
Structuring Retrenchments in B by

Decomposition

Michael Poppleton1 and Richard Banach2

1 Department of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK,
mrp@ecs.soton.ac.uk

2 Department of Computer Science, Manchester University,
Manchester M13 9PL, UK,

banach@cs.man.ac.uk

Abstract. Simple retrenchment is briefly reviewed in the B language of
J.-R. Abrial [1] as a liberalization of classical refinement, for the formal
description of application developments too demanding for refinement.
This work initiates the study of the structuring of retrenchment-based
developments in B by decomposition. A given coarse-grained retrench-
ment relation between specifications is decomposed into a family of more
fine-grained retrenchments. The resulting family may distinguish more
incisively between refining, approximately refining, and non-refining be-
haviours. Two decomposition results are given, each sharpening a coarse-
grained retrenchment within a particular syntactic structure for opera-
tions at concrete and abstract levels. A third result decomposes a re-
trenchment exploiting structure latent in both levels. The theory is il-
lustrated by a simple example based on an abstract model of distributed
computing, and methodological aspects are considered.
Keywords decomposition, formal methods, refinement, retrenchment,
structuring.

1 Introduction

From early concerns about proving correctness of programs such as Hoare’s [15]
and Dijkstra’s [14], a mature refinement calculus of specifications to programs
has developed. Thorough contemporary discussion can be found in [13, 2]. For
model-based specifications the term “refinement” has a very precise meaning;
according to Back and Butler [3] it is a “...correctness-preserving transforma-
tion...between (possibly abstract, non-executable) programs which is transitive,
thus supporting stepwise refinement, and is monotonic with respect to program
constructors, thus supporting piecewise refinement”. A succinct characterisation
of refinement is a relation between models where the precondition is weakened
and the postcondition strengthened.

This work develops the retrenchment method, a liberalization of refinement.
Early work [7, 8] motivated such a liberalization in terms of the problems ap-
plying refinement to “difficult” applications such as radiation dosimetry and

magnetohydrodynamics. Such problem domains include infinite sets or proper-
ties, or models in continuous mathematics or classical physics, which do not
relate in a simple way to the finite, discrete computer. A simple example is
the impossibility of refining element addition/subtraction on an infinite set to
a finite one. Classical refinement also prohibits I/O type change between what
are conventionally known as the abstract and concrete models. By weakening
the abstraction relation over the operation step, retrenchment allows concrete
non-simulating behaviour to be described in, and related back to correspond-
ing abstract behaviour. Concrete I/O may have different type to the abstract
counterpart, and moreover the retrenchment relation may accomodate fluidity
between state and I/O components across the development step from abstract
to concrete model. [17, 20] developed a calculus of retrenchment in B, proved
transitivity, and showed all primitive operators of the B generalized Substitution
Language (GSL) to be monotonic with respect to retrenchment. [8, 9] explored
the landscape between refinement, simulation and retrenchment. [5] addressed
the integration of refinement and retrenchment from a methodological perspec-
tive. [18, 6] present two generalizations, evolving and output retrenchment re-
spectively. The latter of these is used in this paper.

To provide application motivation for this liberalizing enterprise, a number
of more substantial case studies of retrenchment have been presented. [19] gives
a retrenchment model of the conventional approximating design step from an
analogue linear control system to its discrete-time zero-order hold counterpart.
Telephony feature interaction is a major application area characterised by re-
quirements features which are in general mutually inconsistent and not simply
composable; the utility of retrenchment was shown in a simple feature interac-
tion case study [10]. This case study was developed to show how application
domain knowledge could strengthen a retrenchment description [12].

Various methodological issues need to be addressed to support the effec-
tive use of retrenchment in practice: the choice of abstractions and designs for
understandable and mechanisable retrenchment proof obligations, how best to
integrate with refinement methods, how to compose atomic retrenchment steps
up to the scale of realistic specifications, how to decompose coarse-grained “first-
cut” retrenchments to improve descriptiveness. [11] makes some commentary on
the first issue, and the second is becoming better understood [5]. [20] gave the
monotonicity results on which to base a study of composability. This paper is
concerned with the fourth issue, the decomposition of a given retrenchment.

A typical style of operational specification partitions the state/input domain
in order to process each part of the partition appropriately; in B this case analy-
sis approach is structured using a bounded choice over guarded GSL commands.
This paper will concentrate on this style. A retrenchment relation covering the
whole domain of such an operation and its concrete counterpart will in general
document the processing choices in terms of a disjunctive choice of outcomes in
the postcondition. Since there will usually be case structure at both levels, this
disjunctive weakening effect is exacerbated. Describing such a given retrench-
ment as “coarse-grained”, in this work we seek a decomposition into a family of

retrenchments, each of which is restricted to one branch of the case structure (at
abstract or concrete levels separately, or both levels simultaneously). Each such
decomposed retrenchment should be “finer-grained” (i.e. have stronger postcon-
dition on a restricted domain) in the sense of including only one or some of
the disjunctive possibilities in the postcondition of the coarse-grained retrench-
ment. In this work we employ the output form of retrenchment [Op. cit.], which
provides equipment for certain algebraic issues that arise.

The paper proceeds as follows. Section 2 briefly recalls the B GSL. Sec-
tion 3 recaps syntactic and semantic definitions for retrenchment in GSL, ex-
tending them for output retrenchment. We extend the transitivity theorem of
[20, 17] to provide the composition of two output retrenchments [Op. cit.]. Sec-
tion 4 presents a running example to motivate the discussion, and demonstrates
how the disjunctive shape of the retrenchment obligation is coarser and less de-
scriptive than may desirable for certain purposes. Section 5 gives a number of
retrenchment decomposition results. Three syntactic patterns are given for de-
composing a single retrenchment into a finer-grained family of retrenchments.
Each pattern is shown to be a valid decomposition in general. Section 6 applies
the decomposition to the example to show its utility, and section 7 concludes.

