A General Approach
to Deadlock Freedom Verification
for Software Architectures

Alessandro Aldini and Marco Bernardo

Universita di Urbino “Carlo Bo”
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
{aldini, bernardo}@sti.uniurb.it

Abstract. When building complex software systems, the designer is
faced with the problem of detecting mismatches arising from the activity
of assembling components. The adoption of formal methods becomes un-
avoidable in order to support a precise identification of such mismatches
in the early design stages. As far as deadlock freedom is concerned, some
techniques appeared in the literature, which apply to formal specifica-
tions of software architectures under some constraints. In this paper we
develop a novel technique for deadlock freedom verification that can be
applied to arbitrary software architectures, thus overcoming the limita-
tions of the previous techniques.

Keywords: software architecture, deadlock, process algebra.

1 Introduction

The software architecture level of design enables us to cope with the increasing
size and complexity of nowadays software systems during the early stages of
their development [10, 11]. To achieve this, the focus is turned from algorithms
and data structures to the overall architecture of a software system, where the
architecture is meant to be a collection of computational components together
with a description of their interactions. As software architecture emerges as a
discipline within software engineering, it becomes increasingly important to sup-
port architectural development with languages and tools. It is widely recognized
that suitable architectural description languages (ADLs) should be devised to
formalize software architectures instead of using informal box-and-line diagrams,
and companion tools should be implemented to support the automatic analy-
sis of architectural properties in order to allow the designer to make principled
choices. Among the formal method based ADLs appeared in the literature, we
mention those relying on process algebras (2,8, 3], Z [1], and the CHAM [6].
Complex software systems are typically made out of numerous components
whose behavior is individually well known. The main problem faced by a software
designer is that of understanding whether the components fit together well. If
the architecture of a software system is given a formal description, then adequate

techniques can hopefully be used to prove the well formedness of the system or
to single out the components responsible for architectural mismatches. There
are different kinds of architectural mismatches. A typical mismatch, which we
address in this paper, is deadlock: starting from deadlock free components, the
designer constructs a system that can deadlock. To adequately support the dead-
lock freedom verification at the architectural level of design, techniques must be
developed that are scalable — because of the high number of components — and
provide diagnostic information in case of mismatch — in order to know which
part of the architecture must be modified.

In [2] a deadlock freedom verification technique has been developed, which
exploits notions of equivalence defined for process algebra and considers single
pairs of interactions of components communicating to each other. In [7] a more
general technique has been proposed, which operates at the component level by
taking into account the correlation among all the interactions of a component.
In [3] an even more general technique has been presented, which considers not
only the interactions between pairs of components, but also the interactions
within sets of components forming a ring. The last technique has been proved to
scale to families of software architectures, called architectural types, that admit a
controlled variability of the component internal behavior and of the architectural
topology [4, 5].

The current limitation of the technique of [3] is that it addresses only specific
topologies: acyclic topologies and ring topologies. More precisely, two deadlock
related architectural checks have been defined. The first one, called architec-
tural compatibility check, is concerned with architectural types whose topology
is acyclic. For an acyclic architectural type, if we take a component K and we
consider all the components C1, ..., C,, attached to it, we can observe that they
form a star topology whose center is K, as the absence of cycles prevents any
two components among Cf,...,C, from communicating via a component dif-
ferent from K. It can easily be recognized that an acyclic architectural type is
just a composition of star topologies. By means of a weak bisimulation equiv-
alence [9] based condition to be locally verified on each pair of components in
the star topology, the architectural compatibility check ensures the absence of
deadlock within a star topology whose center K is deadlock free, and this check
scales to the whole acyclic architectural type. The second check, called architec-
tural interoperability check, deals with ring topologies. Also in this case, a weak
bisimulation equivalence based condition is employed, which can be verified in
a rather efficient way and guarantees the absence of deadlock within a ring of
components in case that at least one of them is deadlock free.

In this paper we overcome the limitation of [3] by proposing a general and
scalable deadlock freedom verification technique for architectural types with an
arbitrary topology. From a conceptual viewpoint, the idea underlying the new
technique is that an acyclic topology is a special topology to which every topology
can be reduced. Given an arbitrary topology that is not acyclic, we reduce every
cyclic portion of the topology satisfying the interoperability check into a single
equivalent component, until we obtain an architectural type not satisfying the

check or we end up with an acyclic topology. From a practical viewpoint, the
technique is implemented without actually having to reduce the topology. All we
have to do is to apply a modified interoperability check, which is still based on
the weak bisimulation equivalence, to some specific components of the topology.
This paper is organized as follows. In Sect. 2 we recall PADL, the process
algebra based ADL of [3] that is used to formalize architectural types. In Sect. 3
we present our technique for detecting deadlock related architectural mismatches
in arbitrary topologies. Finally, in Sect. 4 we report some concluding remarks.

2 Software Architecture Description

In this section we provide an overview of PADL, a process algebra based architec-
tural description language for the representation of families of software systems,
whose members share common component behaviors as well as common topolo-
gies. We start by recalling some notions about process algebra, then we present
the syntax and the semantics for PADL. For more details, case studies, and
comparisons with related work, the interested reader is referred to [3-5].

2.1 Process Algebra

The basic elements of any process algebra (see, e.g., [9]) are its actions, which
represent activities carried out by the systems being modeled, and its operators
— including a parallel composition operator — which are used to compose process
algebraic descriptions.

The set of process terms of the process algebra PA that we consider in this
paper is generated by the following syntax:

E:=0|a.E|E/L|E[¢]|E+E|E|sE|A
where a belongs to a set Act of actions including a distinguished action 7 for
unobservable activities, L, S C Act — {7}, ¢ belongs to a set of action relabeling
functions preserving observability (i.e., o~1(7) = {7}), and A belongs to a set
of constants each possessing a (possibly recursive) defining equation A = E.

