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Abstract. In this paper we describe some countermeasures against dif-
ferential side-channel attacks on hyperelliptic curve cryptosystems. The
techniques are modelled on the corresponding ones for elliptic curves.
The first method consists in picking a random group isomorphic to the
one where we are supposed to compute, transferring the computation to
the random group and then pulling the result back. The second method
consists in altering the internal representation of the divisors on the
curve in a random way. The impact of the recent attack of L. Goubin is
assessed and ways to avoid it are proposed.
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1 Introduction

The use of Jacobian varieties of hyperelliptic curves in discrete logarithm cryp-
tosystems was proposed by N. Koblitz as early as 1988 [T0/18] as an alternative
to elliptic curves. Hyperelliptic curves are a generalisation of elliptic curves: the
latter are just the hyperelliptic curves of genus one.

Until very recently, however, elliptic curve cryptosystems (short: ecc) have
been perceived as faster than hyperelliptic systems (short: hecc, but some other
authors prefer abbreviations like hec or hcc) of genus at least two and offering
comparable security. An important milestone in the road to change this per-
ception happened in September 2002: at the ECC 2002 Workshop in Essen,
K. Nguyen of Philips Research reported on his implementation on a hardware
simulator of T. Lange’s projective formulae for genus 2 [25]. This showed for
the first time that the performance of hecc can be competitive, even for smart
card applications. Shortly afterwards J. Pelzl, T. Wollinger, J. Guajardo and
C. Paar [38] obtained efficient formulae for genus 3 hyperelliptic Jacobians in all
characteristics improving on the work of [23].
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This raises immediately the issue of the security of hecc against side-channel
attacks, first introduced in the form of timing attacks in [20] and then simple and
differential power analysis (SPA and DPA) [21/22]. These attacks measure some
leaked information of a cryptographic device (e.g. timing, power consumption,
electromagnetic radiation) while it processes its inputs. For historical reasons
we just write DPA also when exploiting leaked information other than power
consumption. If a single input is used, the process is referred to as a Simple Power
Analysis (SPA), and if several different inputs are used together with statistical
tools, it is called Differential Power Analysis (DPA). We are concerned here with
the second type of analysis.

SPA attempts to recover the secret scalar from one observation of the se-
quence of operations: For example, in a simple double-and-add algorithm the
number of consecutive group doublings minus one is the amount of zeros be-
tween two ones in the binary representation of the scalar. For ecc there exist
two anti-SPA strategies.

The first strategy aims at making the sequence of group operations seem-
ingly independent from the scalar. In the “double-and-add-always” [7] scalar
multiplication method an addition is performed after each doubling, even if the
corresponding digit of the scalar is zero: This can be done of course in any group,
including the Jacobians of hyperelliptic curves. For curves in odd characteristic
admitting a particular form, the “Montgomery” method [33I37] allows a very fast
computation where the y-coordinate is not used. Analogues of this idea exists
for binary curves [1I30] and for all elliptic curves over prime fields [38].

The second strategy relies on indistinguishable addition and doubling formu-
lae. They exist for many classes of curves, such as those in Hessian [T540] or in
Jacobi Form [28]. E. Brier and M. Joye found such formulae for elliptic curves
over all fields [3]. Another way of pursuing this strategy is to insert dummy
operations: for an even characteristic example see [2].

At the moment of this writing little has been done to protect specifically
a hecc against SPA. The only currently known methods are the generic ones
such as: (i) the insertion of dummy group additions in the scalar multiplication
algorithm (as in the “double-and-add-always” method) or (ii) the insertion of
dummy field operations in the addition and doubling formulae. T. Lange
remarked that the latter can be realized easily and efficiently with the genus
2 affine formulae: this is particularly important for the applications, since the
formulae are simpler than in the genus 3 and 4 cases, and the security of genus
2 curves is better understood.

Henceforth we shall always assume that the scalar multiplication algorithm
has been made immune from SPA by at least one of these two techniques.

