
A New Algorithm for Switching from Arithmetic
to Boolean Masking
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Abstract. To protect a cryptographic algorithm against Differential
Power Analysis, a general method consists in masking all intermediate
data with a random value. When a cryptographic algorithm combines
boolean operations with arithmetic operations, it is then necessary to
perform conversions between boolean masking and arithmetic masking.
A very efficient method was proposed by Louis Goubin in [6] to convert
from boolean masking to arithmetic masking. However, the method in
[6] for converting from arithmetic to boolean masking is less efficient. In
some implementations, this conversion can be a bottleneck. In this paper,
we propose an improved algorithm to convert from arithmetic masking
to boolean masking. Our method can be applied to encryption schemes
such as IDEA and RC6, and hashing algorithms such as SHA-1.

1 Introduction

The concept of Differential Power Analysis was introduced by Paul Kocher and
al. in 1998 [7,8]. It consists in extracting information about the secret key of a
cryptographic algorithm, by studying the power consumption of the electronic
device during the execution of the algorithm. The attack was first described on
the DES encryption scheme, then extended to other symmetrical cryptosystems
such as the AES candidates [2], and also to public-key cryptosystems [5,11].

Subsequently, some countermeasures have been developed. In [3], Chari and
al. proposed an approach which consists in splitting all the intermediate variables
into a given number of shares, so that the power leakage of an individual share
does not reveal any information to the attacker. They show that the number of
power curves needed to mount an attack grows exponentially with the number
of shares. A similar approach was also proposed by Goubin and al. in [5]. The
drawback of this approach is that it greatly increases the computation time and
the memory needed. This is a crucial issue for constrained environments such as
smart-cards.

Actually, when only two shares are used, this approach consists in masking
all intermediary data with a random. This technique was evaluated by Messerges
in [10] for the five remaining AES candidates. For algorithms that combine
boolean and arithmetic operations, two different kinds of masking must be used:
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boolean masking and arithmetic masking. This is typically the case for encryp-
tion schemes such as IDEA [9] and RC6 [12], and hashing algorithms such as
SHA-1 [13]. It is therefore necessary to perform conversions between boolean
masking and arithmetic masking. The conversion itself must also be resistant
against Differential Power Analysis. Messerges proposed in [10] an algorithm
for converting between boolean masking to arithmetic masking and conversely.
However, it was shown in [4] that both conversions were vulnerable to a more
sophisticated Differential Power Analysis.

A new conversion algorithm was proposed by Goubin in [6]. In both direc-
tions, the conversion algorithm is such that all intermediary variable is randomly
distributed; therefore, the conversion is provably resistant to first order DPA,
in which no attempt is made to correlate the power consumption at different
execution times. Moreover, the conversion from boolean masking to arithmetic
masking is very efficient. However, the conversion from arithmetic masking to
boolean masking is less efficient, as it requires a number of operations linear in
the bit-size of the data to be masked. This conversion can be a bottleneck in
some implementations. In this paper, we propose a secure and efficient method
to convert from arithmetic masking to boolean masking.

2 Definitions

2.1 Boolean Masking and Arithmetic Masking

In this section we recall some basic definitions. We assume that the size of all
intermediate variables is k bits. A typical value for k is 32 bits, as for SHA-1
and MD-5. The masking technique introduced in [3] consists in splitting each in-
termediate data that appears in the cryptographic algorithm. Then, an attacker
must analyze multiple point distributions, which requires a number of power
curves exponential in the number of shares. As in [10], we apply this technique
with two shares. For algorithms that combine boolean and arithmetic functions,
two different kinds of masking have to be used :

Definition 1. We say that a data x has a boolean masking when x is written
as x = x′ ⊕ r where r is uniformly distributed.

For example, assume that given x1, x2, we must compute x3 = x1 ⊕ x2 in a
secure way. Then from the masked values x′

1 and x′
2, such that x1 = x′

1⊕ r1 and
x2 = x′

2 ⊕ r2, we compute the two shares x′
3 = x′

1 ⊕ x′
2 and r3 = r1 ⊕ r2, so that

x3 = x′
3 ⊕ r3. Each intermediary variable is then uniformly distributed, and the

procedure is resistant against first order DPA.

Definition 2. We say that a data x has an arithmetic masking when x is written
as x = A + r mod 2k where k is the size of the register and r is uniformly
distributed.

