
Efficient Modular Reduction Algorithm in IFq[x]
and Its Application to “Left to Right” Modular

Multiplication in IF2[x]

Jean-François Dhem

Gemplus Corporate Product R&D
Security Technologies Department

Card Security Group (STD/CSG/CHA)
Avenue du Jujubier – ZI Athelia IV

F-13705 La Ciotat Cedex
France

jf.dhem@ieee.org

Abstract. This paper describes a new efficient method of modular re-
duction in IFq[x] suited for both software and hardware implementations.
This method is particularly well adapted to smart card implementations
of elliptic curve cryptography over GF(2p) using a polynomial represen-
tation. Many publications use the equivalent in IF2[x] of Montgomery’s
modular multiplication over integers. We show here an equivalent in
IFq[x] to the generalized Barrett’s modular reduction over integers. The
attractive properties of the last method in IF2[x] allow nearly ideal imple-
mentations in hardware as well as in software with minimum additional
resources as compared to what is available on usual processor architec-
ture.
An implementation minimizing the memory accesses is described for both
Montgomery’s implementation and ours. This shows identical computing
and memory access resources for both methods. The new method also
avoids the need for the bulky normalization (denormalization) which is
required by Montgomery’s method to obtain a correct result.

Keywords: Smart card, cryptography, modular multiplication, quotient
evaluation, elliptic curves, ECDSA, Montgomery, Barrett, multiply and
add without carries, multiplications in IF2[x].

1 Introduction

Montgomery’s multiplication in IF2[x] is a well known “right to left” modular
reduction (see for example [1]) and directly derives from Montgomery’s mod-
ular reduction over integers [2,3]. It is often used for efficient software imple-
mentations of elliptic curves crypto-systems like ECDSA [4], using polynomial
representations. The main disadvantage of Montgomery’s method is the bulky
normalization - denormalization phase required to obtain a correct modular re-
duction. In the set of integers, the corresponding “left to right” methods [5,6,

C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 203–213, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

204 J.-F. Dhem

7] are less efficient in software because they require additional non standard (on
general purpose microprocessors) resources (special multiplier) to obtain similar
performances. We will show that the generalized Barrett’s method can be made
more efficient in IF2[x] so that it can compete directly with the Montgomery’s
method. Even more, because of the absence of normalization, the memory re-
quirements for data and ROM code of our method are smaller. This could be of
main importance in constrained implementations (e.g. smart cards).

The easiest “left to right” method to compute a quotient and a remainder
is the one taught at school: the quotient is calculated by first zeroing the upper
(most significant) part of the numerator by adding / subtracting a multiple of
the denominator. Montgomery’s method, however, zeroes the least significant
bits of the number to reduce.

In section 2, the way how the quotient is computed in order to perform an
improved “left to right” modular reduction in IFq[x] is described.

In section 3, the particular case of the modular multiplication in IF2[x] is
studied.

2 Quotient Evaluation in IFq[x]

In order to compute S(x) = U(x) mod N(x) we could first evaluate, in a scholas-
tic way, the quotient Q(x) defined by the equation U(x) = Q(x)N(x) + S(x)
where S(x) and Q(x) are respectively the remainder and the quotient of the Eu-
clidean division [8] of U(x) by N(x). By similarity to computations over integers
we define Q(x) =

⌊
U(x)
N(x)

⌋
. The degree p of the polynomial N(x) is noted deg(N).

We also define α = deg(U) − deg(N).
In most applications, like in elliptic curve crypto-systems, N(x) is fixed (when

working on a given elliptic curve). To speed up the computations, we can pre-
compute

⌊
xp+β

N(x)

⌋
(= R(x)), for some value of β defined hereafter. The quotient’s

evaluation may then be reduced to a multiplication and an appropriate shift
(division by a power of x) as shown in equation 1 (see [5] and [7] when working
over integers).

Q̂(x) =


⌊

U(x)
xp

⌋ ⌊
xp+β

N(x)

⌋

xβ

 =
⌊

T (x)R(x)
xβ

⌋
(1)

For the comprehension of equation 1, �A(x)/B(x)� represents the quotient
of the polynomial division of A(x) by B(x), discarding the remainder (A(x)
and B(x) are some polynomials). In the next sections we will demonstrate the
equivalence of equation 1 with the real quotient Q(x) = �U(x)/N(x)�.