In a DPA the side-channel information collected upon processing of several
different inputs is correlated with the value of a boolean function y of the internal
representation of the operands in the cryptographic hardware. The attacker,
which is assumed to know the algorithm, guesses that the hardware will perform
a specific operation at a given point — for example which operand from a table
is reused, or which branch is taken — depending on some part of the secret
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information to be elicited. The inputs are then sorted in two sets according to
the values of x on the corresponding guessed outputs. If the statistical correlation
with the leaked information is good, the guess was correct. This leads to attacks
which require time linear in the length of the cryptographic operation. We refer
the reader to for more details. Short descriptions can also be found in

[7) §3] and [16] §53.2 and 3.3].

The present work is a first attempt to harden hecc against DPA. In the next
section we develop hyperelliptic curve analogues of Coron’s third countermeasure
[7] (point randomisation) and of the curve randomisation method of M. Joye and
C. Tymen [16]. The impact of the recent results of L. Goubin [13] is discussed.
We also discuss the applicability of such techniques in light of: (i) the state of the
art of explicit formulae for divisor addition and (ii) security results for specific
classes of varieties. An appendiz contains an example of explicit transformations
for the curve randomisations in genus 2.

2 The Techniques

2.1 Curve Randomisation

An excellent, low brow introduction to the subject of hyperelliptic curves, with
a detailed derivation of the facts used below, is given in [3I]: Our notation is
slightly different, but conforms to that of [24/2526127J38].

The idea behind curve randomisation techniques is to “scramble” all the bits
of the computation in a (hopefully) unpredictable way. It consists in picking
a random group isomorphic to the one on which the cryptosystem is based,
transferring the computation to it and then pulling the result back.

More formally, let C and C’ be two hyperelliptic curves of genus g > 1 over
a finite field F,. Suppose that ¢ : C — C is an F4-isomorphism which is easily
extended to an Fg-isomorphism of the Jacobians ¢ : J(C) — J (é) Let us
further assume that ¢, together with its inverse, is computable in a reasonable
amount of time, i.e. small with respect to the time of a scalar multiplication. We
do not require a priori the computation time of ¢ to be negligible with respect
to a single group operation. Then instead of computing @ = nD in J(C)(F,),
where n is an integer and D € J(C)(F,), we perform:

Q=0¢""(ne(D)) (1)

so that the bulk of the computation is done in J(é) (Fy), or, since a picture is
worth a thousand words, we note that the following diagram commutes

multiplication by n

T (C)(Fy) T(C)(Fy)
¢l Tfﬁ’l
I (C)(F,) T(C)(F,)

multiplication by n

and we follow it along the longer path.
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The countermeasure is effective if the representations of the images under
¢ of the curve coefficients and of the elements of J(C)(F,) are unpredictably
different from those of their sources. This can be achieved by multiplying the
quantities involved in a computation with randomly chosen numbers (but: see
Subsection 2:3]). We are going to show that, in the case of hyperelliptic curves,
this can be done by a small number of elementary field operations.

We do not discuss the use of random field isomorphisms according to [16]
§4.2]. The treatment carries over with little or no changes, and the method is
computationally heavy, considerably slowing down all field operations. It is not
clear whether it can even be done on a smart card in the ecc case. In hecc,
the ground field being smaller, it is possible that this countermeasure could
be implemented. As there is a potential performance/security trade-off in even
characteristic with curve randomisations (see §[ZT]), especially in the genus 2
case, one might be tempted to reconsider the use of field isomorphisms: However,
divisor randomisation (see §2:2) makes them superfluous.

General curve isomorphisms. We now put in practice the idea just sketched.
Let g > 1 be an integer, and F, be a finite field. Let C,C be two hyperelliptic
curves of genus g defined by Weierstrass equations

C: y’+hx)y— flx)=0 (2)

C Y’ +h(z)y— f(z)=0 ®3)

over F,, where f, f are monic polynomials of degree 2g + 1 in x and h(z), h(z)

are polynomials in 2 of degree at most g. C (and C) has no singular affine points,

i.e. there are no solutions (x,y) € F, x F, which simultaneously satisfy the

equation y2+h(z)y— f(x) = 0 and the partial derivative equations 2y+h(x) = 0

and h'(x)y — f'(x) = 0. This is equivalent to saying that the discriminant of

4f + h?% does not vanish [29, Theorem 1.7]. Analogous conditions holds for C.