2 The B Language of generalized Substitutions

The B language was defined by [1] and is disseminated by textbooks such as
[21]. B has as its central construct the generalized substitution: [S]R (more con-
ventionally written wp(S ,R)) describes the weakest precondition under which
program S is guaranteed to terminate satisfying postcondition R. generalized
substitution distributes over conjunction and is monotonic w.r.t. implication.
Programs (in general nondeterministic) are written using constructors inspired
by Dijkstra’s Guarded Command Language, called the generalized Substitution
Language (GSL). The basic operation is the simple substitution (assignment, in
procedural programming terms). For replacement of free variable x in formula
R by expression E we write [x := E]R. The remaining simple constructors of B
are axiomatised (for unbounded choice z is nonfree in R; this is written z \R):

[skip]R ≡ R skip

[P | S]R ≡ P ∧ [S]R precondition

[S []T]R ≡ [S]R ∧ [T]R bounded choice

[P =⇒ S]R ≡ P ⇒ [S]R guard

[@z • S]R ≡ ∀ z • [S]Rz \R unbounded choice (1)

The precondition constructor explicitly strengthens the termination set, guard
strengthens the feasibility set, bounded choice gives demonic nondeterministic
choice between two operations, and unbounded choice a universally quantified
demonic choice over all operations indexed on some (external) variable.

The action of an operation S , with state variable (list) x , on predicate R(x)
can be expressed in the following normalised form, where P is a predicate in
variable x , Q is a predicate in variables x and x ′ (x ′ distinct from x):

[S]R ≡ P ∧ ∀ x ′ • (Q ⇒ [x := x ′]R) (2)

This decomposition into predicates P and Q is unique (modulo logical equiv-
alence of predicates), and these are called trm(S) (termination: before-states
from which S is guaranteed to terminate) and prdx (S) (before-after transition)
respectively. Theorem (2) interprets S as a predicate transformer: from initial
state x , S establishes R precisely when S terminates at x and every x ′ reachable
from x under S satisfies R. These predicates can be explicitly defined:

trm(S) ≡ [S]true prdx (S) =̂ ¬ [S](x ′ 6= x)

The abstract syntax of the GSL is complemented by the concrete syntax of
the Abstract Machine Notation (AMN), which includes constructs for modular
structuring. The unit of modularity is the machine, which contains inter alia a
state variable (list), an invariant predicate expressing type and other required
state constraints, an initialisation, and a set of operations, which are expressed
in terms of state, input and output variables. Fig. 1 shows an abstract machine
and a refinement. The latter is a derivative construct: invariant clause J (u, v)
provides local variable type and constraint information, and the retrieve relation
from concrete to abstract state variable.

MACHINE M (a) REFINEMENT N

REFINES M

VARIABLES u VARIABLES v

INVARIANT I (u) INVARIANT J (u, v)
INITIALISATION X (u) INITIALISATION Y (v)
OPERATIONS OPERATIONS

S (u, i , o) =̂ · · · T (v , i , o) =̂ · · ·
END END

Fig. 1. B machine and refinement syntax

The basic machine consistency proof obligations are initialisation (the initiali-
sation establishes the invariant) and operation consistency (given invariant and
operation termination, then the operation establishes the invariant):

[X]I I ∧ trm(S) ⇒ [S]I (3)

The refinement proof obligations in B are equivalent to the classical forward
simulation rules and are expressed as follows. Two abstract machines M and N

are defined on state spaces u and v respectively, with a total relation J from v to
u. There is a bijection between the operations of M and N (say, every operation

S of machine M corresponds to exactly one operation T of N). If for every such
pair (S ,T) the following proof obligations (POBs) hold, then M is refined by N

(written M v N): initialisation refinement (for every concrete initial step, there
is an abstract initial step that establishes the retrieve relation) and operation

refinement (for any concrete step of T , there is some abstract step of S that
establishes the retrieve relation):

[Y]¬ [X]¬ J

I ∧ J ∧ trm(S) ⇒ [T]¬ [S]¬ J (4)

3 Retrenchment

In its simple form, retrenchment weakens the refinement relation between two
levels of abstraction: loosely speaking, it strengthens the precondition, weak-
ens the postcondition, and introduces mutability between state and I/O at the
two levels. The postcondition comprises a disjunction between a retrieve rela-
tion between abstract and concrete state, where refining behaviour is described,
and a concession relation between abstract and concrete state and output. This
concession (where non-refining concrete behaviour is related back to abstract be-
haviour) is the vehicle in the postcondition for describing I/O mutability. Use of
the simple retrieve relation, however, precludes I/O mutability being described
effectively in the case of refining behaviour.

Output retrenchment [6] improves matters by having an additional output
conjunct specifically to cover this case. The ensuing tradeoff between additional
syntactic complexity in the retrenchment and ease of use in discussing structural
and algebraic aspects of retrenchment proves to be a big win technically. This
paper will work with output retrenchment.

3.1 Retrenchment Defined

Figure 2 defines the syntax of output retrenchment in B, based on Fig. 1; it dif-
fers only from the simple form in the addition of the OUTPUT clause. Unlike a
REFINEMENT, which in B is a construct derived from the refined machine, a re-
trenchment is an independent MACHINE. Thus N is a machine with parameter b

(not necessarily related to a), state variable v , local invariant J (v), initialisation
Y (v), and operation OpNameC as wrapper for T (v , j , p), a substitution with
input j and output p. The RETRENCHES clause (replacing REFINES) makes
visible the lexical environment of the retrenched construct. The RETRIEVES
clause names the retrieve relation, from which the local invariant conjunct J (v)
has been separated syntactically into the INVARIANT clause. The name spaces
of the retrenched and retrenching constructs are disjoint, but admit an injec-
tion of (retrenched to retrenching) operation names, allowing extra independent
dynamic structure in the retrenching machine. This is reasonable in the light
of the likelihood of machine N having a lower level and more detailed struc-
ture, possibly incorporating aspects that have no place in a cleaner, higher level
model.

MACHINE M (a) MACHINE N (b)
RETRENCHES M

VARIABLES u VARIABLES v

INVARIANT I (u) INVARIANT J (v)
RETRIEVES G(u, v)

INITIALISATION X (u) INITIALISATION Y (v)
OPERATIONS OPERATIONS

o ←− OpName(i) =̂ p ←− OpNameC (j) =̂
S (u, i , o) BEGIN

END T (v , j , p)
WITHIN

P(i , j , u, v)
OUTPUT

E (u, v , o, p)
CONCEDES

C (u, v , o, p)
END

END

Fig. 2. Syntax of output retrenchment

The relationship between concrete and abstract state is fundamentally dif-
ferent before and after the operation. We model this by distinguishing between a
strengthened before-relation between abstract and concrete states, and a weak-
ened after-relation. Thus the syntax of the concrete operation OpNameC in N

is precisely as in B, with the addition of the ramification, a syntactic enclosure
of the operation. The precondition is strengthened by the WITHIN condition
P(i , j , u, v) which may change the balance of components between input and
state. In the postcondition, the RETRIEVES clause G(u, v) is weakened by the
CONCEDES clause (the concession) C (u, v , o, p), which specifies what the op-
eration guarantees to achieve (in terms of after-state and output) if it cannot
maintain the retrieve relation G , where the latter expresses the global relation-
ship between abstract and concrete state variables. Since in simple retrenchment,
the RETRIEVES clause gives no information about the relationship between
concrete and abstract output, we conjoin to that clause an OUTPUT clause
E (u, v , o, p) in the postcondition. This means that, should any change occur in
the balance of components between abstract and concrete state and output, the
change is fully described both for refining and non-refining behaviour. We will see
how the need for the OUTPUT clause arises in calculating certain compositions.