2.1 Equivalence between Q̂(x) and Q(x)

In the present section, Ak(x) represents the polynomial A(x) of degree k (where
A(x) is some polynomial).

Efficient Modular Reduction Algorithm in IFq[x] 205

We can write:
U(x)
xp

= Φα(x) +
ϕp−1(x)

xp

where Φα(x) is the quotient and ϕp−1(x) the remainder of the division. Sim-
ilarly, we can write:

xp+β

N(x)
= Λβ(x) +

λp−1(x)
Np(x)

Where Λβ(x) is the quotient and λp−1(x) the remainder of the division. We now
can write:

Q(x) =


(

U(x)
xp

) (
xp+β

N(x)

)

xβ

 (2)

=


(
Φα(x) + ϕp−1(x)

xp

) (
Λβ(x) + λp−1(x)

Np(x)

)

xβ

 (3)

=

Φα(x)Λβ(x)+ Φα(x)
λp−1(x)

Np(x) +Λβ(x)
ϕp−1(x)

xp +
ϕp−1(x)

xp
λp−1(x)

Np(x)

xβ

 (4)

The second term of equation 4 is nullified only if β ≥ α. In that case only we
can write:

Q(x) =
⌊

Φα(x)Λβ(x)
xβ

⌋
=

⌊�Φα(x)� �Λβ(x)�
xβ

⌋
(5)

=


⌊
Φα(x) + ϕp−1(x)

xp

⌋ ⌊
Λβ(x) + λp−1(x)

Np(x)

⌋

xβ

 (6)

=


⌊

U(x)
xp

⌋ ⌊
xp+β

N(x)

⌋

xβ

 = Q̂(x) (7)

��
There is no need to chose β > α because this would require more computa-

tions than when choosing β = α as R(x) will then be larger.
The previous quotient computation is thus valid for IFq[x].
In the next section, we will use our method in IF2[x] which will show improve-

ments of its software (and hardware) implementations. Q(x) is then a binary
polynomial of degree α requiring α + 1 bits for its binary representation.

3 Modular Multiplication in IF2[x]

In IF2[x], the coefficients ni of the polynomial N(x) = npx
p + np−1x

p−1 + . . . +
n1x+n0 are either ‘0’ or ‘1’. This gives a binary representation of the polynomials

206 J.-F. Dhem

in IF2[x], the upper bits of the representation being the upper coefficients of the
polynomial. For example, the polynomial x5 + x3 + 1 can be represented as the
binary number ‘101001’.

The modular multiplication in IF2[x] is one of the most important operation
in elliptic curves cryptography over GF(2p). We will show that one can obtain,
with the method described in the previous section, similar performances to the
one using Montgomery’s modular multiplication in GF(2p) [1].

From now on, we will suppose that the polynomial modular multiplication
is implemented on a t-bit architecture (e.g. 32-bit). The modular multiplication
A(x)B(x) mod N(x) can be written as a sum of modular products of words of
the first operand by the second operand:

pA−1∑
i=0

Ai(x)B(x)xit mod N(x) = U(x) mod N(x) (8)

where, Ai(x) is a polynomial of degree t− 1 such that A(x) =
pA−1∑
i=0

Ai(x)xit and

where pA =
⌈

pa

t

⌉
with pa, degree of A(x).

Let’s first recall some characteristics on the polynomial computations in
IF2[x]:

• The product of a polynomial of degree t − 1 (which can be represented as a
t-bit binary vector) by a polynomial of degree n−1 is a polynomial of degree
n + t − 2 represented as a (n + t − 1)-bit vector. Over integers however, the
result of a product of a t-bit by an n-bit integer is a (n + t)-bit number.

• The result of a polynomial addition of two polynomials of degree p is a
polynomial of degree p (same number of bits in its binary representation).
Over integers, the result may have one more bit in its binary representation
because of carry propagations.

