m§}.

Observe that me = ”;T’“X for £ =2,3. Thus, Z is in the following union of sets:

F - Fy3 F
F|3p Jpmy — 12 +.3\/§(2 pms ) <my < 76(:0772 D and 3 <my < 2
’ psz 2. F 2
2 pmy p p
2 2
U F‘Ep,m?zéandmgz— U F“Elp,émg<mém and = < m¥ (3)
P P 2 P

% To shed light on this expression, consider random variables Vx whose distribution
is X. Then random variable

vV, — Vx with probability p
Z =10 with probability 1 — p,

has distribution Z, since Pr(Vz < t) = pPr(Vx <t)+ (1 —p).



We want to show that Z is in the set defined in (2). To do this, we rewrite the
set defined in (2) as:

4 6(ms —1
{Fgmkm?si( : 1)

and §§m§ §2}
m; 2

4
U{F‘gmf <mi < gmf and 2 < mf}U{F‘;mf <mi and 2 < mf}(zl)

Observe that (3) and (4) are now in similar forms. We now prove that the set
defined in (3) is a subset of the set defined in (4), and the set defined in (4) is a
subset of the set defined in (3). The technical details are postponed to Appendix
A, Lemma 3. O

3 A Characterization of S(™

In this section, we prove that SV(") is contained in S, where SV(") is the set
of distributions whose normalized moments satisfy (1), and that S(™ is almost
contained in Sy V. Figure 5 provides a graphical view of the Sy(™ sets with
respect to the normalized moments. Figure 5 illuminates several points. First,
there is a nested relationship between SV(") and SV("fl). This makes intuitive
sense, since an n-phase Coxian can represent at least as many distributions as
an (n—1)-phase Coxian. Next, observe that as either m$ or m§ decreases, more
phases are needed to well-represent (G. The intuition behind this is that the
lower normalized moments, ms and mg, imply moving towards a deterministic
distribution (which has the minimum possible values of my and mg3), and a
deterministic distribution is well-known to require an infinite number of phases.
On the flip side, for distributions with sufficiently high ms and mg, two phases
are all that is needed, since high my and ms can be achieved by mixing two

exponentials with very different rates. We prove the following theorem:

Theorem 3. Sy c () c S, U EM | where £™ is the set of distribu-
tions that are well-represented by an Erlang-n distribution for integers n > 2.

An Erlang-n distribution refers to the distribution of a random variable, which

is equal to the sum of n i.i.d. exponential random variables. Notice that the nor-
malized moments of distributions in £, mg(") and mg("), satisfy the following
conditions:

mg(") _ntl ! and mg("] _nt 2. (5)

n n

Theorem 3 tells us that S( is “sandwiched between” Sp™ and Sy, *+1).
From Figure 5, we see that SV(”) and Sy("+1) are quite close for high n. Thus
we have a very accurate representation of S). Theorem 3 follows from the next
two lemmas:

Lemma 1. 8™ c §,("tD ygn),
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Fig. 5. Depiction of Sy™ sets for n = 2,3,4,32 as a function of the normalized
moments. Observe that all possible nonnegative distributions lie within the region
delineated by the two dotted lines: ma > 1 and msz > mo [16]. Sy for n = 2,3,4,32
are delineated by solid lines, which includes the border, and dashed lines, which does
not include the border.

Lemma 2. S, c 8™

Proof (Lemma 1). The proof proceeds by induction. When n = 2, the lemma
follows from (1), (5), and Theorem 2. Next, assume that S ¢ S+ y g
for n < k — 1. Consider an arbitrary distribution G € S*). Let Z(-) = (X () ®
Y(-))p+1— p, where X is an exponential distribution and Y is a (k — ) phase
Coxian distribution.* Observe that for any arbitrary distribution G € S**), there
exists some such Z which well-represents G. By the assumption of induction,
Y € Sy ugt-1 . We prove that (i) if Y € Sy, then Z € S, ) and (ii) if
Y € £&5-1 then Z € Sv(k“) U E®) . Without loss of generality, we can set the
first moment of X to 1. To see why this is possible, observe that Z is comprised
of k exponential phases, and the normalized second and third moments of Z, m#
and m# are both invariant to multiplying all the rates of exponential phases in
Z by the same constant. Thus, if the first moment of X equals ;¥ # 1, then the
rates of all the phases in Z may be multiplied by u{* to bring the first moment
of X down to 1.

* To shed light on this expression, consider random variables Vx and Vy whose dis-
tributions are X and Y, respectively. Then random variable

vV, — Vx + Vy with probability p
770 with probability 1 — p,

has distribution Z, since Pr(Vz <t) =pPr(Vx + V¥ <t)+ (1 —p).