For example, assume that given x1, x2, we must compute x3 = x1 + x2 in a
secure way. Then from the masked values x′

1 and x′
2, such that x1 = x′

1 + r1 and
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x2 = x′
2 + r2, we compute the two shares x′

3 = x′
1 + x′

2 and r3 = r1 + r2, so that
x3 = x′

3 + r3.
For algorithms that combine boolean operations and arithmetic operations,

it is therefore necessary to provide a secure conversion algorithms in both direc-
tions.

2.2 From Boolean Masking to Arithmetic Masking

A very efficient method for converting from boolean masking to arithmetic mask-
ing is given in [6]. It requires a number of elementary operations which is inde-
pendent from the k, the data bit-size. The method is based on the fact that for
all x′ the function

fx′(r) = (x′ ⊕ r)− r

is affine in r, which means that for all x′, r1, r2,

fx′(r1 ⊕ r2) = fx′(r1)⊕ fx′(r2)⊕ x′

Therefore, given x′, r such that x = x′ ⊕ r, we generate a random k-bit integer
r1, and we can compute A = x− r mod 2k as:

A = fx′(r) = fx′((r1 ⊕ r)⊕ r1) = fx′(r1 ⊕ r)⊕ (fx′(r1)⊕ x′)

Since r1 and r1 ⊕ r have the uniform distribution, the conversion is resistant
against DPA. We refer to [6] for the proof that f is affine and for a detailed
description of the algorithm.

2.3 From Arithmetic to Boolean Masking

Louis Goubin proposed in [6] a method for converting from arithmetic to boolean
masking, but the method is less efficient than from boolean to arithmetic. In
particular, it requires a number of operations linear in the size of the registers;
namely for a k-bit register, the number of k-bit operations is 5k + 5.

3 Our Conversion Algorithm

We propose a new conversion algorithm from arithmetic to boolean masking
which is generally more efficient than Goubin’s method. Our method is based
on pre-computed tables. First, we describe our method for small register size k
(typically, k = 4).

3.1 Conversion with Small Register Size

The algorithm uses a pre-computed table G of 2k variables of k bits.
Algorithm 1: table G generation.
Output: a table G and a random r.



92 J.-S. Coron and A. Tchulkine

1. Generate a random k-bit r.
2. For A = 0 to 2k − 1 do

G[A]← (A + r)⊕ r
3. Output G and r.

Using this table, it is easy to convert from arithmetic to boolean masking:
Algorithm 2: conversion from arithmetic to boolean masking.
Input: (A, r), such that x = A + r.
Output: (x′, r), such that x = x′ ⊕ r.

1. Return x′ = G[A].

It is clear that the algorithm is resistant to first-order DPA, as all intermedi-
ary variables have the uniform distribution. In the following table, we compare
our algorithm with Goubin’s algorithm. The pre-computation time and conver-
sion time is measured in number of k-bit operations.

Algorithm 2 Goubin’s method
Pre-computation time 2k+1 0
Conversion time 1 5k + 5
Table size 2k 0

The pre-computation time and memory required is the main limitation for
algorithm 2, which is only feasible for conversion with small sizes, such as for
example k = 4 or k = 8 bits. However, the table has to be computed only once for
each new execution of the cryptographic algorithm; any subsequent conversion
will require only one operation, instead of 5k+5 for Goubin’s method. Therefore,
algorithm 2 will be more efficient when the number n of conversion during the
execution of a cryptographic algorithm is greater than:

n >
2k+1

5k + 4

In this case, our method will be faster with a factor:

n · (5k + 5)
2k+1 + n

For example, with k = 8 bits variable size, and n = 24 conversions, algorithm 2
is roughly two times faster than Goubin’s method.

3.2 Conversion for � · k-Bit Variables Using two k-Bit Tables

In this section, we show how to extend the previous algorithm in order to perform
conversions for larger sizes. We consider variables of size � · k bits, and we use 2
tables with 2k variables each. For example, for 32 bit conversions, we can take
� = 8 and k = 4.
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The idea of the algorithm is the following. We receive as input two � · k-bit
variables A and R, such that x = A+R mod 2�·k. Our goal is to obtain x′ such
that x = x′⊕R, in such a way that every intermediary variable has the uniform
distribution. Let split R into R1‖R2, with R1 of size (� − 1) · k bits, and R2 of
size k bits. Then, given a random k-bit integer r, we let

