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1. Introduction

We have seen an explosive growth of the Internet in the past two decades. As of
January 2002, the Internet connected over 147 million computers [15]. With this
tremendous growth of the Internet, we have become more and more dependent on
the it for various activities of our lives. The Internet has revolutionized the way we
seek, process, and share information; the way we work; the way we do business; and
has made geographical distances irrelevant for many purposes. Hence, it has become
extremely important to secure the availability, integrity, and confidentiality of our
computer network resources connected to the Internet.

Our computer network resources are more vulnerable when our network is part of
the Internet than when our network is isolated, because our computers are potentially
accessible to millions of users around the world when they are part of the Internet.
Hence it is critical to protect our computer resources from compromise, to protect the
integrity of stored data from malicious users who try to steal, corrupt, or otherwise
abuse the data. Towards this goal, network intrusion detection systems are being
developed and deployed.

Integrated Network Based Ohio University Network Detective Service (INBOUNDS)),
is an intrusion detection system being developed at Ohio University. This thesis de-
tails the development of a new intrusion detection approach for the INBOUNDS
system.

We organize this thesis as follows. In this chapter, we give background information
on intrusion detection systems, and discuss some of the current approaches in building

them. We discuss the INBOUNDS system and the statistical approach for intrusion
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detection used earlier in INBOUNDS. We then outline some of the limitations of
this approach, and introduce Self-Organizing Maps, which form the basis for our new
approach. In the second chapter, we describe the design of the Self-Organizing Map
based module that we have developed, and how it fits in the INBOUNDS system as a
whole. In the third chapter, we present our experimental results, detailing some of the
intrusions detected successfully by our module. The final chapter gives conclusions

and some recommendations for future work.

1.1 Intrusion Detection Systems

An “intrusion” of a resource is defined as “any set of actions that attempt to
compromise the integrity, confidentiality, or availability of the resource” [39] and
computer intrusion detection is defined as “the problem of identifying individuals who
are using a computer system without authorization, and those who have legitimate
access to the system but are abusing their privileges”[19]. Thus, the primary goal
of a network intrusion detection system is to monitor a specific host computer or a
network for intrusions, and to report detected intrusions.

An Intrusion Detection System (IDS) can be classified based on its scope of oper-
ation into host-based, multi-host-based, or network-based IDS. In a host-based IDS,
the IDS runs on a host computer and monitors only the network activities of that
particular host. A multi-host-based IDS has a hierarchical architecture, with host-
based IDSs running on individual hosts and communicating the network activities
they monitor to a master host. The multi-host-based IDS that runs on the master
host corroborates the information provided by multiple hosts, and analyzes activity
patterns of the network as a whole. In a network-based IDS, the IDS is run on a host
that passively monitors the whole network.

In host-based and multi-host-based IDSs, an intrusion detection module has to
be running on the monitored hosts, and the hosts are “aware” of the presence of

such a module. In a network-based IDS however, intrusion detection modules are run
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passively on a single-host that monitors the entire network; the hosts in the network
may not be “aware” of the presence of an IDS in their network. An IDS can also be
classified based on its intrusion detection approach into misuse detection or anomaly
detection IDS.
1.1.1 Misuse Detection

An IDS based on misuse detection stores the network activity patterns of known
intrusions as intrusion “signature”’s in a database. The signature of an intrusion
is the unique bit pattern that can be observed in the network when that intrusion
occurs. A misuse detection IDS runs a pattern matching program that matches the
network activity pattern of a live network connection with the signatures of all known
intrusions. If a matching signature is found, the network connection is classified as
an intrusion. Misuse detection IDSs are simple to configure and use, and are popular
in the network security community.

The advantages of misuse detection IDSs are that they can detect intrusions with
a fair amount of certainty, and can detect all intrusions whose signatures are available.
However their disadvantage is that they cannot detect intrusions whose signatures are
not in their database. Any new intrusion for which a signature is not available will
go un-detected.
1.1.2 Anomaly Detection

An IDS based on anomaly detection identifies critical network activity parameters
to monitor in a network. It then builds profiles storing normal operational values
for the identified parameters. An intrusion is detected when a network activity is
observed whose parameter values are sufficiently anomalous from the stored profile.

The advantage of anomaly detection IDSs is that they can detect never before
seen intrusions. The disadvantages are that it could be difficult to come up with the
correct set of network activity parameters to build profiles on, and that the probability

of false-positives is relatively high.



12

1.2 INBOUNDS

Integrated Network Based Ohio University Network Detective Service (INBOUNDS)),
is a network based anomaly detection IDS being developed at Ohio University. The
goals of INBOUNDS [17] are: run continually, be fault tolerant, be able to resist
subversion, be scalable, operate with minimal overhead, be easily configurable, cope
with changing system behavior, be difficult to fool with, and most importantly, detect
never before seen attacks.

Prior to the work cited in this thesis, INBOUNDS performed anomaly detection
using a statistical anomaly detection module [17]. We shall give a brief overview of
its design and cite some of its limitations in the following sections.

1.2.1 Statistical Anomaly Detection Module

The statistical anomaly detection module identified five parameters to characterize

individual network connections. These five parameters, also called as dimensions,

were reported periodically; the time interval between such updates was a parameter

that could be tuned.

e Interactivity - number of questions observed per second during the time interval.

e Average size of questions (ASOQ) - average size of questions observed during

the time interval in bytes.

e Average size of answers (ASOA) - average size of answers observed during the

time interval in bytes.

e Question-Answer idle time (QAIT) - the idle question-answer time observed per

second during the time interval.
e Answer-Question idle time (AQIT) - the idle answer-question time observed per
second during the time interval.

A sixth dimension, total Number of Connections (NOC), kept track of the total

number of connections on a specific port, i.e., specific type of network traffic. Network
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traffic was analyzed by tcptrace [34], a TCP/IP network traffic analyzer tool. A real-
time module was added to tcptrace to report the opening, activity, and closing of
network connections in the network. The real-time module for tcptrace reported the

following messages :
e An ‘O’ message when a new network connection was started in the network.

e An ‘I’ message periodically during the life time of the connection. This period
was tunable, and was typically set to 60 seconds. The ‘I’ message included the

values observed for the five dimensions during the past period.
e A ‘C’ message when an active network connection was closed in the network.