Denote by oo the non affine point in the projective completions of C and C. All
F,-isomorphisms of curves ¢ : C — C are, by [29, Proposition 1.2], of the type

¢ ¢ (z,y) = (s72w+b,s” 9y 4 A)) (4)

for some s € F, b € Fy and a polynomial A(z) € F,[z] of degree at most g.

Upon substituting s~z +b and s~(29+1y + A(z) in place of z and ¥ in equation
(B) and comparing with (@) we obtain

h(z) = s*91! (iL(S_2LC +b) + 2A(w)>
" ~ ()
f(z) = s2(9+1) (f(sfzx +b) — A(x)? - h(sin + b)A(z))

whose inversion is
h(z) = s~ 9D n(2) — 2A(2)
fl@) =729t f(d) + s~ P9t Dn(2) A(2) — A(2)? (6)
) -

where @ = s*(z —b



370 R.M. Avanzi

Now ¢ is an isomorphism of C onto C and it induces an isomorphism (which
we also call ¢) of their Jacobians, which is also a group isomorphism. It is a well
known fact that the Jacobian of a curve C is isomorphic to the ideal class group
C1°(C), which is more suitable for direct computations, and for this reason we
want to see see how ¢ operates on the elements of C1°(C).

D. Mumford has introduced a representation of the elements of the latter
group as polynomial pairs, for which D. Cantor [4] provided an explicit arithmetic
algorithm. Any divisor can be written as D =3, s mpP — (3 pcgmp)oo for
a finite subset of points S of C (Fq) called the support of D, the m; being positive
integers, and the degree of D is the integer deg(D) = > p.gmp. Let D be the
unique principal divisor of degree at most ¢ in a given divisor class on C. Then
(the ideal class associated to) D is represented by a unique pair of polynomials
U(t),V(t) € Fy[t] with g > deg, U > deg, V, U monic and such that:

Ut) =[] ¢-ap)mr

PeS
V(zp)=yp forall Pe S (7)

U(t) divides V(t)* +V(t)h(t) — f(t) .

We say that the pair [U(t), V(t)] represents the reduced divisor D. It is deg(D) =
deg(U).

It is clear that we want to find a pair of polynomials U(t),V(t) € F,[t]
which satisfy similar conditions, but for the divisor ¢(D) = > pcsmpd(P) —
(> pesmp)oo in place of D. In other words, we must have:

D= Y mpP— ( ) mp)oo — 2 S mpd(P) — ( ) mp)oo:¢(D)

PES pes pes pes
[U1), V(1) R [U(1),V(t)]

This is very straightforward to obtain. Clearly

ﬁ(t) = H (t—x¢(p))mp = H (t—s_Qacp—b)mP

PES PeS (8)
= s 2%Xpes mPU(SQ(t — b)) = g~ 2des, UU(sz(t — b)) .
Then, V must satisfy V(m¢(p)) = yg(p) for all P € S, in other words

V(s 2ap+b) = s~ @9ty 4 Azp) = s‘(29+1)V(xp) + A(zp)

i.€.



Countermeasures against Differential Power Analysis 371

Equations (B) and (@) give the correct U(t) and V(t). This follows from the
uniqueness of the representation of reduced divisors: In fact U(t) and V/(t) are
defined over F,, degV = degV < degU = degU, and it is straightforward to

verify that U(t) divides V (t)% + V (£)h(t) — f(t).

Odd characteristic. Here we consider the case where I, is a finite field of
odd characteristic. We assume that h(z) = h(z) = 0, since we can transform
the equations by the variable change y — y — h(z)/2 and y — y — h(x)/2. The
advantage in doing so is that Cantor’s algorithm will run faster, and for the same
reason explicit formulae for odd characteristic have only been developed under
this assumption. Then the equations of C,C are of the form

C:y’—fla)=0 (10)
0

C:y'—fl)
which imply, by (@), that A(z) = 0.