In the syntax above, 0 is the term that cannot execute any action. Term
a.E can execute action a and then behaves as term F. Term E/L behaves as
term F with each executed action a turned into 7 whenever a € L. Term EJy]
behaves as term E with each executed action a turned into ¢(a). Term E; + Es
behaves as either term F; or term Fs depending on whether an action of F; or
an action of Fs is executed. Term F ||s F2 asynchronously executes actions of
FE; or E5 not belonging to S and synchronously executes equal actions of F; and
FE5 belonging to S. The action prefix operator ”.” and the alternative compo-
sition operator ”+” are called dynamic operators, whereas the hiding operator
” /7, the relabeling operator ”[]”, and the parallel composition operator ”||” are
called static operators. A term is called sequential if it is composed of dynamic
operators only.

The semantics for PA is defined in the standard operational style by means of
a set of axioms and inference rules, which formalize the meaning of each operator.

The result of the application of the operational semantic rules to a term FE is
a state transition graph Z[E], where states are in correspondence with process
terms and transitions are labeled with actions. In order to get finitely branching
state transition graphs, as usual we restrict ourselves to closed and guarded
terms, i.e. we require that every constant has exactly one defining equation and
every constant occurrence is within the scope of an action prefix operator.

Due to their algebraic nature, process description languages like PA naturally
lend themselves to the definition of equivalences. The notion of equivalence that
we consider in this paper is the weak bisimulation equivalence [9], denoted =g,
which captures the ability of two terms to simulate each other behaviors up to
7 actions. This equivalence has several useful properties that we shall exploit in
the rest of the paper. First, ~p is able to abstract from unobservable details, as

witnessed by the following equational laws:
T.F ~B FE

a.7.F ~5 a.F
EF+1FE~gT1.FE
a.(E1 + T.EQ) + a.E2 ~B CL.(El + T.EQ)
Second, &g is a congruence with respect to the static operators: whenever
E1 ~B EQ, then
E1 /L ~B EQ/L
Erg] ~B B[]
Els E~p E2s B
Finally, ~p preserves deadlock freedom, i.e. it never equates a term whose se-
mantic model has a state from which no other state can be reached by executing
an observable action — possibly preceded by 7 actions — to a term whose semantic
model is deadlock free, i.e. a term that has not such a state.

2.2 PADL Syntax

PADL is an architectural description language, equipped with both a textual
notation and a graphical notation, that makes explicit the inherent component
orientation of process algebra. A PADL description represents an architectural
type. As shown in Table 1, each architectural type is defined as a function of its
architectural element types (AETS) and its architectural topology. An AET is
defined as a function of its behavior, specified either as a family of sequential PA
terms or through an invocation of a previously defined architectural type, and
its interactions, specified as a set of PA actions occurring in the behavior that
act as interfaces for the AET. The architectural topology is specified through the
declaration of a set of architectural element instances (AEIs) representing the
system components, a set of architectural (as opposed to local) interactions given
by some interactions of the AEIs that act as interfaces for the whole architectural
type, and a set of directed architectural attachments among the interactions of
the AEIs. Graphically, the AEIs are depicted as boxes, the local interactions
are depicted as black circles, the architectural interactions are depicted as white
squares, and the attachments are depicted as directed edges between pairs of
attachments.

ARCHI_TYPE (name)
ARCHI_ELEM_TYPES (architectural element types: behaviors and
interactions)
ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES (architectural element instances)
ARCHI_INTERACTIONS (architectural interactions)
ARCHI_ATTACHMENTS (architectural attachments)
END

Table 1. Structure of a PADL textual description

Every interaction is declared to be an input interaction or an output in-
teraction and the attachments must respect such a classification: every attach-
ment must involve an output interaction and an input interaction of two dif-
ferent AEIs. In addition, every interaction is declared to be a uni-interaction,
an and-interaction, or an or-interaction. As shown in Fig. 1, the only legal at-
tachments are those between two uni-interactions, an and-interaction and a uni-
interaction, and an or-interaction and a uni-interaction. An and-interaction and
an or-interaction can be attached to several uni-interactions. In the case of execu-
tion of an and-interaction, it synchronizes with all the uni-interactions attached
to it. In the case of execution of an or-interaction, instead, it synchronizes with
only one of the uni-interactions attached to it. An AEI can have different types
of interactions (input/output, uni/and/or, local/architectural). Every local in-
teraction must be involved in at least one attachment, while every architectural
interaction must not be involved in any attachment. No isolated groups of AEIs
are admitted in the architectural topology.

q q
> >
q q
uni-uni uni-and uni-or

Fig. 1. Legal attachments

We now illustrate PADL by means of an example concerning a pipe-filter
system. The system, which is depicted in Fig. 2 in accordance with the graphical
notation, is composed of four identical filters and one pipe. Each filter acts as a
service center of capacity two that is subject to failures and subsequent repairs.
For each item processed by the upstream filter, the pipe forwards it to one of the
three downstream filters according to the availability of free positions in their

buffers. If all the downstream filters have free positions, the choice is resolved
nondeterministically.

accept _item

F O:Filter_Type

process_item

accept _item

P: Pi pe_Type

forward item

accept _item accept|_item accept _item

F 1:Filter_Type F 2:Filter_Type F 3:Filter_Type

process_item process_item process_i tem

Fig. 2. Graphical description of Pipe Filter

The pipe-filter system of Fig. 2 can be modeled with PADL as follows. First,
we define the name of the architectural type:

ARCHI_TYPE Pipe_Filter

Second, we start the AET definition section of the PADL description by
specifying the behavior and the interactions of the filter component type:

ARCHI_ELEM_TYPES

ELEM_TYPE Filter_Type
BEHAVIOR
Filter_0 = accept_item . Filter_1 +
fail . repair . Filter_O
Filter_1 = accept_item . Filter_2 +
process_item . Filter_O +
fail . repair . Filter_1
Filter_2 = process_item . Filter_1 +
fail . repair . Filter_2
INPUT_INTERACTIONS
UNI accept_item
OUTPUT_INTERACTIONS
UNI process_item