These ‘O’, ‘I’, and ‘C’ messages generated in real-time were given as input to the
statistical anomaly detection module described in the following section.
1.2.2 Anomaly Detection

The anomaly detection module called the Network Anomaly Intrusion Detec-
tion (NAID) module [17], had two different approaches to monitor network activity,

namely,
e All Connections to a Single Host (ACSH)
e All Connections to All Hosts (ACAH)

In the ACSH approach, all classes of network traffic destined to a specific host
could be monitored. For example, the NAID module could observe email, ssh, web,
and other classes of network traffic destined to a specific host in this approach. In the
ACAH approach, a specific type of network traffic could be observed across all the
hosts in the network. For example, in this approach, the NAID module could monitor
the email traffic destined for all the hosts in the network. The ACAH approach could
be useful to detect an e-mail macro virus which might affect all the e-mail servers

in the network simultaneously. The ACSH approach on the otherhand, could help
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detect the case when a single host is facing anomalous network traffic - which could
happen when it is the victim of an intrusion attempt.
The NAID module, in both the ACSH and ACAH approaches, had two methods

to detect intrusions, namely:

e Abnormality Factor method

e Moving Average method

1.2.2.1 Abnormality Factor Method

In the Abnormality Factor method, a database called the historical data repository
was created to store the average and standard deviations of each of the six dimensions
of network connections. This database was accessible by a key that could be either
an [P address or port or both. During real-time operation of the NAID module,
the six dimension values of network connections were compared with the correspond-
ing six dimensions entry found in the historical data repository. Two parameters :
Standardization Factor (SF) and Threshold (THRESH) were set. For each of the six
dimensions, the difference between the current value and the average value stored in
the historical data repository for a corresponding entry, was found. For each of the
dimensions, the difference was divided by the respective standard deviation found in
the historical database, to measure its distance in units of standard deviations. The
ceiling value of the difference between the distance and the SF, was added across all
dimensions to give the net distance DIST (If the ceiling value of the difference for
any of the dimensions was negative, it was set to 0). If the DIST value was found to
be greater than THRESH, an intrusion alert was raised.
1.2.2.2 Moving Average Method

In the Moving Average method, a moving, or sliding time window was employed.
The window size was set to a specific time value T. The average values for each of
the six dimensions were initialized to zero. During real-time operation, a moving

average was calculated for each of the six dimensions by taking the average for all



15

the values collected during the past time window. An intrusion alert was raised if the
observed six dimension values were significantly different from the moving average
values calculated in the past time period ‘T’, i.e., when the difference exceeded a
pre-specified threshold. The moving window was then slided, dropping off any data
more than T time units in the past, and took the current data into the calculation of
the moving average.

1.2.3 Limitations

Though the statistical approach for intrusion detection used in the NAID module
was successful in detecting attacks similar to the mailbomb attack reported in [17],
it has some known limitations.

The Abnormality Factor method captures the average and standard-deviations of
all the six dimensions for a key, where a key could be an IP address, a port number,
or both. Consider the case where we are trying to store the characteristics of a class
of network traffic, say email traffic. Email traffic based on the SMTP [37] protocol
runs in the TCP well known port 25. We capture genuine network connections on
port 25 to build the profile with the average and standard deviation values of the six
dimensions. The limitation with this method is that we only have one reference data
point for SMTP connections in six-dimensional space, i.e., the average values of all
six dimensions of port 25 traffic. During operation, an SMTP connection would be
classified as an intrusion if the sample is more than a specified number of standard
deviations “away” from this stored reference point in the six-dimensional space.

The distribution of SMTP training data in six-dimensional space is assumed to
occur as a single cluster. If however, the training data were to occur as multiple
distinct clusters separated from one another in six-dimensional space, having reference
points at the centers of the clusters would better characterize the training data than
having a reference point at a point equidistant from all clusters; further, such a middle
point may itself not fall in any of the clusters and could fall in a void area, outside

all clusters. Thus, the Abnormality Factor method could generate a false-positive for
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a network connection found to be just outside a cluster boundary, which could have
been avoided by having a reference point for each cluster of data.

The Moving Average method has the limitation of giving rise to false-negatives,
i.e., intrusions getting classified as genuine network traffic, when an intrusion gradu-
ally raises the six dimension values in every moving-window time. It could also give
rise to a lot of false-poitives. For example, in a University setting, the monitored
network could be idle with no real traffic until students come to the computer lab.
Assuming that all students come at 10:00 AM to the lab, the network traffic would
suddenly soar above the moving average. This might be classified as an intrusion,
turning out to be a false-positive.

Our work is motivated by the need to design a more powerful method to build
profiles of genuine network traffic and overcome some of the limitations cited. We
found the Self-Organizing Map algorithm [27] to be a good mechanism for profiling
genuine network traffic. The Self-Organizing Map algorithm uses a lattice of neurons
to capture the characteristic patterns of genuine network traffic. This lets us store
multiple reference data points for each class of network traffic, which helps reduce the
amount of false-positives. The following section gives a description of Self-Organizing

Maps.

1.3 Self Organizing Maps

The Self Organizing Map (SOM) can be described as a software tool for the vi-
sualization and abstraction of complex high-dimensional data. The SOM may be
defined formally as a nonlinear, ordered, smooth mapping of high-dimensional input
data manifolds onto the elements of a regular, low-dimensional array [27]. A SOM
converts non-linear statistical relationships between data points in a high dimensional
space into geometrical relationships between points in a two-dimensional map. Thus,
a SOM compresses information from a high dimensional input space to a low dimen-

sional output space and produces abstractions of data points from the input space.
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The SOM algorithm has been known to model the way various topographical
response areas are formed in the human brain. It has been found to model maps
of acoustical frequencies, phonemes of speech, maps of elementary optical features
[26] etc. The SOMs are also being successfully used in practical applications such as
automatic speech recognition, image analysis, industrial process control [24, 21].