• The “modulo” operation (remainder of the division between two polynomi-
als) gives a polynomial which is one degree smaller than the modulus. This
means that the binary vector representing the remainder has always one bit
less than the one of the modulus. Over integers, the remainder is smaller
than the modulus but can still have the same number of bits in its binary
representation.

Given equation 8, we can now evaluate how the size of quotient Q(x) (equa-
tion 1) changes. To reduce the required memory and minimize accesses to it,
equation 8 can be computed by interleaving the multiplication (from the highest
index of Ai to the smallest one) with the reduction (by N(x)) as shown in figure
1.

Using the above characteristics of computations in IF2[x], the temporary
polynomial U(x) is always, at every stage as shown in figure 1, at a maximum
degree of t + pN − 1. This means that when computing the quotient Q(x) as in
equation 1, α has to be replaced by t − 1. The corresponding T (x) in equation
1 will then be of degree t − 1 and R(x) in equation 1 of degree t − 1. A binary

Efficient Modular Reduction Algorithm in IFq[x] 207

1 : U(x) = 0
2 : for i = pA − 1 down to 0
3 : U(x) = U(x)xt ⊕ Ai(x)B(x)
4 : Q(x) = �U(x)/N(x)�
5 : U(x) = U(x) ⊕ Q(x)N(x) [U(x) = U(x) mod N(x)]
6 : end for i

Fig. 1. Modular multiplication in IF2[x].

vector representation in t-bit will thus perfectly match the computations on a
t-bit architecture (CPU).

This also means that our method would require “standard” computations as
in Montgomery’s method described in [1]. In Montgomery’s multiplication, a t-
bit polynomial multiplication (with polynomials of degree t−1) and a division by
xt is required. In the present case, a t-bit polynomial multiplication and a division
by xt−1 is needed. The remaining part of the computations can be the same in
both methods but the way the computations are made is different (we start
here from the most significant word ApA−1 instead of A0 in the Montgomery’s
method).

1 : U(x) = ApA−1(x)B(x)
2 : for i = pA − 2 down to 0
3 : Q(x) =

⌊
(T (x)R(x))/xt−1

⌋
4 : for j = 0 to pN − 1
5 : U(x) = (U(x) ⊕ Q(x)Nj(x))xt(j+1) ⊕ Ai(x)Bj(x)xtj

6 : end for j
7 : end for i
8 : Q = �U(x)/N(x)�
9 : U(x) = U(x) ⊕ Q(x)N(x)

Fig. 2. Interleaved modular multiplication in IF2[x].

It is possible to further reduce the memory accesses on U(x). This is very
important since memory accesses are often an important limiting factor in terms
of execution time, namely in smart cards. To do so, we take the first computation
ApA−1(x)B(x) out of the i loop as shown in figure 2 allowing the i loop to start
with the quotient computation (Q(x)) and the two computations of U(x) in line
(3) and (5) as shown in figure 1 to be merged into line (5) as shown in figure
2. Such a computation requires a final reduction outside the i loop (lines (8)
and (9) in figure 2). The only disadvantage of interleaving the multiplication
and the reduction phase using a unique j loop is that the numbers of Nj(x)
and Bj(x) are identical (pB = pN), meaning that if, for example, the degree of
B(x) is smaller than the one of N(x) it should be padded left with zeroes when
storing it in B[j]’s. This does nevertheless not influence the speed of practical
implementations since B(x) is normally considered with an identical size to N(x).

208 J.-F. Dhem

3.1 Software Implementations on a t-Bit Processor Architecture

For the sake of clearness, when comparing with existing implementations, we
will suppose that p = pA = pN . The detailed implementation of the modular
multiplication is shown in figure 4.

In this figure, a “(Hi, Lo)” is a 2t-bit register (such a register is common on
RISC architectures providing a t×t-bit multiplication with a 2t-bit result) which
is the concatenation of registers Hi and Lo (both t-bit registers), where Hi is the
upper part (most significant bits) of that register and Lo, the lower part. The
expression “(Hi, Lo) � t” means that this virtual register is shifted left of t-bit.
In other words, the result is Hi = 0 and Lo = Hi, the old value of Lo being
discarded.