Initially (Filter_0), the filter waits for an item to arrive. When an item is already
in the filter buffer (Filter_1), there are two possibilities: either another item
arrives at the filter, or a previously arrived item finishes to be processed and is

sent out. Finally, when two items are already in the filter buffer (Filter_2), no
more items can be accepted until one of the two previously arrived items finishes
to be processed. In each of the three cases above, the filter can alternatively fail
and be subsequently repaired. The action accept_item is declared to be an
input uni-interaction, i.e. it can synchronize only with one output interaction
of another AEI. The action process_item, instead, is declared to be an output
uni-interaction, i.e. it can synchronize only with one input interaction of another
AEL

Third, we define the behavior and the interactions of the pipe component
type:

ELEM_TYPE Pipe_Type
BEHAVIOR
Pipe = accept_item . forward_item . Pipe
INPUT_INTERACTIONS
UNI accept_item
OUTPUT_INTERACTIONS
OR forward_item

The pipe waits for an item, forwards it to one of several different destinations,
then repeats this behavior. The fact that there may be several different destina-
tions, and that the item is forwarded only to one of them, is witnessed by the
declaration of forward_item as an or-interaction.

Fourth, we start the architectural topology section of the PADL description
by declaring the instances of the previously defined AETSs that compose the
pipe-filter system of Fig. 2:

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
F_O0 : Filter_Type

: Pipe_Type

: Filter_Type

: Filter_Type

: Filter_Type

he e e > Ml o)
w N =

Fifth, we declare the architectural interactions, which can be used as global
interfaces in the case in which the current architectural type is invoked in the
definition of the behavior of a component type of a larger architectural type
(hierarchical modeling):

ARCHI_INTERACTIONS
F_O.accept_item
F_1.process_item
F_2.process_item
F_3.process_item

Finally, we conclude the PADL description by specifying the attachments be-
tween the previously declared AEIs in order to reproduce the topology depicted
in Fig. 2:

ARCHI_ATTACHMENTS
FROM F_O.process_item TO P.accept_item
FROM P.forward_item TO F_1.accept_item
FROM P.forward_item TO F_2.accept_item
FROM P.forward_item TO F_3.accept_item

END

2.3 PADL Semantics

The semantics of a PADL specification is given by translation into PA. This
translation is carried out in two steps. In the first step, the semantics of each
AET is defined to be the behavior of the corresponding AET projected onto its
interactions. Such a projected behavior is obtained from the family of sequential
PA terms representing the behavior of the AET by applying a hiding operator
on all the actions that are not interactions. In this way, we abstract from all the
internal details of the behavior of the AEIL. In addition, the projected behavior
must reflect the fact that an or-interaction can result in several distinct syn-
chronizations. Therefore, every or-interaction is rewritten as a choice between as
many indexed instances of uni-interactions as there are attachments involving
the or-interaction.

Definition 1. Let A be an architectural type and C be one of its AEIs with
behavior E and interaction set . The semantics of C is defined by
[C] = or-rewrite(E)/(Act — {1t} —)
where or-rewrite(E) is defined by structural induction as follows:
or-rewrite(0) = 0
a.or-rewrite(Q) anot an or—interaction

or-rewrite(a.G;) = a;.or-rewrite(G) a or—interaction withn attachs

[INgE

=1
or-rewrite(G1 + G3) = or-rewrite(G1) + or-rewrite(G2)
or-rewrite(A) = A [

For the pipe-filter system of Fig. 2 we have
[F0] = Filter.0/{fail,repair}
[F-1] = Filter_.0/{fail,repair}
[F2] = Filter_.0/{fail,repair}
[F_3] = Filter_.0/{fail,repair}
[P] = or-rewrite(Pipe)
where or-rewrite(Pipe) is a constant Pipe’ such that

Pipe’ = accept_item . (forward_item_1 . Pipe’ +
forward_item_2 . Pipe’ +
forward_item_3 . Pipe’)

It is worth observing that, in the semantics of the filters, the internal activities
fail and repair have been abstracted away.

In the second step, the semantics of the architectural type is obtained by
composing in parallel the semantics of its AEIs according to the specified at-
tachments (the involved or-interactions need to be indexed). Recalled that the
parallel composition operator is left associative, for the pipe-filter system of
Fig. 2 we have

[Pipe Filter| = [F_O][process_item — a ||{a
[P]laccept_item — a,
forward_item.-1+— a_1,
forward_item 2 — a_2,
forward item 3 — a_3]||(a 1}
[F-1][accept_item — a_1] [{a 2}
[F2][accept_item — a_2] | {a_3}
[F-3][accept_item — a_3]
The use of the relabeling operator is necessary to make the AEIs interact. As
an example, F_0 and P must interact via process_item and accept_item, which
have different names. Since the parallel composition operator allows only equal
actions to synchronize, in [Pipe Filter] each process_item action executed
by [F-0] and each accept_item action executed by [P] is relabeled to the same
action a. In order to avoid interferences, it is important that a be a fresh action,
i.e. an action occurring neither in [F_0] nor in [P]. Then a synchronization on a
is forced between the relabeled versions of [F_0] and [P] by means of operator
||{a}~

In general, when accomplishing the second step, first of all we have to deter-
mine the number of fresh actions that we need in order to make the AEIs interact
according to the attachments. To achieve that, we have to single out all the maxi-
mal sets of synchronizing interactions, as all the members of a maximal set must
be relabeled to the same fresh action. In the case of an attachment between
two uni-interactions, the maximal set is composed of the two uni-interactions.
In the case of an or-interaction, we have as many maximal sets of synchro-
nizing interactions as there are attachments involving the or-interaction; each
of such sets comprises the uni-interaction involved in the attachment and the
uni-interaction obtained by indexing the or-interaction. In the case of an and-
interaction, we have a single maximal set composed of the and-interaction and
all the uni-interactions attached to it.