The SOM algorithm described in this section is used to form a self-organizing
map from a two dimensional array of elements. Each element of the map called a
“Neuron”, after the biological neurons in the human brain on which they are modeled,
is specified by a multi-dimensional vector.

The goal of the SOM algorithm is to model data points from a complex input
signal space into a two dimensional lattice of neurons in the self-organizing map. If
each individual input signal is characterized by k parameters, we can represent it as a
point in k-dimensional space specified by a vector of k dimensions. The neurons in the
SOM, chosen to be vectors of k-dimensions, also appear as points in this k-dimensional

space.
1.3.1 Learning

In the learning phase, neurons are trained to model the input data points in the

k-dimensional space. This learning phase has the following two important properties:

e Competitive Each data point is fed in parallel to all the neurons in the map.
The neuron that responds best is selected as the “Winner”, and its k dimensional
values are adjusted so that it responds even better for a similar input data point

in the future.

e Cooperative A neighborhood is defined for the winner neuron, to include all
the neurons in its near vicinity. The k dimensional values of the neurons in the
winner’s neighborhood are also adjusted, so that they too respond better for a

similar input data point in the future.
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Figure 1.1. SOM Learning Scheme

In Figure 1.1, we have a lattice of neurons with each neuron being represented
by a circle. Each input data point is fed in parallel to all the neurons in the lattice.
The neuron that responds best to the input data point is identified as the winner.
The winner is shown as the circle shaded black. The neighborhood of the winner,
defined in this case to be of radius 2, is shown as a square of size 5, with the winner
at the center. The winner neuron is adjusted the most towards the input data point,
while other neurons in the neighborhood are adjusted too, with the adjustment factor

getting lower and lower as the distance from the winner increase. All neurons outside
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the neighborhood are left untouched. This adjustment factor is depicted in gray-scale
shades, with the winner in black, having the maximum adjustment.

During the learning process, samples of data from the input space are “shown”
to the neurons in the SOM. For this purpose, samples of data are collected from the
input signal space encompassing various ranges of operational behavior. The neurons
in the lattice have to be initialized within the range of operational behavior. However,
the values used to initialize the neurons can be chosen linearly covering the range,
called linear initialization; or values can be chosen randomly within the range and
assigned, called random initialization. The SOM algorithm is known to converge to
its final values in either case, though it converges faster in the latter case. The SOM
lattice could be chosen to be hexagonal or rectangular in nature. The hexagonal

lattice type however, is known to have better visualization properties.

1.3.1.1 Distance Measure

For the purposes of locating the winner for input data samples, a suitable distance
measure has to be defined. The most common distance measure is the euclidean
distance measure. Viewing the input data point and all neurons as points in the k
dimensional space, the winner is identified by locating the neuron that is closest in
euclidean distance to the input data point. For two points X (z1,s,...,2x) and Y
(Y1, Yo, - - -, Yx) in k-dimensional space, the euclidean distance is given by

Ve =) + @ —p) + .+ (3 — )’

Another commonly used distance measure is the dot-product measure. The input

data points and the neurons in the lattice have to be normalized before using this

measure. Normalization of a vector V (v1,vg,...,vx) is a process of transforming its
components into L i e C so that the
p (\/v12+1122+...+vk2’ \/7112+7122+---+Uk2, ? \/”12+7122+---+Uk2 )

modulus of the normalized vector is unity.
The dot product of the input data point is calculated individually with each of the
neurons, where the dot-product of two vectors X (z1,z2,...,xx) and Y (y1, Yo, . - -Yk)

is defined to be



20

T1.Y1 + T2.Y2 + ... + Tk Yk-

The winner is selected to be the neuron that gives the maximum dot product.
1.3.1.2 Learning Function

During the learning process, the k-dimensional values of the neurons in the lattice

are adjusted as specified by the learning function :
m;(t+1) = my(t) + he(t) [x(t) - my(t)]

where t is a discrete time measure that gets incremented by 1 during every iteration
of the training process.

x(t) represents the input data point chosen during the iteration t of the learning
process.

m;(t) and m;(t + 1) specify the vector measures of neurons at distance i from the
Winner, during iterations t and t+1 respectively.

h¢i(t) is the neighborhood function such that, h.;(t) = h(||r., 74|/, t), is a function
of ||r,,7i||, and t. Here, 7., r; are the locations of the winner and neuron i in the
lattice, and ||r., 7;|| is the distance between them.

Two neighborhood functions are commonly used, namely bubble and gaussian. In
the bubble function, a variable N, defines the neighborhood radius for the winner.
For example, if N, were set to 3, all neurons within a circle of radius 3 from the
winner r, would be considered to be in the neighborhood. The bubble function could
also be specified as N,(t) so that the neighborhood radius can shrink over time during
the training process. The bubble function is specified as h.;(t) = a(t) for all neurons
within N,(t) of the winner 7., where «(t) is called as the learning rate factor that
affects how much the neurons are adjusted towards the winner. Both N, (¢) and «()
are typically chosen to be monotonically decreasing functions over time.

In the bubble function, all neurons in the neighborhood are adjusted by the same
amount. The gaussian function on the other hand, lets the adjustment factor vary as

a bell shaped gaussian function, with the maximum adjustment for the winner and
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progressively lesser and lesser adjustment as the distance from the winner increases.

The gaussian function is specified as:

hei(t) = alt) exp (- =)

where o(t) specifies the neighborhood radius.
1.3.1.3 Learning Process

The map dimensions, neighborhood radius, learning rate, and the number of iter-
ations used in training, are all factors that are crucial to the formation of good maps
during the learning process. Another important requirement is to capture a sample
data set. A sample data set is a collection of snapshots of operation of the system
being modeled. It is important that this data set encompasses all possible range of
operations of the system.