Retrenchment has the same initialisation requirements as refinement, i.e. that
the retrieve relation be established:

[Y (v)] ¬ [X (u)] ¬G(u, v) (5)

Output retrenchment is defined1 by all of the above together with the following
operation proof obligation:

I (u) ∧ G(u, v) ∧ J (v) ∧ P(i , j , u, v) ∧ trm(T (v , j , p))

⇒ trm(S (u, i , o)) ∧ [T (v , j , p)]¬ [S (u, i , o)]¬

((G(u, v) ∧ E (u, v , o, p)) ∨ C (u, v , o, p)) (6)

It is easy to see that retrenchment generalizes refinement2: choose P =̂ trm(S),
E =̂ true and C =̂ false in (6). From this point we will refer to “retrenchment”
where we actually mean “output retrenchment”, and will use the following short-
hand for (6): S .G,P ,E ,C T .

3.2 Composing Output Retrenchments

It is straightforward to generalize the composition theorem for simple retrench-
ments [8, 20]. We assume as in section 3.1 that machine N RETRENCHES M ,
and further that machine O RETRENCHES N . Define machine O syntactically
as a “lexicographic increment” on N , schematically replacing occurrences of
N,b,M,v,J,G,Y,p,j,T,P,E,C in N by O,c,N,w,K,H,Z,q,k,U,Q,F,D, respectively.
Thus operation S in machine M is retrenched by operation T in machine N

(w.r.t. G ,P ,E ,C), which is in turn retrenched by operation U in machine O

(w.r.t. H ,Q ,F ,D).

Theorem If S .G,P ,E ,C T and T .H ,Q,F ,D U then S .GJH ,PQ,EF ,CD U

where GJH = ∃ v • (G(u, v) ∧ J (v) ∧ H (v ,w))

PQ = ∃ v , j • (G(u, v) ∧ J (v) ∧ H (v ,w) ∧ P(i , j , u, v) ∧ Q(j , k , v ,w))

EF = ∃ v , p • (E (u, v , o, p) ∧ F (v ,w , p, q))

CD = ∃ v , p • (G(u, v) ∧ E (u, v , o, p) ∧ D(v ,w , p, q))

∨ ∃ v , p • (C (u, v , o, p) ∧ H (v ,w) ∧ F (v ,w , p, q))

∨ ∃ v , p • (C (u, v , o, p) ∧ D(v ,w , p, q)) (7)

The result is intuitively satisfying. The RETRIEVES clause GJH combines
component RETRIEVES clauses and intermediate invariant. The WITHIN clause
PQ combines all component before-state RETRIEVES and WITHIN constraints
to ensure common v , j witnesses can be found for all the constituent terms. The
OUTPUT clause EF combines the component OUTPUT clauses. The conces-
sion comes from a distribution of the disjunctions in the conjunction of the two
postconditions ((G ∧ E) ∨ C) ∧ ((H ∧ F) ∨ D) over the conjunction, with the
term corresponding to the combined RETRIEVES clause removed. It can be
shown that the above definition of composition of retrenchments is associative.

1 For simple retrenchment, simply remove the E clause.
2 In its I/O modulated form [8], which permits I/O type change.

4 Example: Resource Allocation

For brevity we use the abstract syntax of B GSL for operation bodies rather than
the more verbose concrete B AMN syntax. We adopt the shorthand of an ‘ELSE’
clause in a choice of guarded commands, where ELSE denotes the complement
of disjoined guards ¬ ∃ z • (P ∨ Q ∨ · · ·) in the following expression:

@z • (P =⇒ S) [] @z • (Q =⇒ T) · · · [] ELSE =⇒ W

Our example is a partial abstract model of a resource allocation and management
system in a distributed environment: resources must be acquired, scheduled for
processing, and released. In a centralised environment, functional requirements
such as resource acquisition can be viewed as atomic until we descend to a fairly
low level of abstraction, because the centralised scheduler in effect has all the
aspects involved under its direct control. In a distributed environment, this is
much less the case because of ignorance about what is going on at remote loca-
tions. Methodologically, we seek to separate concerns of functionality from those
of distribution. Thus the abstract description models instantaneous allocation
or not of a specified resource on the basis of a simple test.

In the concrete world, a number of lower level issues intrude to influence the
success or otherwise of allocation. We could mention timeliness, contractual is-
sues, quality of service — these relating to the requesting system’s knowledge of
the providing system’s capabilities at that time — as well as the simple availabil-
ity of what is requested. The situation is simplified here by modelling even the
distributed allocation as an atomic process (i.e. described within a single syntac-
tic entity), but entertaining nonetheless the possibility of outcomes displaying
different degrees of success, in line with what can happen in real distributed
systems.

We separate specification concerns by restricting consideration of such issues
to the concrete level. This raises the question of how the abstract and concrete
levels relate to each other – ideally, by refinement. But whether this is true or
not depends strongly on how the extra concrete features fit together with the
concrete description of the purely abstract model. If all goes well then the sit-
uation can be elegantly captured within a superposition refinement [16, 4]. But
all is by no means guaranteed to go well. To address these less convenient situa-
tions, which are nevertheless prone to occur in practice, the authors introduced
retrenchment, with its more forgiving operation proof obligation.

The example provides a simple vehicle for the contribution of this work – we
restrict ourselves to little more than the distinct case splits in the two opera-
tion models to illustrate our contribution – and further motivates the utility of
retrenchment.