Given an architectural type A, let Cy,...,C, be some of its AEIs and let
i,j, k range over {1,...,n}. For each AEI Cj, let Z¢, = LZ¢, U AZ¢, be the
set of its local and architectural interactions, and LZ¢;.c,,....c,, € LZ¢, be the
set of its local interactions attached to local interactions of Cy,...,C,. Once
we have identified the maximal sets of synchronizing interactions, we construct
a set S(C1q,...,C,) composed of as many fresh actions as there are maximal
sets of synchronizing interactions. Then we relabel all the local interactions in
the same set to the same fresh action. This is achieved by defining a set of
injective action relabeling functions of the form ¢¢;.c,.....c,, : LZ¢c;:cy,....c,, —
S(Cy,...,Cy) in such a way that ¢c,.c,...0,(a1) = vc;ci,...c,(az) iff Ci.ay

and Cj.az belong to the same set. Based on these relabeling functions that
prepare the AEIs to interact, we now define two semantics for C; restricted to
its local interactions attached to local interactions of Ci,...,C,. The closed
semantics will be used for deadlock freedom verification purposes. It abstracts
from the architectural interactions of C; as these must not come into play when
checking for deadlock freedom. Since the open semantics will be used instead
in the definition of the semantics of an architectural type, it does not abstract
from the architectural interactions of C; as these must be observable. If C; has
no architectural interactions, then the two semantics coincide.

Definition 2. The closed and the open interacting semantics of C; restricted to
Ci,...,Cy are defined by
[Cile, ...c, = 1Cil / (Act ={7} = LTc;04,...00) [pcicn.....c]
[Cil2, ¢, =1Ci] [(Act — {7} = (LIcyicn,...00 UALG)) [@ciicon,nc] @

Finally, we define the closed and the open interacting semantics of C1, ..., C),
by putting in parallel the closed and the open interacting semantics of each of the
considered AEIs, respectively. To do that, we need to define the synchronization
sets. Let us preliminarily define for each AEI and pair of AEIs in C1,...,C), the
subset of fresh actions to which their local interactions are relabeled:

S(Ci;C1, ..., Cn) = woyi04,..0. (LI, 000)
S(CZ, Cj; 01, ey Cn) = S(Oi; Cl, ceey Cn) n S(Cj; 01, ceey C”)
Recalled that the parallel composition operator is left associative, the syn-
chronization set between the interacting semantics of C; and Cs is given by
S(C1,C;C, ..., Cy), the synchronization set between the interacting seman-
tics of Cy and Cj is given by S(C1,Cs; Ch,...,Cr)US(Cy, Cs;Cy, ..., Cy), and

SO O1.

Definition 3. The closed and the open interacting semantics of Cy,...,Cy, are
defined by
Cr,.. ., Gl =[CilE, o, lscr.onicn....00)

[Ca]E, e, lsccr.csicn.....0muS(Ca.Cs:Ch . C) -
||u?tlls(ci,cn;cl,...,C,L) [[Cnﬂcol,...,cn

Hclv RN C”L]]O = HOlﬂ%l,...,Cn ||S(C1,Cz;c1,---,cn)
[Ca]2, . .c, lscr.csicn.....00US(Ca.Ca:Ch .. C) - -
||U?;118(Ci7Cn;C11~»-7Cn) chﬂ%l7---;cn]

Definition 4. The semantics of an architectural type A whose AEIs are Cq, .. .,
C,, is defined by [A] = [C4,...,Cp]°.]

3 Deadlock Freedom Verification

The use of PADL for modeling large software systems represents a step towards
bridging the gap between the rigorous view of difficult-to-use formal methods
and the practical view of the software architect. However, if we want such an
approach to be perceived as sufficiently appealing and profitable in practice,

it must be accompanied by scalable and simple-to-use techniques both for the
automatic detection of architectural mismatches and for the identification of
their origins.

Among the several different architectural mismatches that can be encoun-
tered in the design process, in this paper we concentrate on deadlock. As men-
tioned in Sect. 1, two different architectural checks, called compatibility check
and interoperability check, have been developed in [3] that deal with deadlock re-
lated architectural mismatches for two different topologies: acyclic architectural
types and ring architectural types.

In this section, we present a general architectural check, which can be applied
to any architectural type independently of its topology and provides a sufficient
condition for deadlock freedom. To this purpose, we preliminarily recall from [3]
the notion of reduced flow graph as well as the notion of compatibility check
and we introduce a slight variant of the interoperability check. Based on these
definitions, we then propose a novel technique for verifying deadlock freedom at
the architectural level of design for systems with an arbitrary topology.

3.1 Reduced Flow Graph

When applying the deadlock related architectural checks to PADL descriptions
of architectural types, as seen in [3] we can safely abstract from the direction
of the information flow and from the multiplicity of the attachments between
pairs of AEIs. As a consequence, an architectural type is classified as having an
acyclic topology or a cyclic topology based on a modification of its graphical
representation. The result of such a modification, called reduced flow graph,
collapses all the directed edges between two boxes into a single, indirect edge.

3.2 Compatibility Check for Acyclic Topologies

The main principle underlying the compatibility check of [3] is based on the
observation that an acyclic architectural type can be viewed as the composition
of several star topologies, each one being formed by an AEI K, called the center of
the star topology, and a set of AEIs (', ..., C, attached to K, called the border
of the star topology and denoted by Bx. The absence of cycles guarantees that
Ci,...,C, cannot directly communicate with each other. Therefore, the absence
of deadlock can be investigated by analyzing the interactions between the center
K of the star topology and the AEIs constituting the border of the star topology.
The important result that can be derived is that verifying deadlock freedom for
the whole architectural type reduces to checking the local interactions within
each of the constituent star topologies.