Learning process typically involves three steps :

e Initialization: The lattice of neurons can be initialized either randomly or lin-
early. The initial values assigned to the neurons chosen randomly or linearly,

should be in the range of values seen in the sample data set.

e Initial Learning Phase: In this phase a large initial neighborhood radius is kept
and a large learning rate factor a(t) - typically 0.9 is set. The input data points
are fed to all the neurons in the lattice, a winner is selected, and the winner
and its neighborhood neurons are adjusted. This phase is carried out typically

for a few thousand iterations. Most of the learning happens in this stage.

e Final Learning phase: This phase is for the fine adjustment of the map. Low
values are set for the learning rate factor «(t), typically 0.05, and a relatively
low neighborhood radius is chosen. However the number of iterations of train-
ing is chosen to be relatively high, typically in the order of hundred thousand
iterations. A rule of thumb is to carry out this phase for 500 times the number

of neurons in the lattice [27].
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1.3.2 Operation

Once a SOM is trained according to the learning process cited above, it could be
used for real-time operations. How a SOM is used could vary from application to
application. For example, SOMs can be used to capture phonetic signal information
for the automated speech processing applications. For such a SOM, during real-time
operation, a vector representing an uttered sound could be fed to the SOM and it
could locate the winner in the lattice. The phonetic corresponding to the uttered
sound could be associated with the phonetic the winner responds best to.

To summarise, the basic idea behind the operation phase is to feed the input data
point to the lattice, determine the winner, and associate the input data point to that
input value the winner responds best to.

1.3.3 Software Packages

Software packages implementing the SOM algorithm are available in the public
domain. We used the SOM_PAK [10] and the SOMTOOLBOX [11] software packages
for our experiments.

Both SOM_PAK and SOMTOOLBOX are from the Laboratory of Computer Sci-
ences, Helsinki University of Technology, Finland. SOM_PAK consists of a package
of C programs with a UNIX style command line interface for initializing, training
and testing self-organizing maps. These programs have options to choose values for
parameters in the SOM learning process like the learning rate factor, neighborhood
radius, and the number of iterations, during the training phase.

SOMTOOLBOX is a toolbox developed for the MATLAB package. The C pro-
grams that were part of the SOM_PAK package have been implemented in the MAT-
LAB programming language in SOMTOOLBOX. It also includes powerful graphical

visualization programs to aid in the visualization of the SOM algorithm.
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2. ANDSOM Module For INBOUNDS

In this chapter we detail the design and working of the Anomalous Network traffic
Detection with Self-Organizing Maps (ANDSOM) module that we have developed for
INBOUNDS. We first describe the current architecture of the INBOUNDS system,
and then describe how the ANDSOM module relates with the rest of the modules in
the INBOUNDS system.

2.1 INBOUNDS Architecture
Figure 2.1 shows the current INBOUNDS architecture diagram. The INBOUNDS

project is currently under development with some of the modules in their early stages
of development. The goal of this section is to present a high-level view of the IN-
BOUNDS system so as to give proper context for the description of the ANDSOM
module.

The heart of the INBOUNDS system is the Intrusion Detection Engine. This
engine makes the decision on whether the network connection being analyzed looks
normal or if it is anomalous and should be classified as an intrusion. The following
sections describe various modules part of the INBOUNDS system.

2.1.1 Data Source Module

The Data Source module provides network data packets as input to the Intrusion
Detection Engine. Each network monitored by INBOUNDS requires a data source
module.

The program tcpurify runs in the Data Source module. Since INBOUNDS focuses
on anomaly detection, and not on misuse detection, application data in the packets

are irrelevant for our purposes. Hence, tcpurify captures network packets from the
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wire, wipes off the application data from the packet and reports only the first 64 bytes
of each packet, typically covering the IP and TCP/UDP protocol headers. Any space
remaining in the 64 bytes beyond the IP and TCP/UDP headers is set to zero.

The tcpurify program can also be used to obfuscate the sender and receiver IP
addresses and provide anonymity to the two hosts involved in the network connection
during traffic analysis. For obfuscating the IP addresses, tcpurify uses symmetric key
encryption based on the RC5 [16] algorithm, using a 32-bit block size. Using just
32-bits for encryption weakens the quality of encryption; but this limit is from the
size of IP addresses, and is necessary to be able to decrypt the encryption performed.

Two keys are used: a root key and a session key. A new session key is generated
for each session of packet capture. The session key itself is encrypted with the root
key, stored in a dummy ethernet packet, and is reported as the first packet seen. The
source and destination IP addresses in the captured packets are changed to the values
obtained by encrypting them with the session key. Then the TCP / UDP and IP
checksums are re-calculated and changed in the packets. With the knowledge of the
root key, and the session key (stored in the first packet), the encrypted IP addresses
can be decrypted later, if necessary.

2.1.2 Data Processor Module

The Data Processor module receives the network packets provided by the Data
Source modules as input, and runs the tcptrace program with the real-time inbounds
module. The output of this module consists of messages reporting the opening, ac-
tivity, and closing of live network connections. The inbounds module for tcptrace is
based on the module specified in Section 1.2.1.

The Data processor module reports three types of messages:

e An ‘O’ message is of the format :
0 TimeStamp Protocol <src host:port> <dst host:port> Status

The ‘O’ (open) message is reported when a new connection is opened in the
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network. The TimeStamp field reports the time when the connection opened.
The Protocol field indicates the protocol type TCP or UDP. The source and
destination IP addresses and their respective ports are reported in the next
fields. A status field indicates how the connection was opened. In case of
TCP connection, a status value of 0 indicates that the open is proper, i.e.,
SYN packets were seen for the opening of this connection. The status value is
reported as 1, if we didn’t see the SYN packets opening the connection. For
UDP connections, an ‘O’ message reporting the opening of a new connection is
output when a packet is seen from one host to the other for the first time. The

status field is always reported as 0 for UDP traffic.

A ‘U’ message is of the format :

U TimeStamp Protocol <src host:port> <dst host:port> Inter ASOQ ASOA
QAIT AQIT

The ‘U’ (update) message is reported periodically during the life time of the
connection. This period is tunable and defaults to 60 seconds. The fields Inter
(Interactivity), ASOQ (Average Size of Questions), ASOA (Average Size of An-
swers), QAIT (Question Answer Idle Time), and AQIT (Answer Question Idle
Time) are the five dimensions reported. These fields have the same semantics

as described in Section 1.2.1.