A← (A− r) + R2 mod 2�k

Splitting A into A1‖A2, where A1 is of size (�− 1) · k bits, we now have:

x = (A1‖A2) + (R1‖r) mod 2�k

Then, if A2 + r ≥ 2k, we let A1 ← A1 + 1 mod 2(�−1)k. This is equivalent to
computing the carry from the addition A2 + r and then adding this carry to A1.
Then, splitting x into x1‖x2, where x1 is of size (�− 1) · k bits, we have:

x1 = A1 + R1 mod 2(�−1)k and x2 = A2 + r mod 2k

Then we can use the table G generated by algorithm 2 to convert x2 from
arithmetic masking to boolean masking. More precisely, we let x′

2 ← G[A2],
which gives:

x2 = x′
2 ⊕ r

Then we let x′
2 ← (x′

2 ⊕R2)⊕ r so that:

x2 = x′
2 ⊕R2

Then we apply the same method recursively to (A1, R1) in order to obtain x′
1

such that x1 = x′
1 ⊕R1, so that letting x′ = x′

1‖x′
2, we have:

x = x′ ⊕R

as required.
Actually, we can not compute the carry from A2 + r directly, because this

would leak some information about x. Instead, we use a randomized carry table
C, computed in the following way:

Algorithm 3: carry table C generation.
Input: a random r of k bits.
Output: a table C and a random γ of k bits.

1. Generate a random k-bit γ.
2. For A = 0 to 2k − 1 do

C[A]←
{

γ, if A + r < 2k

γ + 1 mod 2k, if A + r ≥ 2k

3. Output C and γ.

Then, instead of testing if A2 + r ≥ 2k, we let:

A1 ← A1 + C[A2]− γ mod 2(�−1)k
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This gives the following conversion algorithm, based on the pre-computed
tables G and C of algorithms 1 and 3:

Algorithm 4: Conversion with � · k bit variable:
Input: (A, R), such that x = A+R, and r, γ generated from algorithms 1 and 3.
Output: x′, such that x = x′ ⊕R.

1. A← A− r mod 2�k.
2. Let denote R = R1‖R2, where R1 is of size (�− 1)k bits.
3. Let A← A + R2 mod 2�k

4. If � = 1, then let x′ ← G[A]⊕R2, then x′ ← x′ ⊕ r and return x′.
5. Otherwise, let A = A1‖A2
6. Let A1 ← A1 + C[A2] mod 2(�−1)k

7. Let A1 ← A1 − γ mod 2(�−1)k

8. Let x′
2 ← G[A2]⊕R2.

9. Let x′
2 ← x′

2 ⊕ r.
10. Apply algorithm 4 recursively with (A1, R1) to obtain x′

1.
11. Return x′ = x′

1‖x′
2

As previously, this conversion method is resistant to first-order DPA, because
all intermediary variables have the uniform distribution. We want to compare
the efficiency of our method with Goubin’s method. The drawback of our method
is that we need to pre-compute two tables of 2k values. The advantage of our
method is that some computation is done on small k-bits variables, whereas
Goubin’s method always works with full � · k bits variables. Therefore, we must
take into account the register size of the micro-processor. Our method is likely to
be more advantageous on a 8-bit microprocessor, which is now the most common
smart-card platform, than on a 32-bit microprocessor.

To make a practical comparison, we take k = 4, and we distinguish two kinds
of microprocessor: 8-bit and 32-bit, and two variable sizes: 8-bits and 32-bits.
We take k = 4 because the method is easier to implement for for this value of k,
but a better trade-off may be possible. We assume that an elementary operation
on a 32 bit variables requires 4 elementary operations on a 8 bit microprocessor.
For example, Goubin’s method on 32-bit variables on a 8 bit microprocessor
will require 4 · (5 · 32 + 5) = 660 operations. More generally, we denote by Ti,j

(resp. Gi,j) our method (resp. Goubin’s method) for i-bit variables with a j-
bit microprocessor. The following table summarizes the number of steps in all
possible cases:

T8,8 T8,32 T32,8 T32,32 G8,8 G8,32 G32,8 G32,32

Pre-computation time 64 64 64 64 0 0 0 0
Conversion time 10 10 76 40 45 45 660 165
Table size 32 32 32 32 0 0 0 0

As previously, the efficiency improvement depends on how frequently we re-
compute the randomized tables. If we compute the randomized tables only once
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at the beginning of the cryptographic algorithm, then our method will always
be more efficient if there are at least two subsequent conversions. But if we
choose to re-compute the tables before each conversion, then Goubin’s method
is more efficient for 8-bit variables, whereas our method is more efficient for 32-
bit variables. Our method is particularly advantageous for 32-bit conversions on
a 8-bit microprocessor: our method (64 + 76 operations) is then 4.7 times faster
than Goubin’s method (660 operations).