The architectural compatibility check for a star topology with center AEI
K attached to AEIs C4,...,C, works as follows. The intuition is that K is
compatible with C; if the potential interactions of K with the star topology
components are not altered when attaching C; to K. Formally, we verify whether
the closed interacting semantics of K with respect to the star topology, namely
[K]% 5, is weakly bisimulation equivalent to the parallel composition of the

closed interacting semantics of K and Cj;. If this holds for any C; of the star
topology, then the interactions of K cannot be limited by the behavior of its
neighbors.

Definition 5. Given an architectural type A, let Ci,...,C, be the AEIs at-
tached to an AEI K in A. C; is said to be compatible with K iff

[K1% 5, N Bi) [Cil% 5, =B [K1% 5, -

In a star topology, the compatibility between the center K and each Cj
attached to K provides a sufficient condition for deadlock freedom in case K is
deadlock free. Therefore, the deadlock freedom result for the whole star topology
is obtained by simply applying peer-to-peer checks between its constituents.
The main result saying that the absence of deadlock scales to the whole acyclic
architectural type in case all the star topologies are deadlock free, is summarized
by the following theorem [3].

Theorem 1. (Compatibility) Let A be an acyclic architectural type. If the
semantics of each AEI of A — with the architectural interactions being hidden —
is deadlock free and every AEI of A is compatible with each AEI attached to it,
then [A] is deadlock free.]

3.3 Interoperability Check for Ring Topologies

Ensuring deadlock freedom for cyclic architectural types cannot be achieved by
employing the peer-to-peer compatibility check described above, as there may
be further causes of architectural mismatches due to the cyclic nature of the
topology. To this aim, the interoperability condition presented in [3] is used
to verify deadlock freedom in the presence of cycles. The intuition behind the
interoperability check is almost the same as that of the compatibility check.
Informally, given a cycle formed by the AEIs C1,...,C,, if the potential local
interactions of a given C; are not altered when attaching C; to the cycle, then
the behavior of the cycle is the same as that expected by C; and we say that
C; interoperates with the cycle. If there exists such a C; within the cycle and
C; is deadlock free, then the cycle is deadlock free. Hence, with respect to the
compatibility notion, here the minimal group of AEIs to be included in each
check is given by all the AEIs C1, ..., C, forming the cycle. This is because any
AFEI within the cycle could be responsible for limiting the local interactions of
C; with its neighbors.

In the following, given an architectural type A whose AEIs are K, ..., K,
by abuse of notation we will use the abbreviation A to stand for K, ..., K,,. For
instance, [K]% stands for [K]%, g and S(K;A)stands for S(K; Ky, ..., Ky,).

yeery

Definition 6. Let A be an architectural type and Ci,...,C, be some of its
AEIls. The closed interacting semantics of Cq,...,C, with respect to A is de-

fined by
[[017 IR Cn]]i\ = [[Cl]]il ||S(Cl,C2;A)
[Co]% Mscr,csiausica,cain) - -
s ||u;glls(ci,cn;,4) [[On]]i\ [|

The following definition formalizes the notion of interoperability as described
above. Note that the behavior of a single AEI in the cycle is compared with the
behavior of the whole cycle projected on the local interactions of that specific
AEL

Definition 7. Given an architectural type A, let Ci,...,C, be AEIs form-
g a cycle in the reduced flow graph of A. C; is said to interoperate with
Ci,...,Ci—1,Ciq1,...,Cy iff
[Ci,...,Chl%/(Act — {1} — S(Cs; A)) =B [Ci]% -

We point out that the interoperability notion of [3] is slightly different from
that of Def. 7. The former compares the parallel composition of the closed inter-
acting semantics of C, ..., C, projected on the interactions with C; only and the
closed interacting semantics of C; projected on the interactions with C1, ..., C,.
Instead, in Def. 7 all the local interactions of C; are left visible. As we shall see
in Sect. 3.4, this is needed if we want the results of the interoperability check to
scale in the case of cyclic architectural types that are not rings. Obviously, the
two notions of interoperability coincide in case the architectural type is a ring.

Before introducing the interoperability theorem, with respect to [3] we add
the notion of frontier, which is useful to define a ring topology and also to prove
the main result of this paper in Sect. 3.4.

Definition 8. Given an architectural type A, let Cy, ..., C, be some of its AEIs.
The frontier of Ci,...,C, is the unique subset Fc,. . c, of {Ci,...,Cy} such
that C; € Fey....c, iff C; is attached to AET K ¢ {C1,...,Cp}. [

.....

Definition 9. Let A be an architectural type. A is said to be a ring formed by
the AEIs Cy,...,Cy, iff Fo,...c, =0 and for each proper subset {C1,...,C!,}
of {C1,...,Cn}, C1,...,Cl, do not form a cycle in the reduced flow graph of A.

|

Theorem 2. (Interoperability) Let the architectural type A be a ring formed
by the AEIs Cy,...,Cy. If there exists C; such that [C;]% is deadlock free and
C; interoperates with C1,...,Ci—1,Cit1,...,Cy, then [A] is deadlock free. W

3.4 General Check for Arbitrary Topologies

While the architectural compatibility check scales from star topologies to arbi-
trary acyclic topologies, the architectural interoperability check does not scale
from ring topologies to arbitrary cyclic topologies. This is because of subtle ar-
chitectural mismatches that can arise from the interactions between intersecting
cycles as well as between a cycle and an acyclic portion of the whole architec-
tural topology. In particular, the architectural interoperability check applied to
a cycle of AEIs C,...,C, does not provide a sufficient condition for deadlock
freedom if the cycle is such that some C; interacts with some AEI K that is not
in C1,...,C,. In other words, if the frontier of the cycle is not empty, then the

accept _item1

accept _item1

F_O

Ml ti _Filter_Type

F 1:Mlti_Filter_Type

accept _item|2

send_item2

processNtem1 pr

process\item 2

accept_item2

ess_item?2

accept_item1

:. :.
P: Sync_Pi pe_Type
send_ack

recei ve_ack

send_item 1

H 0: Host _Type

recei ve_ack

cept_item?2

send_item 2

H 1: Host_Type

send_item1

Fig. 3. Graphical description of Feedback _PF

interoperability condition is not enough to decide the deadlock freedom. Assume,
e.g., that it is possible to find a C; in the cycle such that its interactions are not
affected by the behavior of the other AEIs of the cycle. Even if C; interoperates
with the cycle, nothing can be deduced about the influence of other components
of the architectural topology upon the cycle in case some AFEIs of the cycle in-
teract with some AEIs outside the cycle. This is because, when checking the
interoperability condition for C;, we abstract away from the interactions that
attach the other components of the cycle to AEIs external to the cycle.