A ‘C’ message is of the format :
C TimeStamp Protocol <src host:port> <dst host:port> Status

The ‘C’ (close) message is reported when an active connection is closed in the
network. For TCP connections, the status field has a value 0 if the close was
proper, i.e., two FIN packets were seen during the closure of the connection.
If the connection was closed with a RST packet, the status field has the value

1. UDP connections get “closed” when they expire due to inactivity for a
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specific period of time called expire interval. This expire interval is tunable,
and defaults to 120 seconds. The status field is always reported as 0 for all
UDP connections. TCP connections are also considered closed, if no activity is

seen on the connection for a period of 8 hours.

2.1.3 ANDSOM Module

The Anomalous Network-traffic Detection with Self-Organizing Maps (ANDSOM)
module uses the Self-Organizing Map algorithm described in Section 1.3 to build
profiles of normal network traffic. The profiles built are later used to make a decision
on whether a network connection is normal or anomalous.

The steps in the training of ANDSOM module are illustrated in Figure 2.2.

The Data Source and Data Processor modules are run on offline network dumpfiles
containing the class of network traffic for which the SOM model is being built. For
e.g., if we are building a SOM model for telnet traffic, multiple dumpfiles containing
telnet traffic are collected during various times from the network. To make sure
that well known intrusions themselves do not get into the model, the dumpfiles are
processed with SNORT [9], a public domain intrusion detection system that does
misuse detection. Any network connections reported as suspicious by SNORT are
pruned from the dumpfiles.

The ANDSOM module receives the ‘O’, ‘U’, and ‘C’ messages from the Data
Processor module which is run on the dumpfiles. A submodule, TRC2INP processes
these messages and generates six dimension values used to characterize network con-
nections. The six dimension values are then normalized by the Normalizer submodule
and sent to the SOM Training submodule. At the end of training, a validation check
is made. If successful, the ANDSOM module finishes the training; on failure at the
validation phase, the training is repeated with certain changes to the training process,

as outlined in the following sections.
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2.1.3.1 TRC2INP Submodule

The TRC2INP submodule runs the trc2inp program. The tre2inp program reads
the ‘O’, ‘U’, and ‘C’ messages produced by the INBOUNDS module as input, and
for each connection, generates the six dimension values of Interactivity (INTER),
Average Size of Questions (ASOQ), Average Size of Answers (ASOA), Log base 10
of Question Answer Idle Time (L_QAIT), Log base 10 of Answer Question Idle Time
(L_AQIT) and Duration of Connection (DOC).

The trcZinp program maintains a hash table to store the state of active connec-
tions. Each entry in the hash table is indexed by the four tuple of < Source IP
address, Source Port, Destination IP address, Destination Port > and can store the
INTER, ASOQ, ASOA, QAIT, AQIT in fields dim1, dim2, dim3, dim4, and dimb5.
All the fields in a newly created entry are initialized to zero. Upon receiving an ‘O’
message, the hash value is calculated for the four tuple found from the message, and
a new entry is added in the hash table. The timestamp found from the message is
stored in the start_timestamp field of the entry.

Upon receiving an ‘U’ message, the four tuple of < Source IP address, Source
Port, Destination IP, Destination port > in the message is used to locate the entry
created for the connection. The INTER, ASOQ, ASOA, QAIT, and AQIT fields in
the message are added to the diml, dim2, dim3, dim4, and dimb fields in the entry.
The icnt field is incremented by 1, and a new average for dim1, dim2, dim3, dim4, and
dimb fields are obtained by dividing them by the icnt value. This procedure is repeated
for every ‘U’ message received, storing the current average values of INTER, ASOQ),
ASOA, QAIT, AQIT in the dim1, dim2, dim3, dim4, and dim5 fields respectively.
Also, a count of the number of ‘U’ messages received during the life-time of the
connection is stored in the field icnt.

Upon receiving a ‘C’ message, the entry corresponding to the network connection
is removed from the hash table. The diml, dim2 and dim3 fields are printed out as

INTER, ASOQ, and ASOA - the first, second, and third dimensions. The logl0 of
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QAIT and the logl0 of AQIT are printed as L_QAIT and L_AQIT - the fourth and
fiftth dimensions. The time difference is calculated between the timestamp found in
the ‘C’ message and the start_timestamp field stored in the entry. This time difference
is printed as DOC - the sixth dimension.

We decided to use the L.QAIT and L_AQIT (logl0 of QAIT and AQIT respec-
tively) as the fourth and fifth dimensions in place of QAIT and AQIT, to smooth
out the false-positives that were found in our experiments when we used QAIT and
AQIT. For e.g., if our profile had a normal average QAIT value of 0.00002 and we re-
ceived a real-time connection with the value of 0.00009, it was perceived to be highly
anomalous as the connection had a value about 4.5 times the mean. However, this
might later prove to be a false-positive. We found that what we were really interested
in was the order of QAIT and AQIT fields - whether it is in the order of milli seconds
or micro seconds etc. Hence we decided that the fourth and fifth dimensions would
be more useful, if we used the log base 10 of QAIT and AQIT in place of QAIT and
AQIT respectively.
2.1.3.2 Normalizer Submodule

The six dimensions output produced by TRC2INP module are collected for each
class of network traffic to train the SOM for that class of traffic. If each such vector
of six dimensions is directly used to train the SOM, the dimension with high variance
tends to dominate the map organization. Hence it is important to normalize each
of the individual dimensions, so that the variance of each of the dimensions in the
training data is unity.

We wrote the program normalizer to perform this normalization. The normalizer
program acts in two passes, taking as input the set of six-dimensional vectors to be
used for training. In the first pass it calculates the mean (u) and standard deviation
(o) for each of the six dimensions. In the second pass, each of the six dimensional vec-
tors < dy, ds, ds, d4, ds, dg > are normalized to yield the vector < nq, ng, n3, n4, ns, ng >

such that n; = @ where u; and o; are the mean and standard deviations of dimen-
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sion i in the training data set. The set of normalized vectors thus obtained, would
have a variance of unity for each of the six dimensions, and can then be used to train
the SOM.