(i) Suppose Y € Sy¥): We first prove that mZ > k£l Observe that

s 242} 4y | 2+2u + Py
p(1+py)? p(1+u¥)2 ’

where the inequality follows from Y € Sv . The right hand side is minimized

when pY = k — 1. Thus, mZ > kpik] > &L Next, we prove that m—3 > 153 for

z
all m% > % Notice that % is independent of p:
2

my _ (6+6p1 +3uy +pz)(1+pr)
mj (2+2p) +p3y)
4 Y \2
Since % is an increasing function of p), it is minimized at p) = % (LLZY)
2 1

since Y € Sv(k). Thus,

mg o (L4 )(6(k+ Dpy +6(k+1)(p1)* + 30k + Dpad py + (b +2)(p2)°)

my = (k+1)py (2+2p) +pd)?
The infimum of the right hand side occurs at:
6(k+1p) (14 p)) k }
y 1 1 Y2
= max ;
H {4+4u{+(l~c+1)(4+u}’)‘k1(“1)

zZ
By evaluating :—% at py = 2 (u})?, we have

S, + 1) [6(k + 1)k = 1)°(1+ ) +3k(K* = 1)(1)* + K (k+2)(u1)*]
(k+1)[2(k = 1) +2(k = D} + k(u))?)”

my

z
By Lemma 4 in Appendix A, ma > :ig By evaluating =% at
2
y _ 6(k + Dyt (1+py)
P A4y + (R DE )
we have
mi _3[80+u)+k+D)B+5)] | k+3
m7 = 16(2+k)(1 + pY) T k+2
where the last inequality holds iff pu} < ,:ffg However, u) < ksffg holds if
6(k+1Dp (1+p) k Y2
(i )"

d4+4py + (k+10)d+p)d) " k-1

(ii) Suppose Y € £*-1): We will prove that (a) if u} = (k —1) and p = 1,

then Z € £%), and (b) if p) # (k—l) or p < 1, then Z € Sy**V_ For part
(a), observe that if Y € £&=1 uY = (k- 1), and p =1, then we have already
)

seen that m¥ = kkil in part (i). It is also easy to see that mZ = kkﬁ, and
hence Z € £®). For part (b), if u) # (k — 1) or p < 1, then first notice that
mé > kkil, since mg is minimized when p} = (k — 1) and p = 1. Also, since
my = Bl > k2 22_’213 by part (i), and hence Z € Sy, F*1). O



Proof (Lemma 2). When n = 2, the lemma follows from Theorem 2. The re-
mainder of the proof assumes n > 3. We prove that for an arbitrary distribution
G € Sv(”), there exists an n-phase Coxian Z such that the normalized mo-
ments of G and Z agree. Notice that the first moment of Z is easily matched
to G by normalization without changing the normalizing moments of Z. The
proof consists of two parts: (i) the case when the normalized moments of G sat-
isfy m§ > 2m$§ — 1; (ii) the case when the normalized moments of G satisfy
m§ <2m§ — 1.

(i) Suppose G € Sy™ and m§ > 2m$ — 1: We need to show that G is well-
represented by some n-phase Coxian distribution. We will prove something stronger
that G is well-represented by a distribution Z where Z = X +Y, and X is a
particular two-phase Coxian distribution with no mass probability at zero and
Y is a particular Erlang-(n — 2) distribution. (For the intuition behind this par-
ticular way of representing G, please refer to [22]). The normalized moments of
X are chosen as follows:

oy _mm-3)(n-2)
PTG 2 (n 1)

> m§
(n—2)(my —1) (n(n —1)(m¥)? —n2n —5)m3 + (n—1)(n — 3))

= .
my

my = ((n=1m3 —(n=2)) ((n=2)my — (n-3))

The first moment of Y is chosen as follows: u)” = (n — 2)(msg — 1)u*. It is easy

to see that the normalized moments of G and Z agree:

Z _ ms 42y +myy° _ G
’ (1+y) 2
z _ mim3 +3miy+3miy’ +mimiy’ o
m3 = X 2 Y.2)(1 =m3;
(m3 + 2y +m;yy?)(1+y)
Y
where md = Z—:é and m) = 5 are the normalized moments of Y, and y = 5—}(
1

Finally, we will show that there exists a two-phase Coxian distribution with no
mass probability at zero, with normalized moments m3 and ms . By Theorem
1, it suffices to show that my > 2 and mg > %mﬁ( The first condition, ms > 2,

can be shown using 5 < m§, which follows from G € SV(”). It can also be

shown that mg" > 2m3 —1 > 3mJ using 1 < m§ and m§ > 2m§ — 1, which

is the assumption that we made at the beginning of (i).