4 Application to SHA-1

4.1 Overview of SHA-1

SHA-1 is a hash function introduced by the American National Institute for
Standards and Technology [13] in 1995. The description of SHA-1 consists of a
general iteration procedure based on a compression function

F : {0, 1}512 × {0, 1}160 → {0, 1}160

In the following we give a very general overview of the algorithm (see [13] for
details).

General Iteration Procedure:

1. Pad the message, so that its length is a multiple of the size of the compression
function, that is 512 bits.

2. Initialize the five 32-bit chaining variables A, B, C, D, E with a given IV
value.

3. For each message block M of 512 bits, let

(A, B, C, D, E)← F (M, (A, B, C, D, E)) + (A, B, C, D, E)

where F is the compression function.
4. Output the hash value A‖B‖C‖D‖E.

Compression Function F :

1. Expand the 512-bit message block M into 80 words Mi of 32 bits.
2. For i = 0 to 79 do:

(A, B, C, D, E)← (Mi + rot5(A) + fi(B, C, D) + E + Ki,

A, rot30(B), C, D)

where rotj denotes left rotation by j bits, Ki are constants and:

fi(X, Y, Z) = (X&Y )|(¬X&Z), 0 ≤ i ≤ 19
fi(X, Y, Z) = X ⊕ Y ⊕ Z, 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X, Y, Z) = (X&Y )|(X&Z)|(Y &Z), 40 ≤ i ≤ 59

We see that SHA-1 combines boolean operations with arithmetic operations.



96 J.-S. Coron and A. Tchulkine

4.2 Motivation

The SHA-1 hash function can be used for MAC algorithms, for example:

MACK(x) = SHA-1(K1‖x‖K2)

or for the HMAC [1] nested construction:

HMACK(x) = SHA-1(K2‖SHA-1(x‖K1))

where K = K1‖K2 is a secret-key. In this case, the implementation of SHA-1
has to be made resistant against DPA, otherwise a straightforward DPA attack
would recover the secret-key K.

4.3 Implementation Result

In the following, we estimate the number of elementary operations which are
required to have an implementation of SHA-1 resistant against DPA. Without
DPA countermeasure, each of the 80 steps in the compression function requires
roughly 15 elementary 32-bit operations. The DPA countermeasure requires to
split each variable into 2 shares; this leads to 30 elementary operations. Moreover,
assuming that A, B, C, D and E have initially a boolean masking, we need to
convert fi(B, C, D), rot5(A) and E into arithmetic masking, then the sum Mi +
rot5(A)+fi(B, C, D)+E +Ki back to boolean masking. This gives 3 boolean to
arithmetic conversions, each requiring 7 operations using [6], and one arithmetic
to boolean conversion. Therefore, each step requires 51 elementary operations
on 32-bit variables (or 204 operations on 8-bit variables)1, together with one
arithmetic to boolean conversion.

In the following table, we compare the efficiency of an implementation
of SHA-1 resistant against DPA, using our arithmetic to boolean conversion
method, and using Goubin’s method, for 8-bit and 32-bit micro-processor. The
time is measured in number of elementary operations for each of the 80 steps
of the compression function. For our arithmetic to boolean conversion, we re-
compute the randomized tables before each new conversion. This means that us-
ing our method, a 32-bit arithmetic to boolean conversion takes 140 elementary
operations on a 8-bit microprocessor, and 104 operations on a 32-bit micropro-
cessor.

8-bit micro 32-bit micro
Our method 344 155
Goubin’s method 864 216

1 As previously, we assume that a 32-bit operation on a 8-bit micro-processor requires
4 elementary operations.
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5 Conclusion

We have described a new conversion algorithm from arithmetic to boolean mask-
ing, which is generally more efficient than Goubin’s algorithm. Our new algo-
rithm is particularly interesting for 32-bit conversions on a 8-bit microprocessor.
For example, for SHA-1 hash function, the previous table shows that an imple-
mentation secure against DPA will be roughly 2.7 times faster using our method
than using Goubin’s method.
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