Figure 3 specifies part of an abstract resource management machine RsAlloc,
with allocation operation Alloc. SPEC is the set3 of all resource specifications,
and specu is a static function returning the specification for any given resource

3 In this model resource specifications are unstructured, abstract entities, elements of
the set SPEC , which in a real specification would be defined elsewhere.

from the universe of allocatable resources RSS . The state variable u records
all resources already allocated. Operation Alloc allocates any resource not yet
allocated in the set RSS whose specification meets the requirement rqt of the
Alloc call. The operation tests only for availability of the resource, abstracting
over the real-world constraints already mentioned.

MACHINE RsAlloc

SETS RSS , SPEC

CONSTANTS specu

PROPERTIES specu : RSS → SPEC

VARIABLES u

INVARIANT u ⊆ RSS

INITIALISATION u := ∅

OPERATIONS
Alloc(rqt) =̂

rqt ∈ SPEC |
@x • (x ∈ RSS − u ∧ specu (x) = rqt =⇒ u := u ∪ {x})
[] ELSE skip

· · ·
END

Fig. 3. Resource allocation: specification

Concrete machine CRsAlloc in Fig. 4 is the concrete counterpart of machine
RsAlloc. In particular it contains the simple distributed resource allocation op-
eration CAlloc (distributed only to the extent that the atomic operation exhibits
some characterisitics normally associated with genuinely distributed allocation
operations, in line with the remarks above).

Thus CRSS is the set of concrete distributed resources and specv returns the
specification of any given concrete resource in CRSS , with values in SPEC . There
is also a trust function tr , defined over CRSS . This yields an abstract measure
of the quality of the resource acquired in the case of successful allocation. v is
the concrete state variable, recording resources allocated.

CAlloc retrenches Alloc by adding some of the “real-world constraints”. We
assume (for simplicity) that trust ratings of 0, 1 or 2 can be assigned to each can-
didate resource available for allocation. Trust level 2 indicates that requirements
are fully met, level 1 that they are partially met, and level 0 indicates that an
appropriate resource is available, but that the degree to which it meets require-
ments is unknown. Thus the concrete operation allocates level 2 and 1 resources
from CRSS to v under separate guards, and skips for level 0 or no resource
available4. Output res from Calloc reports the degree of success in matching an
abstract allocation Alloc. There is no matching output from Alloc; this shows

4 We assume these guards are mutually disjoint and exhaustive. Formally, this would
require the conjunction of each guard with the negation of each other guard, and so

the I/O mutability possible in retrenchment. For simplicity we choose not to
exploit such mutability further in this discussion.

Trust level 0 resources are strictly redundant here since we never do any-
thing with them. However, the utility of trust level 0 is clear if we consider an
additional concrete operation CModifyTrust , which can dynamically change the
trust level of a resource in the environment in response to information received.
Such an operation would have no abstract counterpart in line with the possibil-
ity admitted by the retrenchment formalism. We retain trust level 0 but do not
discuss CModifyTrust further.

MACHINE CRsAlloc

RETRENCHES RsAlloc

SETS CRSS ,RESULT

CONSTANTS specv , tr

PROPERTIES specv : CRSS → SPEC ∧ tr : CRSS → {0, 1, 2} ∧
RESULT = {Succ, Partial ,Fail}

VARIABLES v

INVARIANT v ⊆ CRSS

RETRIEVES Gδ,n (u, v)
INITIALISATION v := ∅

OPERATIONS
res ←− CAlloc(rqt) =̂

BEGIN
rqt ∈ SPEC |

@y • (y ∈ CRSS − v ∧ specv (y) = rqt ∧ tr(y) = 2
=⇒ v := v ∪ {y}) || res := Succ (i)

[] @y • (y ∈ CRSS − v ∧ specv (y) = rqt ∧ tr(y) = 1
=⇒ v := v ∪ {y}) || res := Partial (ii)

[] ELSE res := Fail (i,iii)
WITHIN true

OUTPUT true

CONCEDES Gδ,n+1(u, v) ∨ Gδ+1,n (u, v)
END

· · ·
END

Fig. 4. Resource allocation: retrenchment

Retrieve relation Gδ,n , defined by (8) below, relates concrete states to ab-
stract ones. It is parameterised by δ, quantifying the maximum acceptable dif-
ference in numbers of resources allocated at the two levels, and n, the maximum
number of partially-trusted resources that can be concretely allocated.

Gδ,n(u, v) =̂∃ f ∈ v � u • specu ◦ f = v C specv

∧ #(u − v) ≤ δ ∧ #(v C tr B {1}) ≤ n (8)

on, but we do not write this explicitly since to do so adds nothing to the discussion
at this point. For the example application, this is admittedly simplistic.

To understand the RETRIEVES clause Gδ,n , consider the pattern of resource
allocation by the two operations. Abstractly, Alloc allocates if a resource is avail-
able, or otherwise skips. Concretely, CAlloc allocates a fully trusted resource if
one is available, or allocates a partially trusted resource if one is available, and
otherwise skips. That is, CAlloc may (i)5 exactly simulate the behaviour of Alloc

(either in allocating a trusted resource, or not allocating), may (ii) approximate
it in allocating a partially trusted resource, or may (iii) more coarsely approxi-
mate it by simply doing nothing. This approximating behaviour is recorded by
parameters δ, the maximum number of times allocation may fail, and n, the
maximum number of partially trusted resources that may be allocated.

Gδ,n thus states that (a) there is a total injection from v to u which uniquely
identifies corresponding resource pairs, (b) each resource pair shares a specifi-
cation, (c) u has at most δ more elements than v , and (d) that the number of
partially trusted concrete resources is at most n. The operation retrenchment
POB formalises a varying representation: each allocation either (i) maintains
precision of representation in retrieve relation Gδ,n , or weakens it by establish-
ing as concession either (ii) Gδ,n+1 or (iii) Gδ+1,n .

5 Decomposing Retrenchment

The retrenchment of Fig. 4 represents a first-cut design view of the problem,
relating the abstract to the concrete allocation operation without exploiting the
case structure at either level. It is thus a coarse-grained retrenchment picture,
with a number of disjuncts in the postcondition, and no a priori guarantee
as to which might be established. A systematic way is required to decompose
this single retrenchment into a family of stronger-concession, thus finer-grained
retrenchments. These will more sharply describe the partition (i-iii) of Fig. 4 of
distinct relationships between the models.