If, furthermore, charF, { 29 4+ 1, we can assume that the second most sig-
nificant coefficient of f(z) (and of f(z)), i.e. the coefficient fo, of 29, vanishes

too, since we can perform the variable change z — = — fo,/(2¢g+1). In this case,
moreover, by (@) it must be b = 0, so the isomorphism ¢ takes the simple form

¢+ (z,y) = (s 22,570y (12)

where s € F . (For simplicity, we shall consider only isomorphisms of this kind,

even if charF, | 2g + 1.) The formula for f is
f(z) = 572(29+1)f(52x) .

This randomisation modifies all non-zero coefficients of the Weierstrass equation
(that is, all those who are used in the computation) and of the two polynomials
representing a reduced divisor (except for the leading coefficient of U, which
must remain equal to 1), namely

U(t) = s~ 2des UU(SQt), V(t) = s_(29+1)V(s2t) .

Ezxplicit description, an implementation trick. The method is very fast. First,
we pick a random s € F and compute its multiplicative inverse. They are both
needed: s~! for ¢ and s for ¢~!. We make the computation of ¢ explicit. If

2g—1
fla) =2t + Z fix!
i=0
then

2g—1
f'(x) _ x2g+1 + Z s2i72(2g+1)fixi )
=0
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For U(t) and V(¢) in the general case it is

g—1 g—1
Uty=t+> Ut and V(t)=> Vit’
=0 1=0

so that
g—1 g—1
Uty =19 + Z sE290 40 and  V(t) = Z §2i—= Qg+ 40
i=0 i=0

To apply ¢ to the equation of the curve and to the basis divisor [U(t), V(¢)]
we proceed as follows: Assume we have already s and s~!. We compute s~* for
k=23,...2g4+1and k =2(g+1),2(9+2),...,2(2g+1). This requires 3g+1
multiplications (some can be replaced with squarings). For even k we compute
fogir-kyz = § ¥ fagrronye (ifk # 2) and Ug_p/p = s Uy_/2 (with k < 2g).
If k is odd and < 2g + 1 we multiply V,__1)/2 by s57F to obtain f/'g_(k._l)/g.
Computing f,U and V requires 4¢g multiplications, hence the total amount of
operations required to apply ¢ is 7g+ 1 multiplications. Computing ¢~ requires
only 4g multiplications in F;, bringing the total to 11g + 1.

In the cases g = 2, resp. 3 this randomisation needs 23, resp. 34 field mul-
tiplications (and possibly one inversion), which compares favorably to the costs
of one group addition: in the genus 2 case, according to T. Lange [24] one group
addition requires 25 multiplications and 1 inversion, and in the genus 3 case
J. Pelzl et al. [38] need 76 multiplications and 1 inversion.

We mention an implementation trick to save an inversion each time the device
is used at the price of a multiplication. During the initialisation of the device,
a set (k;,#; ") of randomly chosen elements of F together with their inverses
is stored in the E?PROM. Before each cryptographic operation, two random
indices i # j are picked, and the i-th pair is replaced by (k; - k;, 5;1 . H;l). The
result is used as the (s,s™!) for the curve randomisation in the current session.

Partial conclusions. Curve randomisation in odd characteristic is a fast coun-
termeasure. The total amount of operations required to apply this technique is
either comparable with that of a single group operation or much smaller.

Even characteristic. The discussion in §2Tlapplies in particular to the case of
even characteristic. Let d = [, : Fy]. Since in this case one must have h(z)h(z) #
0 in equations ([2) and (), it is clear that applying the isomorphisms in general
will not be as efficient as in the odd characteristic case.

In place of the fully general isomorphisms [@]) we assume b = 0 and A(z) = 0,

and proceed as at the end of §2.1] The isomorphisms of the form
¢ ¢ (,y) = (572w, s” T y) @)

for generic s € Foa N\ o randomise the coefficients of the equation as follows
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h(z) = s~ 9D n(s2x)
fla) = s72CotD f(s%)
As in §[ZT] we make this explicit: if

2g—1 g
f({)f) = [17294-1 + Z fixi and h(.’L’) _ thxl
i=0 i=0
then
2g—1 g
fx) =29+ 4 Z §272C9+D) f.00 and  h(z) = Zs2i7(2g+1)hixi
=0 i=0

and the formulae for U,V are the same as in §ZI1 All the coefficients of the
equation and of the divisor are then multiplied by random constants. In even
characteristic we must compute also the coefficients of h(x) from those of h(z).
Hence, at most g + 1 field operations more are required than in the odd charac-
teristic case, bringing the cost of the computation of ¢ to at most 8¢+ 2 multipli-
cations, after s has been randomly chosen and s~! computed. The computation
of ¢~ still requires 4¢g multiplications. The total cost of this randomisation is
thus 12¢g+2 field multiplications and one inversion: The implementation trick de-
scribed in §[2.I] not necessary in even characteristic, inversion being much faster
in this case.