At the end of the normalization process, the normalizer program also stores the

mean and standard deviation values of the six dimensions in a data file.

2.1.3.3 SOM Training

We use the SOMPAK Self-Organizing Map software package and the SOMTOOL-
BOX toolbox for MATLAB specified in Section 1.3.3 in the training of the SOMs.

The som_lininit function from SOMTOOLBOX is used to initialize the neurons of
the SOM lattice. The SOMs were chosen to have a two dimensional lattice of neurons
with hexagonal topology. We used the euclidean distance measure for its simplicity
of use.

The following method based on Principal Component Analysis [32] is used to
arrive at the lattice dimensions. The goal of this method is to stretch the SOM in
that orientation where the data exhibits the most variance. For this, the two eigen
vectors corresponding to the two largest eigen values of input data are identified, and
the lattice dimensions are chosen based on the ratio of the two largest eigen values.

For a given matrix A, eigen values and eigen vectors are found from the solution
of the equation

Ax = Az

where the solutions to A\ are the eigen values, and the solutions to the vector x
are the eigen vectors. If the matrix A is viewed as a representation of the transfor-
mation made to any input vector z, the eigen vector x can be said to identify the
direction in which the effect of the tranformation matrix A, is equivalent to the linear
transformation of the vector x by the scalar A.

By calculating the auto-correlation matrix of the data set and calculating its eigen
vectors and eigen values, the orientations in which the data set exhibits the largest

variance can be found. These orientations are found along the direction of the two
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eigen vectors corresponding to the two largest eigen values. Further details on the
basis for this procedure can be found in [1].

The som_lininit function part of the SOMTOOLBOX for MATLAB, chooses the
lattice dimensions as follows. The lattice dimensions are chosen proportional to the
number of training data samples, and the number of neurons in the lattice. The
number of neurons in the lattice(munits) in turn, depends on the number of training
data samples (num), such that munits = 5*sqrt(num)

The auto-correlation matrix of the training data set is calculated. If the training
data set has say 1000 samples, with each sample being a 6-dimensional vector, it
can be viewed as a 1000x6 matrix M. The auto-correlation matrix A is found by
calculating the matrix product M M? where M7 is the transpose of M. The eigen
values of the auto-correlation matrix are then found. The two biggest eigenvalues
are then selected, and the ratio (r) between the largest and the second largest is
calculated. The map dimensions are then chosen such that the ratio of the lattice
dimensions is proportional to the square root of this ratio r. The dimensions are then
adjusted such that the product of the dimensions is as close to the value munits as
possible. Note that in the case of a hexagonal lattice, the sidelengths along y-axis
are squeezed by a factor of v/0.75 taking into account the geometrical properties of a
hexagonal lattice.

Once the lattice dimensions and lattice size are found, the six dimensional vectors
of the neurons in the lattice are initialized to values linearly chosen in the range of
values of the six-dimensional vectors used in the training data set. Linear initialization
was chosen over random initialization to aid in quicker convergence of the SOM
algorithm.

The vsom program, part of the SOMPAK [10] software package is used to train
the initialized SOM. Training is performed in two phases: an initial phase, and a final
fine-tuning phase. The values for training parameters were chosen according to the

heuristics recommended in [27].
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Most of the map organization happens in the initial phase. In the initial phase,
a gaussian neighborhood function is used. The number of iterations in training is
chosen to be low, a few 1000 typically. The neighborhood radius is chosen to be high,
typically the smaller of the map dimensions. This radius linearly reduces to a value
of 1 at the end of training. The learning rate factor «(t) is set to a high value close
to unity - typically 0.9 and linearly reduces to 0 at the end of training.

At the end of the initial phase, a final fine-tuning phase of the training begins.
The number of iterations in training is chosen to be high, in the order of 100,000.
We continue to use a gaussian neighborhood function, with a relatively small neigh-
borhood radius. The learning rate factor is chosen to be low, typically 0.05 which
reduces linearly to 0 at the end of training.

At the end of the two phases of training, we evaluate the trained lattice of neurons,
with the initial un-normalized training data set. A program locator was written for
this purpose. The locator program takes the initial un-normalized training data set,
the mean and standard deviation of each of the dimensions of the data set found by
normalizer, and the file storing the trained map, as input. It then normalizes each
vector according to the mean and standard deviations as specified in Section 2.1.3.2
and feeds it to all the neurons in the trained map. It calculates the winner, and the
distance between the winner and the normalized vector in six dimensional space. The
output of locator has the normalized vector, the topographical location of the winner
in the SOM, and the measured distance. This procedure is repeated for all neurons
in the six dimensional space.

From the output of locator, we calculate the number of vectors in the training data
set with distance from the winner more than 2 units. If the distribution of training
data were perfectly gaussian, 95.44% of the samples must fall within 20 of the mean,
according to the properties of gaussian distribution. We use this as a heuristic to
validate our maps. Our goal at the end of training is to have at least 95.44% of the

training data vectors have a winner within 2 units in six-dimensional space. This
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ensures that the vector is within a net distance of 20 from its winner. If at the
end of the training, we do not have 95.44% of training data within 2 units of their
respective winner neurons, it must be because the vectors that do not fall within 2
units represent network connection behavior that happens in-frequently. We need to
amplify the training of these vectors in the map, so that we “show” the in-frequent
vectors more to the neurons in the lattice. The vsom program has a mechanism to
do this with the “weights” qualifier for each vector. If a value of say, “weights 10”
is added to the line having an infrequently occuring six-dimensional vector in the
training data file, it is treated as if 10 such samples were found in the data file. We
amplify in-frequently occurring vectors thus, and repeat the two-phases of training
until we satisfy the 95.44% gaussian heuristic specified above. Once a map clears the
gaussian heuristic, we conclude the SOM training phase.