Three approaches, shown schematically in Fig. 5, will be needed to decom-
pose (a) w.r.t. given concrete structure, (b) w.r.t. given abstract structure, and
(c) w.r.t. given structure at both abstract and concrete levels together. Ap-
proach (a), for example, in theorem 12 needs a k -indexed family of “compo-
nent” retrenchments AOp . Rk =⇒ COpk to be read from the specification
(and proved). Each such retrenchment is composed as per (7) with the corre-
sponding retrenchment Rk =⇒ COpk . []

l

(Rl =⇒ COpl) given by lemma 11.

Approach (b) is the converse of (a), and for (c) a three-step composition is re-
quired. To simplify matters, in each case the retrenchments linking a guarded
command to a bounded choice of guarded commands are in fact I/O modulated
refinements [Op.Cit.]. We will also see the algebraic necessity for the output,
rather than simple, form of retrenchment in the proof of theorem (12).

For each of three decomposition results, a corresponding result enriched with
nondeterministic choice will be given. This is both for generality as well as to

5 (i-iii) are annotations in Fig. 4

Rk COpk

Rl COpl()[]
l

Rn COpnC[]
n

()

[]
l

Rl()AOpl

l AOplA[]
l

()R

AOpkkAR

COpmmCR

Rk AOpk

AOp

COp

(a) (b) (c)

Fig. 5. Three patterns for decomposing a retrenchment

support the example of section 4. Each of these six results is followed by a
corollary which re-composes the retrenchment decomposition of that result.

5.1 Decomposition - The Concrete Level

We seek a retrenchment decomposition as per Fig. 5(a), where the abstract
operation is atomic, and the concrete operation is one of guarded choice over
an l -indexed collection of nested substitutions COpl . We seek to decompose the
single coarse-grained retrenchment

AOp .G,P ,O,C []
l

(Rl =⇒ COpl) (9)

into a finer-grained family of retrenchments between the same two operations.
For each choice branch in turn, given guard Rk , we seek a retrenchment:

AOp .G,P∧Rk ,Ok ,Ck
[]
l

(Rl =⇒ COpl) (10)

Each retrenchment in the family is intended to describe partition part k of the
abstract/concrete frame (the case concretely guarded by Rk) by strengthening
the WITHIN and CONCEDES clauses to P ∧ Rk and Ck respectively. For each
k we expect that Ck ⇒ C . The specifier will be free to choose Ck and Ok , which
are expected to arise naturally from the specification.

We show that the single retrenchment (9) can be decomposed into the family
(10) in two steps, by showing that, for each k , (10) is the composition as per (7)
of two retrenchments. The second of these is given by a lemma to show that a
guarded command is retrenched6 by an indexed choice of guarded commands.
The apparent increase in nondeterminism in this retrenchment is avoided by the

6 Lemma (11) is in fact an I/O-modulated refinement, as mentioned in section 3.1.

assumption of mutual exclusivity of the guards. This is a strong assumption; the
question of nondeterministically overlapping guards is addressed in section 5.2.

Lemma For each k in turn, given Qk (where k and l independently index the
same family of substitutions), we have

Rk (ṽ , j̃) =⇒ COpk (ṽ , j̃ , p̃) .
ṽ=v ,Qk ,

ṽ=v∧

p̃=p
,false

[]
l

(Rl (v , j) =⇒ COpl (v , j , p))

where Qk =̂ j̃ = j ∧ Rk (ṽ , j̃) ∧
∧

l 6=k

¬ Rl(ṽ , j̃) (11)

Proof is by writing out and manipulating the retrenchment POB (6):

J (ṽ) ∧ ṽ = v ∧ J (v) ∧ j̃ = j ∧ Rk (ṽ , j̃) ∧
∧

l 6=k

¬ Rl(ṽ , j̃) ∧ trm([]
l

Rl =⇒ COpl)

⇒ trm(Rk =⇒ COpk) ∧ [[]
l

Rl =⇒ COpl] ¬ [Rk =⇒ COpk] ¬(ṽ = v ∧ p̃ = p)

The RETRIEVES and WITHIN assumptions identify state and input respec-
tively in the two models. The mutual exclusivity of the guards ensures that
this retrenchment is effectively an identity refinement. By the algebra of the
GSL we have trm([]

l

Rl =⇒ COpl) ≡
∧
l

(Rl ⇒ trm(COpl)), and the consequent

termination clause follows. The consequent simulation clause reduces to
∧

l

(Rl ⇒ [COpl]¬ (Rk ⇒ [COpk]¬ (ṽ = v ∧ p̃ = p)))

≡
∧

l

(Rl ⇒ (Rk ∧ [COpl] ¬ [COpk] ¬(ṽ = v ∧ p̃ = p)))

Syntactically, Rk (ṽ , j̃) distributes through COpl (v , j , p) since they are over dis-
joint variable spaces. The mutual exclusivity premise Qk ensures that Rl only
holds for l = k , and the clause follows by identity refinement. QED

Theorem (12) decomposes a retrenchment in terms of given concrete case
structure:

Theorem Each retrenchment of index k may be transformed as follows:

AOp .G,Pk ,Ok ,Ck
Rk =⇒ COpk ` AOp(u, i , o) .G,P ′

k
,Ok ,Ck

[]
l

(Rl =⇒ COpl (v , j , p))

where P ′
k =̂ Pk ∧ Rk ∧

∧

l 6=k

¬ Rl (12)

Proof Here the abstract model is in variables u, i , o and the intermediate and
lower models have variables as per lemma (11). Proof is by transitive composition
of the left-hand retrenchment in (12) with that in the lemma, as per (7). This is
straightforward; as again per (7) we have the composed postcondition clause in
the form (G ∧ O) ∨ C . Note that two of the three C disjuncts collapse to false

because the second-step concession is false:

(∃ ṽ , p̃ • (G(u, ṽ) ∧ J (ṽ) ∧ ṽ = v) ∧ ∃ ṽ , p̃ • (Ok (u, ṽ , o, p̃) ∧ ṽ = v ∧ p̃ = p))

∨ ∃ ṽ , p̃ • (Ck (u, ṽ , o, p̃) ∧ ṽ = v ∧ p̃ = p)

This gives composite WITHIN ≡ G , OUTPUT ≡ Ok , and CONCEDES ≡ Ck .
We see here the need for output retrenchment: without the second-step OUT-
PUT clause p̃ = p, the concrete p output would be completely unconstrained in
the composite concession, which would be ∃ p̃ • Ck . QED

The corollary recomposes the original coarse-grained retrenchment (9):