Restricting h: h constant. In even characteristic often the coefficients of h(x)
are restricted for performance reasons. In this paragraph we consider the case
where h(z) is a non-zero constant. Equation (B) implies that A (z) will also be a
non-zero constant.

It is an established fact in algebraic geometry that curves of equation y? +
cy = f(x) with deg f = 5 and ¢ # 0 are supersingular [I1, Theorem 9] and so
are not suitable for the cryptographic applications we have in mind.

On the other hand there are no hyperelliptic supersingular curves of genus
3 in characteristic 2 [39], so curves of the form y? + cy = f(z) where deg f = 7
and ¢ # 0 do not appear to be weak provided that parameters as extension
degree and group order are suitably chosen. Now, even though in [38] a very
fast doubling formula is given for the doubling in the case h(z) = 1, J. Pelzl
has privately communicated to us that in the generic case where h(x) is a non-
zero constant h(z) = ¢ € Fya doubling speed can still be improved dramatically.
Trivially, B(m) = 5~ (29t ¢ = s~ 7¢. This makes the genus 3 case important.

Restricting h: h non-constant but defined over Fy. Another technique for gaining
performance is to choose h(z) non-constant but defined over Fy (see for example
and [26]). By (@) this leads to the question: if h(z) € Fa[x], for which
elements b € Fy and s € F is it h(z) = s~9HDh(s%(z — b)) € Fao[z]?

The leading coefficient of h(z) equals s~" where r = (2g 4+ 1) — 2degh, and
since it cannot vanish, it is 1, i.e. s = 1. Now r is an odd positive integer
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bounded by 2g — 1. The cryptosystem must withstand P. Gaudry’s low genus al-
gorithm for computing discrete logarithms in hyperelliptic Jacobians . Hence
g must be small, in fact g < 4, so r < 7. This implies that s can take only very
few possible values, making superfluous the effort of randomising it.

Remark: In order to make Weil Descent attacks [[T10] infeasible, the extension
degree d is usually taken to be a large prime number p Z 160/g or twice a prime
p % 80/g. Recall also that g < 4. The possible values of s are limited to the roots
of irreducible factors of X" — 1 of degree dividing d. If d = p Z 160/g > 40,
which is also the preferred case, then s = 1. If d = 2p with p £ 80/g > 20, s can
only be a oot of a factor of X" — 1 of degree at most 2 and irreducible over Fs.
A quick verification of such factors (recall that v is odd and < 7) implies that
either s =1 orr = 3 and s®> + s+ 1 = 0. If two coefficients of h(x) are equal
to 1, forcing the corresponding coefficients of iz(x) to be also equal to 1 implies
always s = 1.

Let o be the Frobenius automorphism of F,/Fy, i.e. a = a?. Now h(z) =
h(z—b) € Fy[z], hence h(—b"") = h(—b)*" = h(—b) € Fy for all j. In other words
all distinct conjugates of —b are roots of h(x) — h(—b) = 0, and if b & Fy there
are at least p £ 80/g > 20 of such conjugates, including —b. But the degree of
h, as we already know, is at most g < 4, and this forces b € Fy. There are only
two choices for b, making useless to consider its randomisation.

We see that the isomorphisms we can use are of the form

¢ ¢ (z,y) = (z,y+ Al2))

where the polynomial A(z) € F,[x] has degree at most ¢g. The situation is similar
to that for elliptic curves as described in the already cited paper of M. Joye
and C. Tymen: we can efficiently randomise only one of the two polynomials
(V, whereas U will be left untouched), or, in other words, only a half of the
coordinates. In fact, by (@) not all coefficients of f are randomised in f , increasing
the likelihood of successful bit-correlations if this countermeasure is used alone.