In figure 4, a ‘⊕’ represents a bitwise XOR operation and a ‘⊗’ means a
polynomial multiplication in IF2[x] where the polynomials have at most a degree
of t−1. In other words, a computation like (Hi, Lo)⊕ = A⊗B is simply a multiply
and accumulate calculation, just like the one present on most RISC processors
and DSP’s, but with the internal carries in multiplications and additions being
disabled. An algorithmic representation of this computation is shown in figure
3. Such a calculation is already implemented as an instruction in some high-end
smart card microprocessors to improve elliptic curve computations in GF(2p).

1 : for i = 0 to t − 1
2 : (Hi, Lo) = (Hi, Lo) ⊕ ((A · ((B � i) AND 1)︸ ︷︷ ︸

ith bit of B

) 	 i)

3 : end for i

Fig. 3. Simple program simulating the computation of (Hi, Lo)⊕ = A ⊗ B.

Ideally, Usup in lines (0) and (0) of figure 4, can be replaced by Lo, only if the
Most Significant Bit (MSB) of N [p−1] corresponds to the upper most significant
coefficient of N(x). Otherwise Usup = (Lo 	 k) ⊕ (Rs � (t − k)), where k is
the shift value that would be needed to align the most significant coefficient of
N(x) stored in N [p − 1] with the MSB of N [p − 1].

Figure 4 also shows the number of multiply and accumulate instructions
without carries (column ‘#⊕’) and the number of memory accesses. In compar-
ison with the paper of Koç and Acar [1] we have exactly the same number of
multiplications without carries but without the additional XOR operations. To be
correct, most of the XOR are included in our multiply and accumulate operation.

Improved implementation. The pseudo-code in figure 4 can still be com-
pacted by computing AiB interleaved with QN in the reverse order as shown in
figure 5 (computing first AiB[p−1] and QN [p−1]). This was made possible since
there is no carry propagation when working in IF2[x] (compared with the com-
putations over integers). Aligning the upper coefficient of N(x) with the upper

Efficient Modular Reduction Algorithm in IFq[x] 209

Fig. 4. Interleaved modular multiplication in IF2[x].

bit of N [p − 1], when storing N(x) in the N [j]’s (before staring the computa-
tions), also simplifies the computations as shown in figure 5. This only requires
one additional adaptation (right final shift) to the final result if the modulus is

210 J.-F. Dhem

constant during a whole set of modular multiplications. This is exactly the case
with most cryptographic algorithms (e.g. ECDSA over GF(2p) [4]).

#⊗ #LOAD #STORE
1 : for j = 0 to p − 1
2 : U [j] = 0 p

3 : for i = p − 1 down to 0
4 : Hi = U [p − 1] p

5 : Lo = U [p − 2] p

6 : Ai = A[i] p

7 : (Hi, Lo)⊕ = Ai ⊗ B[p − 1] p p

8 : Q = ((Hi, Lo)sup ⊗ R) � (t − 1) p

9 : (Hi, Lo)⊕ = Q ⊗ N [p − 1] p p

10 : for j = p − 2 down to 1
11 : (Hi, Lo) 	 t

12 : Lo = U [j − 1] p(p − 2)
13 : (Hi, Lo)⊕ = Ai ⊗ B[j] p(p − 2) p(p − 2)
14 : (Hi, Lo)⊕ = Q ⊗ N [j] p(p − 2) p(p − 2)
15 : U [j + 1] = Hi p(p − 2)
16 : end for j

17 : (Hi, Lo) 	 t

18 : (Hi, Lo)⊕ = Ai ⊗ B[0] p p

19 : (Hi, Lo)⊕ = Q ⊗ N [0] p p

20 : U [1] = Hi p

21 : U [0] = Lo p

22 : end for i

TOTAL 2p2 + p 3p2 + p p2 + p

Fig. 5. Interleaved modular multiplication with internal loop starting in the reverse
order.

In this case (figure 5), Usup is simply ((U [p−1], U [p−2])⊕A[i]⊗B[p−1]) �
(t−1). Indeed, there is no influence of A[i]⊗B[p−2] on the required upper part
of U(x) as this only influences the (t−1) first bits of (U [p−1], U [p−2])⊕A[i]⊗
B[p−1]) and there is no carry propagation. Another consequence and advantage
of such a computation is that there is no more need to compute Ap−1(x)B(x) in
advance. No additional final reduction by Q(x)N(x) is necessary such that the
lines (1) to (0) and (0) to (0) in figure 4 are no more necessary in figure 5.