Corollary Given a decomposition of retrenchments (12), the following holds:

AOp .G,
∨
k

P ′

k
,
∨
k

Ok ,
∨
k

Ck
[]
l

(Rl =⇒ COpl) (13)

Proof We use the facts that (i) if A ⇒ B and C ⇒ D then A ∨ C ⇒ B ∨ D

and (ii) the modal operator [] ¬ [] ¬ is semidistributive over disjunction7.
Take the disjunction over all k sets of hypotheses, infer the disjunction of the k

consequents, and thus the composite consequent. QED

The example of section 4 includes nondeterministic choice, so the results of
this section all need to be modified accordingly. Thus we have

Lemma For each k in turn, given Qk , we have

@z • (Rk =⇒ COpk (ṽ , j̃ , z , p̃)) .
ṽ=v ,Q′

k
,
ṽ=v∧

p̃=p
,false

[]
l

@z • (Rl =⇒ COpl (v , j , z , p))

where Q ′
k =̂ j̃ = j ∧ ∃ z • Rk (ṽ , j̃ , z) ∧

∧

l 6=k

¬ ∃ z • Rl(ṽ , j̃ , z) (14)

Proof is as for lemma (11), with guard mutual exclusivity strengthened to in-
clude the choice variable z : given ṽ , j̃ , if any z satisfies Rk then no z satisfies
any other guard Rl at ṽ , j̃ . The termination consequent follows as before. The
simulation consequent reduces to

∧

l

∀ z • (Rl(v , j , z) ⇒ (∃ z̃ • Rk(ṽ , j̃ , z̃)

∧ [COpl (v , j , z , p)] ¬ [COpk (ṽ , j̃ , z̃ , p̃)] ¬(ṽ = v ∧ p̃ = p)))

The WITHIN clause ensures that the ∀-quantified expression is vacuously true

for guards other than Rk , and any z satisfying Rk(v , j , z) can be used as the
existential witness z̃ . QED

The decomposition and recomposition results (15 - 16) with nondeterministic
choice are proved as before.

Theorem Each retrenchment of index k may be transformed as follows:

AOp .G,Pk ,Ok ,Ck
@z • (Rk =⇒ COpk)

` AOp(u, i , o) .
G,P

∀

k
,Ok ,Ck

[]
l

@z • (Rl =⇒ COpl (v , j , z , p))

where P
∀

k =̂ Pk ∧ ∃ z • Rk ∧
∧

l 6=k

¬ ∃ z • Rl (15)

7 That is, [T (v)] ¬ [S (u)] ¬C (u, v) ∨ [T] ¬ [S] ¬D(u, v)⇒ [T] ¬ [S] ¬ (C ∨ D)

Corollary Given a decomposition of retrenchments (15), the following holds:

AOp .
G,

∨
k

P
∀

k
,
∨
k

Ok ,
∨
k

Ck
[]
l

@z • (Rl =⇒ COpl) (16)

5.2 Mutual Exclusivity Considered Harmful ?

The mutual exclusivity restriction of the above results is at first sight very con-
straining. Particularly so, considering that retrenchment is an early-specification
activity, intended to separate out concerns of architecture and information loss
in the reification of a rich model down to a discrete, finite computer program.
Nondeterminism is an intrinsic feature of abstract descriptions.

It is possible to make retrenchment (11) more expressive by allowing non-
deterministically overlapping guards in the WITHIN clause, and weakening the
concession from false. However, a rather baroque picture results which we choose
not to pusue here, not least for reasons of space.

Methodologically, the assumption of mutual exclusivity will not prove to be
a serious restriction. A nondeterministic guarded choice operation is always re-
finable to a deterministic one, by removing excess transitions. This amounts to
refinement to an IF-THEN-ELSIF nesting, with precedence ordering of guards
a design decision. A refinement is always expressible as a false-concession re-
trenchment, as shown in section 3.1. It is thus trivial to see that the following
retrenchments compose, where R′

k ⇒ Rk :

AOp .G,P ,Ok ,Ck
Rk =⇒ COpk ,

Rk =⇒ COpk . ṽ=v ,j̃=j∧R′

k
,p̃=p,false R′

k =⇒ COpk

` AOp .G,P∧R′

k
,Ok ,Ck

R′
k =⇒ COpk (17)

Thus guard-strengthening retrenchments compose seamlessly. We simply re-
trench away the nondeterminism until mutual exclusivity obtains, and then ap-
ply the relevant decomposition theorem. Since guard strengthening should be
designed to eliminate nondeterminism, the overall operation guard ought not to
strengthen; it should remain exhaustive, if the original overall guard is.

5.3 Decomposition - The Abstract Level

Here we seek a retrenchment decomposition as per Fig. 5(b), where the abstract
operation is one of guarded choice over an l -indexed collection of nested substi-
tutions AOpl , and the concrete operation is atomic. This is the complementary
decomposition to that of section 5.1; i.e. to decompose the single retrenchment
[] (Rl =⇒ AOpl) .G,P ,O,C COp into a finer-grained family. Proofs are omit-
ted in this section; the first proof straightforwardly rewrites a refinement as a
retrenchment, and the rest are as before.

Lemma For each k in turn, given Qk , we have

[]
l

(Rl =⇒ AOpl(u, i , o)) . u=ũ,P ,o=õ,false Rk =⇒ AOpk (ũ, ĩ , õ)

where P =̂ i = ĩ ∧
∧

l

(Rl ⇒ trm(AOpl)) (18)

Theorem Each retrenchment of index k may be transformed as follows:

Rk =⇒ AOpk .G,Pk ,Ok ,Ck
COpk

` []
l

(Rl =⇒ AOpl(u, i , o)) .G,P ′

k
,Ok ,Ck

COp(v , j , p)

where P ′
k =̂ Pk ∧

∧

l

(Rl ⇒ trm(AOpl)) (19)

Corollary Given a decomposition of retrenchments (19), the following holds:

[]
l

(Rl =⇒ AOpl) .G,
∨
k

P ′

k
,
∨
k

Ok ,
∨
k

Ck
COp (20)

Via the appropriate lemma, the analogue of (19) with nondeterministic choice is

Theorem Each retrenchment of index k may be transformed as follows:

@z • (Rk =⇒ AOpk) .G,Pk ,Ok ,Ck
COpk

` []
l

@z • (Rl =⇒ AOpl(u, i , o, z)) .
G,P

∀

k
,Ok ,Ck

COp(v , j , p)

where P
∀

k =̂ Pk ∧
∧

l

∀ z • (Rl ⇒ trm(AOpl)) (21)