Partial conclusions. We conclude that for genus 2 hyperelliptic curves in char-
acteristic 2, curve randomisation is not adequate if one wants to force the coef-
ficients ofﬁ to lie outside Fy.

In the genus 3 case curves of equation y? + cy = f(x) can be randomised
obtaining good performance and security.

In all other cases, we recommend other techniques, such as divisor randomi-
sation, which also works in odd characteristic. We sketch it in the next section
in the case of genus 2.

2.2 Divisor Randomisation in Genus 2

Divisor randomisation works by randomising the bits of the representation of a
reduced divisor, which can be either the base group element of the cryptosystem
or any intermediate result of the computation of a scalar multiplication. This
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technique does not scramble the bits of the internal representations of the coeffi-
cients of the curve. It can be used whenever a group element can be represented
in several different ways. Notable examples are the projective coordinates on
elliptic curves: two triples (X,Y, Z) and (X', Y”, Z’) represent the same point if
and only if there exists a non zero element s in the base field such that X = sX’,
Y =sY’ and Z = sZ’. With Jacobian coordinates [5], two triples (X,Y, Z) and
(X', Y, X') represent the same point if and only if X = s?2X’, Y = s3Y’ and
7 =sZ'.

Recently, alternative coordinate systems for genus 2 hyperelliptic curves have
been proposed: An inversion-free system by Miyamoto et al. [32] which operates
on the hyperelliptic analogue of projective coordinates, later extended and im-
proved by Lange [25], who also developed an analogue of Jacobian coordinates,
called the new (or weighted) coordinates [26]. We are not aware of similar coor-
dinate systems for genus 3 curves. Furthermore, as the genus of the considered
curve increases, the size of the base field decreases, and the cost of a field inversion
relative to a field multiplication also decreases quickly. This makes inversion-free
formulae in genus at least 3, not so desirable from the point of view of raw per-
formance, because they trade a single inversion for a lot more multiplications
than the affine formulae.

In projective coordinates a divisor class D with associated reduced polyno-
mial pair [U(t), V(t)] is represented as a quintuple [Uy, Uy, V1, Vi, Z] where

Uy Uoy Vi Vo
Uty=t*+ —t+— and V()= —5t+— .
(t) + ~ + - an (t) 7 + 7
The randomisation in this case consists in picking a random s € F; and by
performing the following replacement

(U1, Uo, V1, Vo, Z] = [sU1, sUy, sV1,sVo, 52] .

In new (weighted) coordinates a divisor class is represented by means of six
coordinates Uy, Uy, Vi, Vo, Z1, Z2] where

_ N T
732y 737y

Ut)y=t"+ —5t+—5 and V()

To blind the base point or an intermediate computation, two elements s1, so are
picked in F at random and the following substitution is performed:

[U13U07V17%3217Z2] = [S%UlvS%UOa5?52V178§$2%75121782Z2] .

If (some or all of) the additional coordinates z1, z9, 23 and z4 are used — which
satisfy z; = 212, Z9 = 2227 z3 = Z1Z5 and z4 = 2129 — then they must also be
updated: the fastest way is to recompute them from Z; and Z5 by two squarings
and two multiplications.
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2.3 Goubin’s Attack May Force Further Blinding

Recently L. Goubin [I3] has pointed out a potential weakness of some ecc ran-
domisation procedures, including Coron’s third and Joye-Tymen’s, when imple-
mented on systems where the secret scalar is fixed and the base of the scalar
multiplication (the message) can be chosen. Since our techniques generalise the
above ones, it is natural to investigate how Goubin’s ideas might affect our work.

His attack is based on the randomisation of 0 by multiplication by a constant
or by field isomorphism being still 0. It relies also on the fact that the scalar
multiplication algorithm has a fixed sequence of group operations for a given
scalar — even after removing any dummy operations. (It should work also if the
number of possible operations sequences for a given scalar is small enough.)