As shown in figure 5, the global number of operations is identical to the
one in figure 4, but the code size is smaller. Except for the last reason, the
choice between the two implementations will only depend on the (processor’s)
architecture.

Efficient Modular Reduction Algorithm in IFq[x] 211

3.2 Comparison with Montgomery’s Modular Multiplication

In figure 6, Montgomery’s modular multiplication is implemented in the same
way as our method. The main difference in our implementation compared to Koç
and Acar’s one [1] is the merging between the multiplication and the reduction
phase of the algorithm to reduce the memory accesses. The number of memory
accesses is smaller in our case as compared to the one required by the Mont-
gomery’s method described by Koç and Acar. Their method needs (6s2 −s) load
and (3s2 + 2s + 1) store operations as given in table 2 of their paper.

As shown in figures 4, 5 and 6, our method is similar to Montgomery’s one in
terms of the number of multiply and accumulate without carries and the number
of memory accesses.

#⊗ #LOAD #STORE
1 : for j = 0 to p − 1
2 : U [j] = 0 p

3 : end for j

4 : for i = 0 to p − 1
5 : Ai = A[i] p

6 : Lo = U [0] p

7 : Hi = U [1] p

8 : (Rt, Lo)⊕ = Ai ⊗ B[0] p p

9 : (Hi, Q) = Lo ⊗ N
′
0 p

10 : (Rt, Lo)⊕ = Q ⊗ N [0] p p

11 : (Hi, Lo) � t

12 : for j = 1 to p − 2
13 : Hi = U [j + 1] p(p − 2)
14 : (Hi, Lo)⊕ = Ai ⊗ B[j] p(p − 2) p(p − 2)
15 : (Hi, Lo)⊕ = Q ⊗ N [j] p(p − 2) p(p − 2)
16 : U [j − 1] = Lo p(p − 2)
17 : (Hi, Lo) � t

18 : end for j

19 : (Hi, Lo)⊕ = Ai ⊗ B[p − 1] p p

20 : (Hi, Lo)⊕ = Q ⊗ N [p − 1] p p

21 : U [p − 2] = Lo p

22 : U [p − 1] = Hi p

23 : end for i

TOTAL 2p2 + p 3p2 + p p2 + p

Fig. 6. Interleaved Montgomery’s modular multiplication in IF2[x].

However, a possible inconvenience of our method (for a software implementa-
tion on a general purpose processor), as compared to Montgomery’s one, would

212 J.-F. Dhem

be the slower “extraction” of Usup from the intermediate values of U(x) as well
as the right shift by (t−1) when computing Q. This disadvantage can be simply
taken into account, with a very minimal cost, in a hardware implementation.

The main disadvantage of Montgomery’s method is not visible in figure 6. In-
deed, our method exactly computes A(x)B(x) mod N(x) which is not the case for
Montgomery’s one which computes A(x)B(x)x−p mod N(x) [1]. This last com-
putation is mostly not desired. This is why Montgomery’s method often requires
substantial additional code to deal with that computation (e.g replace A(x) by
A(x)xp mod N(x) and B(x) by B(x)xp mod N(x) before the computations and
then finish the computations by multiplying the final result by ‘1’ using Mont-
gomery’s method). These computations penalize Montgomery’s method in terms
of code size (it can be critical in smart card’s context) and may complicate the
use of the Montgomery’s method outside the scope of modular exponentiations
computations (e.g. for a single modular multiplication).

3.3 Speed Comparisons on a Real Implementation

Table 1 shows the results, in terms of clock cycles, obtained by both Mont-
gomery’s multiplication (figure 6) and the two versions of our method described
in figures 4 and 5.

256-bit multiplication 512-bit multiplication
Algorithm in fig. 4 910 3230

Compact Algorithm in fig. 5 812 3028
Montgomery’s method (fig. 6) 756 2916

Table 1. Algorithms’ speed in clock cycles on a Montgomery’s optimized processor.