Corollary Given a decomposition of retrenchments (21), the following holds:

[]
l

@z • (Rl =⇒ AOpl) .
G,

∨
k

P
∀

k
,
∨
k

Ok ,
∨
k

Ck
COp (22)

5.4 Decomposition - Both Levels Together

The two sections above show how to decompose a coarse-grained retrenchment
by exploiting concrete and abstract model structure respectively. An even more
finely grained picture should be obtainable by considering all such structure
simultaneously, as per Fig. 5(c). That is, given an abstractly decomposed re-
trenchment family (19) achieving (G ∧ O) ∨ Ck under assumptions Hk , and a
concretely decomposed retrenchment family (12) between the same operations
achieving (G ∧ O) ∨ Dl under assumptions Hl , we seek a retrenchment fam-
ily (indexed on k and l) achieving (G ∧ O) ∨ (Ck ∧ Dl) under assumptions
Hk ∧ Hl

8. Unfortunately, the modal simulation operator [] ¬ [] ¬ is not con-
junctive. It is necessary to perform the full decomposition from first principles,
as the application of three transitive composition steps (7) combining those of

8 Note that here the two retrenchment families share the OUTPUT clause O .

theorems (12), (19). We omit proofs in this section because of their similarity
with previous proofs.

Theorem Each of a family of retrenchments indexed on k ,m, where abstract
guards are k -indexed and concrete guards m-indexed, can be transformed as
follows:

ARk =⇒ AOpk .G,Pkm ,Okm ,Ckm
CRm =⇒ COpm

` []
l

(ARl =⇒ AOpl(u, i , o)) .G,P ′

km
,Okm ,Ckm

[]
n

(CRn =⇒ COpn (v , j , p))

where P ′
km =̂ Pkm ∧

∧

l

(ARl ⇒ trm(AOpl)) ∧ CRm ∧
∧

n 6=m

¬ CRn (23)

We note the following points about this result. This fine-grained family of re-
trenchments fully exploits the structure in both models, meeting the goal dis-
cussed at the beginning of this section. Usually we will have Pkm ⇒ ARk ∧ CRm ,
i.e. each retrenchment layer will be defined within the subdomain where both
abstract and concrete guards hold. Guards may overlap nondeterministically in
the abstract model, and, should they do so in the concrete model, the latter can
be “retrenched down” seamlessly to the required mutual exclusivity of guards,
as indicated in section 5.2.

Corollary Given a decomposition of retrenchments (23), the following holds:

[]
l

(ARl =⇒ AOpl) .G,
∨
k

P ′

km
,
∨
k

Okm ,
∨
k

Ckm
[]
n

(CRn =⇒ COpn) (24)

Note that where the corollary is indexed over k (all abstract guards), it is of
course applicable over m (all concrete guards), and indeed over k ,m (all guards
at both levels).

Finally, the analogue of (23) and (24) including nondeterministic choice is

Theorem Each of a family of retrenchments, with abstract and concrete models
indexed separately by k and m, can be transformed as follows:

@z • (ARk =⇒ AOpk) .G,Pkm ,Okm ,Ckm
@z • (CRm =⇒ COpm)

` []
l

@z • (ARl =⇒ AOpl(u, i , o)) .
G,P

∀

km
,Okm ,Ckm

[]
n

@z • (CRn =⇒ COpn (v , j , p))

where P
∀

km =̂ Pkm ∧
∧

l

∀ z • (ARl ⇒ trm(AOpl)) ∧

∃ z • CRm ∧
∧

n 6=m

¬ ∃ z • CRn (25)

Corollary Given a decomposition of retrenchments (25), the following holds:

[]
l

@z • (ARl =⇒ AOpl) .
G,

∨
k

P
∀

km
,
∨
k

Okm ,
∨
k

Ckm
[]
n

@z • (CRn =⇒ COpn) (26)

6 Decomposing The Example

We apply (25), (26) to the example retrenchment in order to extract a finer-
grained family. Modulo comments in section 5.2 and footnote 4 about mutual
exclusivity, from Figures 3, 4 we have guards

AR1 =̂ x ∈ RSS − u ∧ specu(x) = rqt abstract, alloc

AR2 =̂ ¬ AR1 abstract, no-alloc

CR1 =̂ y ∈ CRSS − v ∧ specv (y) = rqt ∧ tr(y) = 2 (i) concrete, alloc-tr=2

CR2 =̂ y ∈ CRSS − v ∧ specv (y) = rqt ∧ tr(y) = 1 (ii) concrete, alloc-tr=1

CR3 =̂ ¬ (CR1 ∨ CR2) (i,iii) concrete, no-alloc

We employ the annotations (i - iii) from Fig. 4. We have P1m =̂ AR1 ∧ CRm

for m = 1 . . 3, for the retrenchment of abstract allocation by cases (i, ii, iii)
respectively. We have P23 =̂ AR2 ∧ CR3 for case (i) with no allocation at either
level. There are no retrenchments for k = 2,m = 1 . . 2 in this model since we
cannot relate abstract non-allocation to concrete allocation. All simple guarded
substitutions here of form R =⇒ Op always terminate. Finally, we have G ≡ Gδ,n

and for all indices Okm =̂ true.
Thus for input to theorem (25) we have four component retrenchments be-

tween single-guarded commands, say rkm with WITHIN clauses Pkm etc., for
k = 1 . .2 and m = 1 . .3. r11 represents the refining case (i) of allocation at both
levels, and thus achieves G with concession C11 =̂ false. r12 achieves either G

or concession C12 =̂ Gδ,n+1, in the approximating case (ii) of trust 2 concrete
allocation. r13 achieves either G or concession C13 =̂ Gδ+1,n , in the case (iii) of
no concrete allocation approximating abstract allocation. r23 achieves G with
concession C23 =̂ false, in the (i) case where both models fail to allocate.

Applying (25) produces four fine-grained retrenchments rkm of Alloc to Dalloc,
each qualified by RETRIEVES G , WITHIN P ′

km combining relevant abstract
and concrete guard predicates, OUTPUT true and CONCEDES Ckm . Corol-
lary (26) combines these retrenchments to recover the original coarse-grained
retrenchment of Fig. 4. We see that two of the four retrenchments produced are
in fact refinements, and the other two are each finer (have stronger concessions)
than the original.