Let us consider, e.g., the system depicted in Fig. 3 and specified with PADL in
Table 2. The system, called Feedback_PF, is composed of two hosts, two filters
of capacity one, and a pipe with feedback. Each host forms a cycle with its
dedicated filter and the pipe. In particular, host Hy generates two types of items
(called type 1 and type 2), which are sent to filter Fo, which in turn processes
and passes the received items to the pipe (similarly for host Hy). Pipe P is willing
to receive an item of type 1 from filter Fy if and only if filter F; is ready to send
an item of the same type too. The reception of these two items from both filters
is synchronized (see the uni-and attachments between the two filters and the
pipe in Fig. 3). Upon the synchronized reception of the two items of type 1, pipe
P sends an acknowledgement to each host (see the uni-and attachments between
the pipe and the two hosts in Fig. 3). We can argue similarly for items of type 2.
Hence, pipe P can receive items if both filters (¢) are ready to send an item and
(1) agree on the type of item to be processed. As we shall see, such a behavior
of the pipe potentially causes a deadlock that cannot be detected through the
interoperability check. Consider, e.g., the scenario where filter Fo processes an
item of type 1, while filter F; processes an item of type 2. The cycle composed of

Table 2. PADL description of Feedback_PF

ARCHI_TYPE Feedback_PF

ARCHI_ELEM_TYPES
ELEM_TYPE Host_Type
BEHAVIOR Host = send_item_1 . receive_ack . Host +
send_item_2 . receive_ack . Host
INPUT_INTERACTIONS UNI receive_ack
OUTPUT_INTERACTIONS UNI send_item_1, send_item_2
ELEM_TYPE Multi Filter_Type
BEHAVIOR Filter = accept_item 1 .Filter’ +
accept_item 2 . Filter” +
fail . repair . Filter
Filter’ = process_item_1 . Filter +
fail . repair . Filter’
Filter” = process_item 2 . Filter +
fail . repair . Filter”
INPUT_INTERACTIONS UNI accept_item_1, accept_item_2
OUTPUT_INTERACTIONS UNI process_item_1, process_item_2
ELEM_TYPE Sync_Pipe_Type
BEHAVIOR Pipe = accept_item_1 . send_ack . Pipe +
accept_item_2 . send_ack . Pipe
INPUT_INTERACTIONS AND accept_item_1, accept_item_2
OUTPUT_INTERACTIONS AND send_ack

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES Ho, H; : Host_Type
Fo, F1 : Multi Filter_ Type
P : Sync_Pipe_Type
ARCHI_INTERACTIONS
ARCHI_ATTACHMENTS FROM Hy.send_item_1 TO Fo.accept_item_1
FROM Hp.send_item_2 TO Fo.accept_item_2
FROM H;.send_item_1 TO Fi.accept_item_1
FROM H;.send_item_2 TO Fy.accept_item_2
FROM Fo.process_item_1 TO P.accept_item_1
FROM Fo.process_item_2 TO P.accept_item_2
FROM Fi.process_item_1 TO P.accept_item_1
FROM Fy.process_item_2 TO P.accept_item_2
FROM P.send_ack TO Hyp.receive_ack
FROM P.send_ack TO Hy.receive_ack

END

Hyp, Fo, and P deadlocks since Hy waits for an acknowledgement from P, F, waits
for delivering the item of type 1 to the pipe, which instead waits for an item of the
same type from F;. On the other hand, filter F; is blocked since it is trying to send
an item of type 2 to P and, as a consequence, host H; is blocked until the reception
of an acknowledgement that pipe P cannot send. However, it can be verified that
Hy interoperates with Fy and P, and H; interoperates with F; and P. More formally,
we have that, e.g., [Ho]Seoqpack pr 1S Weakly bisimulation equivalent to the closed
interacting semantics of AEIs Hy, Fo, and P with respect to Feedback PF. As can
easily be seen, in both cases we abstract away from the local interactions of P
with Fy, which is not in the cycle. Therefore, we cannot verify the influence of
the cycle behavior upon the interaction between P and F; and, as a consequence,
we cannot reveal the mismatch. Key to a successful detection of the deadlock is
an interoperability check applied to P, whose interactions with both cycles cause
the troublesome behavior described above.

We now show that, even in an arbitrary architectural topology like the one in
Fig. 3, it is possible to verify the absence of deadlock by analyzing some specific
local interactions of its AEIs. In the following theorem, deadlock freedom is
guaranteed for an arbitrary architectural type under three assumptions. First,
every AEI must be deadlock free. Second, every AEI must be compatible with
each AEI attached to it. This ensures deadlock freedom for acyclic topologies.
Third, if the architectural type has a cyclic topology, then there exists a cycle
covering strategy (Def. 11) such that two constraints are satisfied, which are
concerned with a set of intersecting cycles called a cyclic border (Def. 10). The
first constraint requires that, if the architectural type is formed by a single cyclic
border with empty frontier, then it must contain an AEI that interoperates with
the other AEIs in the cyclic border (in analogy with the interoperability check
for ring topologies). The second constraint requires that every AEI K in the
frontier of any cyclic border must interoperate with all the other AEIs belonging
to the cyclic border. This ensures a deadlock free combination of cyclic borders
and acyclic portions of the topology.