(i) Suppose G € Sy™ and m§ < 2m§ — 1: We again must show that G is
well-represented by an nm-phase Coxian distribution. We will show that G is
well-represented by a distribution Z(-) = U(-)p + 1 — p (See Section 2 for an
explanation of Z), where p = w and the normalized moments of U satisfy

mY = pm§ and m{ = pm§. It is easy to see that the normalized moments of

G and Z agree. Therefore, it suffices to show that U is well-represented by an
n-phase Coxian distribution W, since then G is well represented by an n-phase
Coxian distribution Z(-) = W(-)p + 1 — p (See Section 2 for an explanation of




Z). We will prove that U is well-represented by an n-phase Coxian distribution
W, where W = X +Y and X is a two-phase Coxian distribution with no mass
probability at zero and Y is an Erlang-(n — 2) distribution. The normalized
moments of X are chosen as follows:

x _my(n—3)—(n-2) X

5= d = 2mi
ms mU(n =2~ (n 1) and m;3 ms

the first moment of Y is chosen as follows: u) = (n — 2)(ms5 — 1)ui¥. It is easy
to see that the normalized moments of U and W agree:

wo_ my + 2y +myy’ U,
my — 5 =My
(1 +y)?
W mimd 4 mEy 4 smyyt e mimdy' oy,
mg = X ) —2m271—m3,
(m3 +2y +myy*)(1+y)
where m) = 2=} and mj = - are the normalized moments of Y, and

Y
Yy = Z—}( Finally, we will show that there exists a two-phase Coxian distribution
1

with normalized moments mi and ms . By Theorem 2, it suffices to show that
% < m3, since

4 F -1

¥ < m —om 1< S 1)

3 m;
where the first inequality holds when m > % and the second inequality holds

m
G
when % <my¥ < 2. SinceG € SV(”), m§ > ”—ﬁm? Thus, mY > mgfﬁ =

L i

3

n

NS

"T“. Finally, mj > % follows from m% >

|

4 Examples of Some Common Distributions in S(™)

In this section, we give examples of distributions that are well-represented by
an n-phase Coxian distribution. In particular, we discuss Bounded Pareto distri-
butions, uniform distributions, symmetric triangular distributions, and Pareto
distributions, and derive the necessary and sufficient condition for these distri-
butions to be in Sy™ ¢ ™). A summary is shown in Figure 6.

We first discuss the set of Bounded Pareto distributions. A Bounded Pareto
distribution has a density function

lO{
l «
1-(3)
for I <z < wand 0 elsewhere, where 0 < a < 2 [8]. Bounded Pareto distributions
have been empirically shown to fit many recent measurements of computing
workloads. These include Unix process CPU requirements measured at Bellcore:
1 < a < 1.25 [19], Unix process CPU requirements measured at UC Berkeley:

a = 1[9], sizes of files transferred through the Web: 1.1 < o < 1.3 [3, 4], sizes of
files stored in Unix filesystems [13], I/O times [25], sizes of FTP transfers in the

f@) =z
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Fig. 6. A summary of the results in Section 4. A few particular classes of distributions
are shown in relation to Sy ™. BP* refers to the subset of Bounded Pareto distribu-
tions contained in Sy . UNTFORM refers to the class of all uniform distributions
described in Definition 5. We find that the larger the support of the uniform distribu-
tion, the fewer the number of phases that suffices. TRZANGULAR refers to the set of
symmetric triangular distributions, described in Definition 5. These interestingly have
the same behavior as the uniform distribution. Finally, PARET O refers to the class of
Pareto distributions with finite third moment, described in Definition 5. For this class,
we find that the lower the value of the a-parameter, the fewer the number of phases
that are needed.

Internet: .9 < a < 1.1 [24], and Pittsburgh Supercomputing Center workloads
for distributed servers consisting of Cray C90 and Cray J90 machines [28].
The normalized moments of a Bounded Pareto distribution, F, are

P -1 e (DD

27 r(logr)?’ 3 27 log T
when a = 1, and

op_ (=) (=N —r?) - (1-a)2—a) (" — 107 —r?)
Fa-a) (ore 7 a(3—a) (r—ro)(r?—-re)’

when 0 < a <lorl<a <2 wherer = 7. Not all Bounded Pareto distribution

are in Sy, However, a large subset of the Bounded Pareto distributions reside
in Sy ®. Figure 7 shows the necessary and sufficient condition on r as a function
of a for a Bounded Pareto distribution to be in SV(Q). Specifically, a Bounded
Pareto distribution is in Sy ® if and only if 7 = 7 is above the two lines shown
in Figure 7. We use BP* to denote the subset of Bounded Pareto distributions
which are contained in Sy(2).