Suppose that the most significant bits n,,n,_1,... ,n;41 of the secret scalar
n are known and that we want to discover the next bit n;. Assume also that a
chosen message attack can be set up to obtain in a specific step of the scalar
multiplication — namely the one corresponding to the processing of n; — a point
or a divisor with one or more coordinates equal to zero, provided that n; has
been guessed correctly (that divisor can be D where D is the “message” and ¢t =
(np,Mp—1,... ,n41,15)2). The side-channel trace correlation may reveal if the
guess was correct even in presence of multiplicative randomisation procedures,
because some multiplications by zero will occur in any case. In particular, this
can affect the random isomorphisms of the form ¢ : (x,y) — (S_2£C, s_(29+1)y)
and the divisor randomisation techniques of Subsection [2.2]

An approach to thwart Goubin’s attack could use the more general isomor-
phisms @) with b, A(z) # 0 to randomise also the vanishing coefficients of the
divisors: this has the disadvantage of requiring curve equations in general form
and thus slower formulae for the operations.

There is a development of Goubin’s ideas which might be even more serious.
We first fix some notation: A is the large prime order subgroup of C1°(C)(F,)
used in the cryptosystem and ¢ its order.

A variant of Goubin’s attack may exploit the fact that the basic explicit
formulae for small genus hyperelliptic curves only deal with the most common
cases (cfr. [2427]38]). They do not hold if the divisors given as input to a group
operation satisfy exceptional conditions, such as:

(i) If the reduced divisor D;, for i = 1,2, is represented by the polynomial pair
[U;, V;], then the greatest common divisor of Uy and Us is non-constant or,
equivalently, their resultant is vanishing.

In this case we say that D; and Dy collide. This happens if the supports
of Dy and of either Dy or — D5 have at least one point in common.

(ii) deg(D;) < g or, equivalently, deg(U;) < g (this applies to additions as well
as to doublings).

Such situations occur in practice with very small probability (O(q~!) for curves
over F,), hence no separate formulae for these cases are implemented and either
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Cantor’s algorithm or formulae with quite different characteristics are used].
Since the characterising properties of these divisors are of geometric nature,
they are preserved under curve isomorphisms. Their occurrence may thus be
induced at prescribed points to verify the guesses of the bits of the scalar. At
least in theory, the attacker guesses that at some point the scalar multiplication
algorithm adds D to tD (resp. doubles ¢D) and therefore chooses D to collide
with ¢D (resp. deg(tD) < g). We do not know, except for very simple cases
(i.e. |t| < g), how to produce for a given ¢ (with ¢t t) a divisor D colliding with
tD (reduced) — we suspect that it is in general a hard problem. On the other
hand it is very easy to find D such that deg(¢tD) < g: just pick any D’ € A with
deg(D’) < g, find an integer s with st = 1 (mod ¢) and put D = sD’. Then
tD = D’ and, if the doubling formula for the exceptional case is distinguishable
from the generic one, the attack can be launched.

This represents an obvious danger with affine coordinates: if one of the above
exceptional conditions occurs, the most common case formulae cannot be used,
to avoid a division by zero. With inversion-free coordinate systems the situation
is only apparently different: one can just use only the most common case formulae
and check at the end of the scalar multiplication if the divisor belongs to the
curve — but also in that case anomalous behaviour of the device at the end of
the scalar multiplication could be detected.

We therefore need additional scalar and message blinding methods.

‘We briefly discuss scalar blinding methods. Their purpose is to render un-
predictable the addition chain used in the scalar multiplication, thus preventing
the attacker to guess for which integers ¢ group operations of the type D + tD
or 2(¢tD) are actually performed.

The first is Coron’s first countermeasure [[7], i.e. the replacement of the scalar
n with n+ k¢ in nD for a random integer k. This technique can be traced back to
[20], and was shown [36] to leave a bias in the least significant bits of the scalar.
B. Msller [34] combines it (only in the ecc case) with an idea of C. Clavier and
M. Joye, and suggests the computation of nD = (n + ki + k2f)D — k1 D, where
k1 and ko are two suitably sized random numbers: k; and ko should be large
enough to make L. Goubin’s attack not palatable, yet not too big, to leave the
overhead tolerable (for example ki, ko ~ 232 are good choices if £ ~ 2169).

For a completely different technique see .