Definition 10. Given an architectural type A, let K be one of its AEIs such
that K is in (at least) one cycle in the reduced flow graph of A. The set of all
the AEIs involved with K in (at least) one cycle of the reduced flow graph of
A, called the cyclic border of K, is defined by CBjt = {K}YU {H |3C,,...,Cy :
K,H,Cy,...,C, form a cycle in the reduced flow graph of A}. [|

Definition 11. Given a cyclic architectural type A, a cycle covering strategy is
defined by the following algorithm:

1. All the AEIs in the reduced flow graph of A are initially unmarked.

2. While there are unmarked AEIs in the cycles of the reduced flow graph of A:
(a) Pick out one such AEI say K.
(b) Mark all the AEIs in CB. [

The application of a cycle covering strategy to a cyclic architectural type A
generates a set involving all the AEIs in the cycles of the reduced flow graph of
A, which contains the cyclic borders considered by the algorithm.

Lemma 1. Given a cyclic architectural type A and a cycle covering strategy that
originates the set {CB;‘}l,...,CBf}n}, then the two following conditions hold:

1. For any pair of different cyclic borders CB?HCB?J, € {CBél, . ,CB?H},
CBﬁi can be directly attached to CB?J_ in two different ways only:
I. They interact through a single, shared AEI K.

II. They do not share any AEI but they interact through attachments be-
tween a single AEI H of CB;‘}i and a single AEI H' of CB;‘}],.

2. If we replace each CBéi ={Hy,...,H;} with an AEI that is isomorphic to
H;cFyg H

then the obtained architectural topology is acyclic.

Proof. As far as condition 1.1 is concerned, assume that CBI“‘}Z_ and CB3¢ share
another AEI H. Then the reduced flow graph of A would contain a cycle including
K;, K, K;, H, thus contradicting the hypothesis that CB;‘}i is the cyclic border of
K;. Similarly, if there exists an attachment between an AEI H of CB;‘}i and
an AEI H' of CBI“‘}J,, then the reduced flow graph of A would contain a cycle
including K;, K, K;,H',H, thus contradicting the hypothesis that CB“I‘}i s the
cyclic border of K;.

As far as condition 1.1I is concerned, assume that there exists another attach-
ment between an AEI H" of CB7t. and an AEI H" of CBﬁj. Then the reduced
flow graph of A would contain a cycle including K,;, H,H', K;, H" | H", thus
contradicting the hypothesis that CBéi is the cyclic border of K;. On the other
hand, if there exists another attachment between an AEI H" of CB[éi and H',
then the reduced flow graph of A would contain a cycle including K;, H,H', H"
thus contradicting the hypothesis that CB}‘}i and CBéj do not share any AFEL
We can arque similarly in case of an attachment between an AEI H" of CBI"}],
and H.

As far as condition 2 is concerned, the proof is a straightforward consequence
of condition 1 and of the maximality of each cyclic border. [|

Theorem 3. Let A be an architectural type with an arbitrary topology. Suppose
that the following conditions hold:

1. For every AEI K in A, [K] is deadlock free.
2. Every AEI of A is compatible with each AEI attached to it.
8. If A is cyclic, then there exists a set of cyclic borders generated by a cycle
covering strategy such that:
I. If the set has a single cyclic border {C1,...,Cy} such that Fe,....c, =0,
then there exists C; that interoperates with Cy,...,C;—1,Ciy1,...,Ch.
II. Otherwise, for every cyclic border {C1,...,Cy} in the set, we have that
foreach C; € Fc, ...c,, Ci interoperates with C1,...,Ci—1,Ciy1,...,Ch.

Then [A] is deadlock free.

Proof. We proceed by induction on the number m of cycles in the reduced flow
graph of A. As far as the induction base is concerned, if m = 0, then A is acyclic
and the proof, by 1 and 2, is a straightforward consequence of the compatibility
theorem.

Let the result hold for a certain m > 0 and consider an architectural type A
satisfying 1, 2, and 3, whose reduced flow graph has m+1 cycles. Let {CB?, CB?I,
...,CBﬁn} be the set of cyclic borders originated by the cycle covering strategy
of 8 and, by virtue of condition 2 of Lemma 1, let CBs# = {C1,...,Cy} be a
cyclic border that directly interacts with at most one cyclic border in the set.
Now we replace the AEIs C4,...,C, with a new AEI C such that its behavior is
isomorphic to [Cy,...,Cp]%/(Act — {7} — CE}_U S§(Cj; A)), thus obtaining

J Clyeeny Cn

an architectural type A’ such that:

— C preserves 1. In fact, by 3, there exists C; such that
[Cy,...,Chl%/(Act — {7} — S(Cs; A)) =B [Ci]%
from which we derive that [C1,...,Cp]%/(Act — {7} —S(Ci; A)) is deadlock
free because so is [C;]% due to 1. Therefore, we also have that [C1,...,Cp]%/
(Act — {7} — C_E}_U S(Cj; A)) is deadlock free.

J C1,eny Cn

— C preserves 2. In fact, let H be an AEI attached to C because it was previ-
ously attached to an AEI C; of Fe,,..c,. By 2 we have that
[CE, s, Iscaci o)]G, 5., *8 [CilE, 5,
from which it follows that
[Cil s [H]E, 5o, *B [Cil%
Since ~p is a congruence with respect to the parallel composition operator,
[C1% sccian[HIE 5. =B [Cl%
because we hide interactions that are not attached to H (only C; can be at-
tached to H otherwise CB;‘} would not be a cyclic border), from which it
follows that
[[C]]?J,Bc HS(C;C,BC)[[H]]E*,BO ~B [[C]]CC,BC
Similarly, it can be shown that
H]% 5, sm.8:0)[Clu 5, ~8 [H]% 5,