Next, we discuss uniform distributions, symmetric triangular distributions,
and Pareto distributions, and derive the necessary and sufficient condition for
these distributions to be in Sy(™. We use the following definitions:
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Fig. 7. The maximum of the two lines illustrates the lower bound needed on r = 7

in the definition of the BP™ distribution. These lines are derived from the conditions

m§>2andm§2%m§.

Definition 5. UNTFORM refers to the set of distributions having density
function f(z) = ﬁ forl <z <wu and 0 elsewhere, for some 0 <1 < u.
TRIANGULAR is the set of distributions with density function

u—l1

flz) = _( 2 )Z(m_u)if%ﬂgxgu

u—I

0 otherwise,

(L)2(?:—l) if <3<

for some 0 <1 < u.
PARETO is the set of distributions with density function f(z) = ak®z—*~!
for > k and 0 elsewhere, for some o > 3 and k > 0.

Let Fy € UNTFORM and Fr € TRIANGULAR with parameters [ and
u, and let Fp € PARET O with parameters a and k. The normalized moments
of Fy, Fr, and Fp are:

mFU_§1+r+r2_ mFT_7-I-107"-|-77‘2. mFP_(afl)Z’.
273 (142 2T 6(1+r)2 2 7 ala—2)
oFe 3 L+t g 3342437 g (@—1)(a-2)
3 21474712’ 3 74+ 10r 4+ 712’ 3 ala—3)
Fp Fp

where r = 7. Note that m;” and m3” are independent of k.
Therefore, the three distribution classes are formally characterized as follows:

Theorem 4. For all F € UNTFORM, 1 <mj < 3 and m§ = 3— 2 for all
2
0<Il<u.
For all F € TRIANGULAR, 1 < mf < I and m¥ =3 - 2 for all
2
0<Il<u.



For all F € PARETO,

— m2

for all a > 3.
Simple consequences of the theorem are:

Corollary 1. Let F € UNTFORM with parameters | and u. Then, F € Sy

if and only if n > 7+}‘1“;+T)3£{12:'41ﬂi;")7r4 , where r = 7. In particular, for all values
ofu,n="T1i1=0, and n > 7 whenever | > 0.
Let F € TRIANGULAR with parameters | and u. Then, F € Sy if and

. 411434745472 +34r34+117%)
only if n > (T—r)2(5+14r+5r2)

ofl and u, n > 9.
Let F € PARET O with parameters a and k. Then, F € SV(”) if and only
if n > (a —1)2 for all values of k. In particular, n > 4 for all « > 3 and k.

, where r = 3. In particular, for all values

5 Conclusion

The contribution of this paper is a characterization of the set S of distributions
G which are well-represented by an n-phase Coxian distribution. We introduce
several ideas which help in creating a simple formulation of S("). The first is
the concept of normalized moments. The second is the notion of SV("), a nearly
complete subset of S(™) with an extremely simple representation. The arguments
required in proving the above results have an elegant structure which repeatedly
makes use of the recursive nature of the Coxian distributions.

Our characterization of S provides a necessary number of phases and a
sufficient number of phases for a given distribution to be well-represented by
a Coxian distribution, and these bounds are nearly tight. This result has sev-
eral practical uses. First, in designing algorithms which fit general distributions
to Coxian distributions (fitting algorithms), it is desirable to find a minimal
(fewest number of phases) Coxian distribution. Our characterization allows al-
gorithm designers to determine how close their Coxian distribution is to the
minimal Coxian distribution, and provides intuition for coming up with im-
proved algorithms. We have ourselves benefitted from exactly this point. In a
companion paper [22], we develop an algorithm for finding a minimal Coxian
distribution that well-represents a given distribution. We find that the simple
characterization of S provided herein is very useful in this task. Our results
are also useful as an input to some existing fitting algorithms, such as Johnson
and Taaffe’s nonlinear programming approach [15], which require knowing a pri-
ori the number of phases n in the minimal Coxian distribution. Furthermore we
classify a few examples of common and practical distributions as being subsets
of (") for some n.

Future work includes a simple characterization of the set of distributions that
are well-represented by general n-phase PH distributions. If we were to follow



the approach in this paper, we would start by specifying the lower bounds for
the second and third normalized moments of general n-phase PH distributions.
However, this seems to be nontrivial: although the lower bound on the normalized
second moment is known [1], the lower bound on the normalized third moment
of n-phase PH distributions is not known.
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A Technical Lemmas

Lemma 3. The set defined in (3) and the set defined in () are equivalent sets.