Measurements were done on a 32-bit processor’s (usable in smart cards)
simulator using the modified multiply accumulate instruction (without internal
carries) as described in section 3.1. This processor was designed to speed up
Montgomery’s multiplications. This explains why, in table 1, the Montgomery’s
method has still an advantage. As explained before, this is only due to the small
additional computations required for computing Q(x) in our implementation.
Indeed, 7 additional clock cycles for each Q(x) computation (equivalent to line
(8) in figure 5) are required as compared to what is done in the Montgomery’s
implementation (line (9) in figure 6). However, similar results for both implemen-
tations can be obtained by very slightly modifying a few processor’s instructions.

The comparison made here only involves the “core’s” modular multiplication
itself. As explained in section 3.2, the fact that Montgomery’s method computes
A(x)B(x)x−p mod N(x) in place of the exact value (A(x)B(x) mod N(x)) for
our method, can also deeply influence the choice between one algorithm and the
other.

Efficient Modular Reduction Algorithm in IFq[x] 213

4 Conclusions

We have first extended the generalized Barrett’s modular reduction to IFq[x]. We
then described an efficient way to implement fast “left to right” modular multi-
plication in IF2[x] which is at least as efficient as the best known methods, namely
Montgomery’s multiplication [1]. Furthermore, our method has the advantage of
computing the modular multiplication without the inconvenience of a normal-
ization as needed in the Montgomery’s one. This makes this method particularly
attractive for smart cards and hardware implementations. A way of reducing the
memory accesses in both methods has been described. Both methods can be ef-
ficiently implemented by having a multiply and accumulate instruction without
internal carries to perform fast competitive software implementations of elliptic
curve crypto-systems in GF(2p).

Acknowledgments. The author would like to thank Jacques Fournier, Marc
Joye and the anonymous referees for their useful comments.

References

1. Koç, C., Acar, T.: Montgomery multiplication in GF(2k). In Publishers, K.A., ed.:
Designs, Codes and Cryptography. Volume 14., Boston (1998) 57–69

2. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1997)

3. Montgomery, P.: Modular multiplication without trial division. Mathematics of
Computation 44 (1985) 519–521

4. IEEE: Std 1363-2000. IEEE standard specifications for public-key cryptography,
New York, USA (2000) Informations available at
http://grouper.ieee.org/groups/1363/.

5. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Odlyzko, A., ed.: Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California. Volume 263 of Lecture Notes
in Computer Science., Springer-Verlag (1987) 311–323

6. Quisquater, J.J.: Encoding system according to the so-called RSA method, by
means of a microcontroller and arrangement implementing this system. U.S. Patent
5,166,978 (1992)

7. Dhem, J.F., Quisquater, J.J.: Recent results on modular multiplications for smart
cards. In Quisquater, J.J., Schneier, B., eds.: Proc. CARDIS’98, Smart Card Re-
search and Applications, Louvain-la-Neuve, Belgium. Volume 1820 of Lecture Notes
in Computer Science., Springer-Verlag (2000) 336–352

8. Cohen, H.: A Course in Computational Algebraic Number Theory. 2nd edn. Grad-
uate Texts in Mathematics. Springer (1995)

9. De Win, E., Bosselaers, A., Vandenberghe, S., De Gersem, P., Vandewalle, J.: A
fast software implementation for arithmetic operations in GF(2n). In Kim, K.,
Matsumoto, T., eds.: Advances in Cryptology - ASIACRYPT ’96, Kyongju, Korea.
Volume 1163 of Lecture Notes in Computer Science., Springer (1996) 65–76

http://grouper.ieee.org/groups/1363/

	Introduction
	Quotient Evaluation in ${rm Imskip -thinmuskip F}_{q}[x]$
	Equivalence between $mathaccent "705Erelax {Q}(x)$ and $Q(x)$

	Modular Multiplication in ${rm Imskip -thinmuskip F}_{2}[x]$
	textbf {Software Implementations on a t-Bit Processor Architecture}
	Comparison with Montgomery's Modular Multiplication
	Speed Comparisons on a Real Implementation

	Conclusions