There is a false-positive/false-negative trade-off in choosing the gaussian heuristic.
Generally any class of traffic has a behavior that is exhibited by the bulk of the
samples, and a corner-case behavior that is exhibited by few samples, called outliers.
The goal of our heuristic is to let the model capture the bulk behavior of the traffic
and not the outlier behavior. Hence, the outliers will be classified as false-positives in
such a model. If we were to raise the heuristic and try to capture more outliers into
our model, we would get rid of some false-positives, but would be subjecting ourselves
to more false-negatives. Note that to include an outlier into our model, we need a
neuron within 2 units of standard deviation from it in six-dimensional space. When
we have such a neuron, all connection samples within the six-dimensional hyper-
sphere of radius 2 units from the neuron will be classified as normal traffic. If an
attack were to fall in such a hyper-sphere surrounding the neuron, it would give rise
to a false-negative. As we increase our heuristic value, we would add a lot of such
hyper-spheres for the outliers into our model. The SOM model would get more and
more general in nature, losing its specificity of modeling only the class of traffic under

consideration.
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We believe that our 95.44% gaussian heuristic is a reasonable value to capture the
characteristics exhibited by the bulk of traffic. However, our experiments need to be
repeated with various threshold percentages for the heuristic, as a future work, to

study the trade-off more thoroughly.

2.1.3.4 SOM Operation

The training phase of the SOM described in the previous sections is done off-
line from a network dump file captured for the specific type of network traffic. The
real-time operation phase in which the SOM is used to perform intrusion detection
however, is performed online. Data Source, Data Processor, and the ANDSOM mod-
ule, communicate with each other using the icomm library. The icomm library offers
a collection of interface functions that the modules use. The goal of using the icomm
library is to offer a layer of Application Programming Interface (API) to the mod-
ules, so that the exact implementation of the communication mechanism can be made
independent of the modules themselves. The current icomm library we use, is imple-
mented with the TCP sockets API.

During the real-time operation phase, data source modules running tcpurify com-
municate the “sanitized” network packets to the Data processor modules. The Data
processor modules receive the sanitized network packets and run the tcptrace pro-
gram with INBOUNDS module and produce the ‘O’, ‘U’; and ‘C’ messages which are
sent to the ANDSOM module. The ANDSOM module runs the trc2inp and loca-
tor sub-modules. The trc2inp program, converts the ‘O’ ‘U’, and ‘C’ messages and
outputs six-dimensional vectors and the type of network traffic (the TCP or UDP
port number). This output is then fed to the locator program. The locator program
is then run for the specific class of network traffic. The six-dimensional vectors are
normalized using the mean and standard deviation values used in the normalization
process in training of the SOM for that class of network traffic. The normalized vector

is now fed into the neurons of the SOM lattice and a Winner is found. The network
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connection is then classified as an intrusion if it is more than 2 units from the winner
in six-dimensional space.
2.1.4 Intrusion Detection Module

The Intrusion Detection Module is part of the architecture to accomodate one
or more modules beside the ANDSOM module to perform intrusion analysis and
convey their respective intrusion detection decision. The goal of this module is to
corroborate the decisions on intrusions from more than one module and come up
with the final decision on intrusion. Currently this module is not implemented, as
ANDSOM is the only current intrusion detection module. However, as other intrusion
detection mechanisms are added to INBOUNDS in the future, this module shall be
implemented.

This module once implemented, can make use of a Data store to record its intrusion
decisions. This can be used for future reference and for un-doing the effects of actions
taken on false-positives.

2.1.5 Display

The Display module is used to give a real-time display of the connections in and
out of the network being monitored by INBOUNDS. The program networkgraphserver
has been written for this purpose. This program is written in Java and gives a real-
time picture of the network, with each host in the network being represented by icons
and the connections between hosts indicated by lines between hosts. This module is
a work in progress.

2.1.6 Active Response Module

The goal of the Active Response module is to take active response on the con-
nections being perceived as intrusions by INBOUNDS. Some of the response actions
against intrusions include: active firewall blocking of that specific network connec-
tion, reduction of priority for that connection or that class of network connections at

the border router, etc. This module is also a work in progress.
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3. Experimental Results

In this chapter, we present some of our results with the operation of the ANDSOM
module. We used the ANDSOM module to build SOMs to model normal network traf-
fic patterns of Domain Name System (DNS), Simple Mail Transfer Protocol (SMTP),
and HyperText Transfer Protocol (HTTP) traffic. Once the SOM models were built
and trained, intrusions, or otherwise anomalous traffic, were generated on the net-
work. These intrusions were obtained from publicly available security vulnerability
web-sites, and are potentially the types of intrusions that malicious users in the In-
ternet might use while trying to break into our network. Then, an analysis was made
to see if the ANDSOM module could classify these intrusions as anomalous.

We organize this chapter as follows. For each type of network traffic, namely DNS,
SMTP, and HTTP, we describe the six-dimensional statistical patterns of normal
traffic, the nature of the intrusion, and the training and anomaly detection phases of

the ANDSOM module.

3.1 Domain Name System

The Domain Name System (DNS) is a distributed database architecture for the
Internet. The DNS concepts and facilities are specified in RFC 1034 [35] and the
implementation and specification details are specified in RFC 1035 [36]. The main
goal of DNS is to provide domain name to IP address mappings, i.e., given a host
name say www.foo.com, DNS is used to translate it to its corresponding host IP
address. DNS can also provide inverse mappings to get the domain name given the
IP address of a host; provide mail exchange records; and a host of other features

specified in RFC 1035 [36].
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Table 3.1 DNS Training Data Statistics

Dimensions Mean | Standard Deviation
INTER 0.653 0.701
ASOQ 29.082 19.831
ASOA 112.352 94.651
L_QAIT -1.142 1.376
L AQIT -0.016 0.186
DOC 2.033 1.056

3.1.1 Normal Traffic

DNS traffic runs on top of both the UDP and TCP transport protocols. Though
DNS can perform a variety of functions, the bulk of DNS traffic involves name to
address mapping - involving a DNS request and a response. These transactions run
typically on top of UDP. DNS uses TCP in special cases, for example, when the
UDP response to a request is marked truncated, which happens when the response
size is more than 512 bytes; while performing zone transfers, which happen when a
secondary name server of a domain gets a copy of the entire domain database from
the primary name server.