— If A is cyclic, then 3 is preserved. In fact, let {@21, e ,@ﬁn} be a new
set of cyclic borders for A" obtained from the cyclic borders CIS’I“‘}17 e ,CIS’}‘}n
of the old set for A by replacing every occurrence of Cy,...,C, with C.
Every cyclic border in the new set that does not include C has a correspond-
ing isomorphic cyclic border in the old set. On the other hand, if we take
in the new set a cyclic border formed by the AEIs Hy,...,H;,C, then the
old set contains a cyclic border formed by the AEIs Hy,...,H;, C;, where
Ci € Fey,....c, , because of condition 1 of Lemma 1. By virtue of 3.1,

sm)

[Cil% =B [Ha, ..., Hy, Ci]%/(Act — {1} — S(Ci; A))

Since =g is a congruence with respect to the parallel composition operator,

[Clw =5 [Hy, ... Hi, Ol /(Act — {7} = S(C; A'))

because we hide interactions that do not occur in C. Thus, if Fu, .. H,c = 0
then 3.1 is preserved. On the other hand, if C € Fp, .. m,c, then C pre-
serves 3.11. Similarly, for each H; € Fu, . m.c —{C}, by 3.II applied to
Hy,...,H;,C;, we have

[H;]% ~B [Hy,..., Hi, Ci]%/(Act — {7} — S(Hj; A))

From 3.1I applied to C1,...,C,, it follows
[[Cl]]CA ~B [[017 L) Cn]]fal/(ACt - {T} - 'S(Clv A))

Since ~p is a congruence with respect to the parallel composition operator,
[H;]% ~8 [Hy, ..., Hi,C]y [(Act — {7} — S(H;; A'))

because we hide interactions that do not occur in Hj.
— The reduced flow graph of A’ has at most m cycles.

Then, by the induction hypothesis it follows that [A'] is deadlock free, from which
we derive that [A] is deadlock free because

WI=TAl/(, U S(C:A)-_ U S(C;A)

iZ€FCy,....Cn Ci€Fcy,....cn]

We point out that a violation of one of the conditions of Thm. 3 does not
imply that the architectural type can deadlock, but reveals the presence of some
kind of mismatch in a specific portion of the topology. Diagnostic information
can be inferred as explained in [3].

As far as the example of Table 2 is concerned, let us consider the set of
cyclic borders {CBee®axFF CBgeedPackPEL obtained by applying a cycle cover-
ing strategy that does not pick up P. It can be verified that P, which represents
the frontier for both cyclic borders {Ho, Fo,P} and {H;,F;,P}, interoperates with
neither Hy and Fy, nor H; and F;. For instance, the closed interacting semantics
of Hy,Fy,P, computed with respect to Feedback PF and projected on the local
interactions of P, expresses the fact that the type of the item that the pipe can
accept depends on the type chosen by F;. Instead, the closed interacting seman-
tics of P expresses the fact that the pipe is always ready to accept items of both
types. Therefore, the two semantics cannot be weakly bisimulation equivalent
and, as a consequence, the system has a potential mismatch that, as we have
seen, in practice causes a deadlock.

4 Conclusion

In this paper we have presented a novel technique for deadlock freedom verifica-
tion at the architectural level of design, which is independent of the architectural
topology, thus overcoming the limitations of the techniques previously appeared
in the literature. Applying such a technique is more convenient — for efficiency
reasons and diagnostic purposes — than checking the whole system for deadlock
freedom. On the efficiency side, the software architect is saved from generating

the state space associated with the whole system, which could be composed of
millions of states for large software architectures. Instead, two checks are ap-
plied. The former check is a compatibility check, which reduces to compare the
semantics of any AEI C with the semantics of the parallel composition of C
and any K attached to C. The latter check is a variant of the interoperability
check applied to each AEI K belonging to the frontier of a specific cyclic border.
Such a check reduces to compare the semantics of K with the semantics of the
cyclic border that includes K. It is worth noting that, for each check, the pro-
jection on the local interactions of a single AEI, which are the only observable
interactions, offers the possibility of a compositional construction of the consid-
ered state spaces in a minimized form with respect to ~p. This ensures a good
degree of scalability in the average case. Concerning future research, we would
like to investigate whether it is possible to further enhance the generality of the
developed technique, passing from a specific property — deadlock freedom — to
arbitrary properties expressed in some logic.

References

1. G.D. Abowd, R. Allen, and D. Garlan, “Formalizing Style to Understand De-
scriptions of Software Architecture”, in ACM Trans. on Software Engineering
and Methodology 4:319-364, 1995.

2. R. Allen and D. Garlan, “A Formal Basis for Architectural Connection”, in ACM
Trans. on Software Engineering and Methodology 6:213-249, 1997.

3. M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Families of Software
Systems with Process Algebras”, in ACM Trans. on Software Engineering and
Methodology 11:386-426, 2002.

4. M. Bernardo and F. Franze, “Architectural Types Revisited: Extensible And/Or
Connections”, in Proc. of the 5th Int. Conf. on Fundamental Approaches to Soft-
ware Engineering (FASE 2002), LNCS 2306:113-128, Grenoble (France), 2002.

5. M. Bernardo and F. Franze, “Ezogenous and Endogenous Ezxtensions of Architec-
tural Types”, in Proc. of the 5th Int. Conf. on Coordination Models and Languages
(COORDINATION 2002), LNCS 2315:40-55, York (UK), 2002.

6. P. Inverardi and A.L. Wolf, “Formal Specification and Analysis of Software Ar-
chitectures Using the Chemical Abstract Machine Model”, in IEEE Trans. on
Software Engineering 21:373-386, 1995.

7. P. Inverardi, A.L. Wolf, and D. Yankelevich, “Static Checking of System Be-
haviors Using Derived Component Assumptions”, in ACM Trans. on Software
Engineering and Methodology 9:239-272, 2000.

8. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying Distributed Soft-
ware Architectures”, in Proc. of the 5th Furopean Software Engineering Conf.
(ESEC 1995), LNCS 989:137-153, Barcelona (Spain), 1995.

9. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.

10. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,
in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992.

11. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging
Discipline”, Prentice Hall, 1996.