It is worth noting that there are further, finer decompositions possible of the
example. By strengthening the guards with state information about approxima-
tion levels (e.g. how close #(u − v) is to δ), it is possible to tease out more re-
trenchments with stronger postconditions (e.g. ¬ G ∧ Gδ+1,n when #(u−v) = δ

in WITHIN).

7 Conclusion

We have considered the problem of a first cut “coarse-grained” design of the
abstract-to-concrete operation transformation AOp . COp as a retrenchment
r , say, and its decomposition into a finer-grained family of retrenchments {ri}.

An approach of “decomposition by composition” was taken: using a general
syntactic form for each of for the two operations, each member of the family was
constructed as the transitive composition per theorem (7) of retrenchments via
suitable intermediate operation fragments. Each component retrenchment in the
family is stronger than the composite retrenchment in the sense that it delivers a
stronger concession, i.e. guarantees more in the postcondition. Each component is
also more restrictive in having a stronger WITHIN clause; moreover the WITHIN
clauses of the family effectively partition the joint before-state/I/O frame of the
composite retrenchment.

The general syntactic form used inductively covers all operations that may
be specified using the primitive abstract syntax of B. We have not mentioned
the precondition constructor, which factors through the theory trivially; in prac-
tice it is only used at the top level of an operation specification to type input
parameters. Thus the results “cover most of the bases” required by practical
specification work. We merely claim “most” since we have yet to address the
parallel substitution || of B: this is the means by which multiple variables (and
nontrivial transformations of such through retrenchment) and their dynamics
are described.

Methodologically speaking, this work supports a natural (and traditional)
approach to design. That is, one model at one abstraction level is developed,
including choice, case-split and other structure. The next, more concrete model
is then developed, bearing in mind the refinement or retrenchment abstraction
to be used. Only then is the relation between the models examined; the retrench-
ment case, as we have seen, affording the option of further decomposition to a
suitable granularity.

Finally, we briefly consider the theoretical decomposition question in its full
generality: “given a retrenchment r from abstract AOp to concrete COp, can we
find two retrenchments r1 from AOp to some intermediate IOp and r2 from IOp
to COp such that r1

o
9 r2 V r ?”. Transitivity of retrenchment (7) gives some

guidance: for the composite retrenchment r to be a logical consequence of the
decomposition r1

o
9
r2 we must have

RETRIEVES (r) ≡ RETRIEVES (r1
o
9
r2) ∧WITHIN (r) V WITHIN (r1 o

9
r2) (27)

∧ OUTPUT (r) ≡ OUTPUT (r1
o
9
r2) ∧ CONCEDES (r1 o

9
r2) V CONCEDES (r)

The obvious universality problem related to the full decomposition question
above arises: “What are the ‘best’, i.e. weakest-WITHIN and strongest-concession
component retrenchments r1 and r2?”. Further work in the categorical style of
the integration of refinement and retrenchment [5] is indicated here. The sugges-
tion of [20] of a lattice theory of retrenchment (over the collection of all WITHIN
clauses that satisfy a given retrenchment, similarly all CONCEDES clauses) also
needs pursuing to this end.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

[2] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

[3] R.J.R. Back and M. Butler. Fusion and simultaneous execution in the refinement
calculus. Acta Informatica, 35:921–949, 1998.

[4] R.J.R. Back and K. Sere. Superposition refinement of reactive systems. Formal

Aspects of Computing, 8(3):324–346, 1996.
[5] R. Banach. Maximally abstract retrenchments. In Proc. IEEE ICFEM2000, pages

133–142, York, August 2000. IEEE Computer Society Press.
[6] R. Banach and C. Jeske. Output retrenchments, defaults, stronger compo-

sitions, feature engineering. 2002. submitted, http://www.cs.man.ac.uk/ ba-
nach/some.pubs/Retrench.Def.Out.pdf.

[7] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refine-
ment. In D. Bert, editor, 2nd International B Conference, volume 1393 of LNCS,
pages 129–147, Montpellier, France, April 1998. Springer.

[8] R. Banach and M. Poppleton. Sharp retrenchment, modulated refinement and
simulation. Formal Aspects of Computing, 11:498–540, 1999.

[9] R. Banach and M. Poppleton. Retrenchment, refinement and simulation. In
J. Bowen, S. King, S. Dunne, and A. Galloway, editors, Proc. ZB2000, volume
1878 of LNCS, York, September 2000. Springer.

[10] R. Banach and M. Poppleton. Model based engineering of specifications by re-
trenching partial requirements. In Proc. MBRE-01: IEEE Workshop on Model-

Based Requirements Engineering, University of California, San Diego, November
2001. IEEE Press.

[11] R. Banach and M. Poppleton. Engineering and theoretical under-
pinnings of retrenchment. submitted, http://www.cs.man.ac.uk/ ba-
nach/some.pubs/Retrench.Underpin.pdf, 2002.

[12] R. Banach and M. Poppleton. Retrenching partial requirements into system defini-
tions: A simple feature interaction case study. Requirements Engineering Journal,
8(2), 2003. 22pp.

[13] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof

Methods and their Comparison. Cambridge University Press, 1998.
[14] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[15] C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–583, October 1969.
[16] S. Katz. A superimposition control construct for distributed systems. ACM

TPLAN, 15(2):337–356, April 1993.
[17] M. Poppleton and R. Banach. Retrenchment: extending the reach of refinement.

In ASE’99: 14th IEEE International Conference on Automated Software Engi-

neering, pages 158–165, Florida, October 1999. IEEE Computer Society Press.
[18] M. Poppleton and R. Banach. Retrenchment: Extending refinement for contin-

uous and control systems. In Proc. IWFM’00, Springer Electronic Workshop in
Computer Science Series, NUI Maynooth, July 2000. Springer.

[19] M. Poppleton and R. Banach. Controlling control systems: An application of
evolving retrenchment. In D. Bert, J.P. Bowen, M.C. Henson, and K. Robinson,
editors, Proc. ZB2002: Formal Specification and Development in Z and B, volume
2272 of LNCS, Grenoble, France, January 2002. Springer.

[20] M.R. Poppleton. Formal Methods for Continuous Systems: Liberalising Refine-

ment in B. PhD thesis, Department of Computer Science, University of Manch-
ester, 2001.

[21] S. Schneider. The B-Method. Palgrave Press, 2001.