Proof. Recall that the set defined in (3) is the union of the following three sets:

2

F F\3
—12 2(2 —
9pmy +3v2(2 —pmi)2 and23§ §<_}’
P p

2, F
p m,

6(pms — 1)

2, F
p m,

§m§<

A1 = {F Ep,

2 3 2
Ay = {F Ip,mi =2 and mj = —}, As = {FEIp, §m§ < mj and = <m§};
p p

3
P

the set defined in (4) is the union of the following three sets:

F 2 —

4 6(mf —1
Blz{F—mggmggmand§<m§§2},
3 ms;

4 3 3
Bg:{F §m§§m§§§m§ and2<m§}7 B3:{F‘§m§<m3 and2<m§}.

It suffices to prove that (i) Ay = By U Bs, (ii) A2 C By U By, and (iii)
Az = Bs. (ii) and (iii) are immediate from the definition. To prove (i), we prove
that A1 C By UBs and B; U By C A;.

Consider a distribution F' € A;. We first show that F' € By U Bs. Let u(p)
and [(p) be the upper and lower bound of m?’, respectively:

3 (3omd 44 V30 - pmd)?)

2 F
p m,

6(pms — 1)

2 F
p m,

I(p) = ;o ou(p) =

Then, u(p) and I(p) are both continuous and increasing functions of p for MLF <
2

p < % When m?f < 2, the range of p is Zm% < p < 1. Thus,
2 2

F_
ém§=l< 3 >5m§§u(1):M7

F F
3 2m, my

and hence F' € By. When 2 < m{, the range of p is ;2% < p < 2. Thus,
2

= mf

4 g 3 F 2 3 F
ng :l<m>§m3 Su<m—§>:—m2:

and hence F' € By. Therefore, 41 C B; U Bz. However, since u(p) and I(p) are
continuous functions of p, m¥ can take any value between the lower and upper
bounds. Therefore, By U By C A;. O

Lemma 4. Lety > 0 and k > 1. Then,

(1+y) [6(k+1)(k—1)°(1+y)+3k(k* —1)y” + k> (k+2)y°] _ k+3
(k+1)[2(k — 1)+ 2(k — 1)y + ky?]® T k+2




Proof. Let
9y k) = (1 +y) [6(k+1)(k — 1)°(1+y) +3k(k* — 1)y° + k*(k+2)y°] (k+2)
—(k+1) [2(k — 1) + 2(k — D)y + ky?]” (k + 3)
=Q2+4y+y )k =200+ 2y + 4y + 0K — 2+ 4y +y° — 5y° — yHK
+2(1 4+ y)(1 +y + 3y°)k.

We prove that g(y, k) > 0. Let h(y, k) = ( LN sufﬁces to prove h(y, k) > 0.

ah(y, 24+4y+8y +21/3i\/
Observe that (” N —0iff k= 3Tay 155

, where
d(y) = 16 + 64y + 108y + 66y> + 17y* + 5y° + ¢°.
Notice that d(y) > (4 + 8y + y* + y3)2. Thus,

2+ 4y + 8y% + 2y° + \/d( 2+4y+8y +2y% 4+ 4+ 8y + 97 +y)
3(2 + 4y + y?) 3(2 + 4y + y?) -

>1

2+4y+8y +2y ++4/d Let
3(2+4y+y?)

for y > 0. Therefore, h(y, k) is minimized when k =

o) = h <y7 2+ 4y + 8y + 2y° + Md(y))

3(2 1 4y + 12
2((28 + 83y + 16y> + y*)d(y) — d(y)?)
27(2 + 4y + y?)?
12(64 + 456y + 1260° + 1655y° + 889y* + 147y°)
27(2 + 4y + y?)?

It suffices to prove s(y) > 0. Let t(y) = 27(2 + 4y + y*)*s(y). It suffices to prove
t(y) > 0. Notice that #(0) = 0. Thus, it suffices to prove #'(y) > 0 for y > 0.

However, t'(y) = 3( )v(y)7 where
y

v(y)
= 2(128 + 688y + 1922y + 3216y° + 3055y" + 1562y” + 420y° + 565" + 3y°)\/d(y)
—(64 4 216y + 198y> + 68y° + 25y" + 6y°)d(y)
> 2(128 + 688y + 1922y” + 3216y> + 3055y" + 1562y° + 420y° + 563 + 3y°) -
(4+ 8y + 1> +y%) — (64 + 216y + 198y + 68y> + 253" + 6y°)d(y)
= 3y°(912 4 5600 + 13212y” + 15184y” + 9604y" + 3914y° + 1175y° + 235y" + 21y°)
> 0.