For message blinding, a hecc analogue of Coron’s second method [7] consists
in replacing the computation of nD with that of n(D + R) — S, where R € A
is a secret divisor for which S = nR is known. A set of secret divisor pairs
(R;, Si) € A x A with S; = nR; can be stored in the smart card at initialisation
time, and at each run both elements of a randomly chosen pair are multiplied
by the same small signed scalar and added to the respective elements of another
pair. The result is then used to randomise the scalar multiplication.

1 To provide explicit and indistinguishable formulae for all cases would be a formidable
feat — and would probably slow down considerably the cryptosystem.
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Suppose that a computation involving tD has to be done during the scalar
multiplication, either D 4 ¢D or 2(¢D), and that either D collides with ¢D (this
is relevant only to the addition D + tD) or deg(tD) < g — as wished by the
attacker. If D has been replaced at the beginning by D+ R for a randomly chosen
point R, then D + R and #(D + R) will collide with probability O(qg~!) (this is
actually a conjecture which has been extensively confirmed experimentally on
small curves), resp. deg(t(D + R)) = g also with probability O(q~!): The last
statement holds because ¢(D + R) is in practice a random point, which implies
also that, even if tD had some zero coordinates, a fixed coordinate of ¢(D + R)
would be zero with probability ¢~ !.

We infer that this type of message blinding (which, if used alone, might arouse
suspicion) thwarts Goubin’s attack. Due to a similar underlying philosophy, ad-
ditional message blinding should be effective also against some hecc analogue of
the “exceptional procedure attack” [14].

To prevent a variant of Goubin’s attack, we recommend to use at least an
additional scalar or message blinding method besides our randomisation proce-
dures. The hyperelliptic analogue of Coron’s second countermeasure, being less
expensive than scalar blinding, looks particularly attractive. The isomorphism ¢
need not be of the most general type described in [2-1], but the conclusions of[2-1]
and the caveats of [2-1 still apply.

3 Conclusions

We proposed two methods to blind the base divisor class for hyperelliptic curve
cryptosystems, in order to provide resistance against DPA.

The first method consists in transferring the critical computation to the
Jacobian of a different randomly chosen isomorphic curve. It can be applied
to curves of all genera.

The second method is a hyperelliptic analogue of Coron’s third countermea-
sure. It applies only to families of curves for which we know explicit formulae
for hyperelliptic analogues of elliptic curve projective and Jacobian coordinates.
Explicit examples in the case of genus 2 have been worked out in detail.

These techniques are easy to implement and do not impact the performance
significantly. In fact their cost is at most that of a single group addition.

In conjunction with suitable additional scalar and message blinding tech-
niques, they can be made resistant against Goubin’s recent chosen message at-
tack, as well as against a possibly more serious variant of the latter based on the
structure of the divisors on hyperelliptic curves.
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Appendix: Explicit Transformations for the Curve
Randomisation for Genus 2

As an example, in this appendix we write down the transformations for the
curve randomisation method explained in Subsection 21l for g = 2. In view of
the results of §21] we consider here only the curve isomorphism of type (I2))
where the equations of C and C are given by

C:y’+h@y—flz)=0 and C : y>+h(x)y— flz)=0 .
The polynomials f(z) and h(x) are of the form
f(x) = 2° + fax* + fz2® + for® + fiz + fo and
h(z) = hox® + hyx + ho .

Their images are
fl@)=a®+s2fuxt + 574 faa® + 570 foa® + s 8 frz + 57 0f; and
h(z) = s thoa?® + s 3hyx + s °hg .
If the base divisor is given by D = [U(t), V(t)] with deg(U) = 2,
Ut)y=t*4+ Uit +Uy and V(t)=Vit+Vj
then its image [U(t), V (t)] is
U(t) =2+ 52Ut + s *Uy and f/(t) =3Vt + sV, .

If deg(U) = 1, i.e. U(t) = t + Uy, then its image is U(t) = t + s~ 2Up, whereas
the image of V'(¢) is independent of the degree: in this case V' (t) = V; and thus
f/(t) = 57°V}. The inverse transformation from ¢(D) to D is obvious.

The total number of field operations is at most 26 multiplications in the even
characteristic case, 23 multiplications in odd characteristic (because h = 0), and
one inversion (but: see end of 2.1J).
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