We built our SOM to model DNS traffic run on top of UDP, as it covers the
bulk of DNS traffic. The inbounds module for tcptrace was tuned to have a low
connection timeout value of 1 second, so that multiple DNS query-response operations
occurring in a short time frame do not get classified as a single connection. 8857 DNS
connections were part of the connection data set used in the SOM training process.
The mean and standard deviation values of the connection set used are listed in Table

3.1.
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We can observe the following traits of the DNS traffic from this table :

e The INTER of DNS traffic is a low value of 0.653 per update interval (set to
1 second for DNS). The average DOC is observed to be 2.033 seconds. Hence
the total average INTER in the length of a DNS connection is approximately
1.3 questions (0.653 x 2.033). This value is expected, considering the fact that

most of the DNS connections involve just a single query-response.

e The ASOQ value is approximately 29 bytes and the approximate average ASOA
value is 112 bytes. This indicates that the responses tend to be relatively bigger
than the queries, approximately three times as big. This is expected, because
the responses carry the answers to the queries, and hence tend to be bigger.
The high standard deviation value found for ASOA indicates that the size of

answers is highly variant.

e The L_QAIT value has a mean of -1.14, which means that the QAIT value is
in the order of hundredths of a second per second. The L_AQIT value has a
mean value -0.01, very close to 0. This is because the AQIT value tends to be
close to 1.0 second per second for the bulk of the training data. This again,
is because, most of the DNS traffic is single request-response, and there is no
request following the received response. Thus the AQIT value is calculated to
be 1.0 second per second, as the idle time between an answer and the next

question is found to be its maximum value.

3.1.2 Anomalous Traffic
In this section we describe the intrusive network traffic generated in the network.
The Berkeley Internet Name Domain (BIND) server [2] is an implementation of
the DNS protocols which includes a DNS server (named), a DNS resolver library,
and a suite of tools for verifying the proper operation of the DNS server. The BIND

DNS server is one of the most widely used implementations of DNS in the Internet.
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BIND DNS server named versions 8.2.x, have a bug in the processing of transaction
signatures (TSIG). Transaction signatures are a secret key authentication mechanism
for DNS clients and servers involved in DNS transactions. Transaction signatures are
specified in RFC 2535 [20] and RFC 2845 [38].

The BIND exploit is a typical buffer-overflow type attack, in which the execution
stack of a running process is corrupted by writing past the bounds of the data allocated
in the process stack. A general introduction to how buffer-overflow attacks work can
be found in the article “Smashing the Stack for Fun and Profit” [33].

The TSIG bug in the BIND named server can be exploited when a malicious
client sends a transaction signature resource record, without giving the secret key to
be used for authentication. The named server program makes wrong assumptions
about its buffer sizes when reporting this error condition, which lets the malicious
client overflow the buffer space in the server stack. By suitably crafting a DNS
query with a dummy TSIG resource record, a malicious client can overflow the return
address stored in the stack space, and execute arbitrary code packaged in the packet
payload. A detailed description of this vulnerability can be found in [12]. Another
security vulnerability, called the Infoleak vulnerability, has also been found in the 8.2.x
versions of the BIND named server. This vulnerability causes the BIND named server
to leak the contents of its stack space. A detailed description of this vulnerability can
be found in [13].

The BIND exploit available in public domain [3] exploiting both these vulnera-
bilities was generated on the network. The exploit first makes use of the infoleak
vulnerability to get the return address of the server process function stored in the
stack. Then, this return address is used to craft a malicious DNS query with a
dummy TSIG resource record. This packet overwrites the stack return address of the
server process, so that it points to the code sent as part of the packet payload, and
spawns a shell for the attacker upon execution of the code. This shell executes with

the user and group permissions of the named server process.
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3.1.3 Training

As specified in 3.1.1, six dimensional values of 8857 DNS connections were collected
from our network, to be the training data set. These six dimensional vectors were
then normalized with the Normalizer submodule as described in Section 2.1.3.2. A
SOM of dimensions 19x25 was built and initialized to linear values in the range of
training data set as specified in Section 2.1.3.3.

The initial phase of training was performed with the following parameters :
e The learning rate factor o was set to a high value of 0.9.

e A gaussian neighborhood function with an initial neighborhood radius of 19

that linearly reduced to 1 at the end of training.

e The number of iterations set to 8857 with the goal of showing to the SOM, each

of the training data set vectors once.

The SOM constructed at the end of the initial phase was used as input in the final

fine-tuning phase of training. The training parameters were set as follows :
e The learning rate factor o was set to a low value of 0.05.

e A gaussian neighborhood function with an initial neighborhood radius of 5 that

linearly reduced to 1 at the end of training.

e The number of iterations set to a high value of 237500, based on the heuristic
of having the number of iterations to be 500 times the number of neurons in

the SOM (500x19x25=237500).

At the end of the two phases of training, the training data set itself was fed back to
the SOM to see the efficiency of SOM model. The SOM model modeled 98.81% of
the training data set vectors with a winner neuron within 20 distance, clearing our

95.44% gaussian heuristic.
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Table 3.2 DNS Exploit Vector

INTER | ASOQ | ASOA | L.QAIT | LLAQIT | DOC

1.989 | 493.000 | 626.000 | -2.847 -2.375 | 1.006

3.1.4 Anomaly Detection

The INFOLEAK/TSIG exploit appears as two request-response packet sequences
in the network, that occur back to back, and get classified as a single UDP connection.
The six dimensional vectors of the exploit are shown in Table 3.2.

The locator program was fed this DNS exploit vector as input. It first normalizes
this vector based on the mean and standard deviation statistics of the DNS training
data set shown in Table 3.1. The normalized exploit vector is shown in Table 3.3.
This table shows the value of each of the six dimensions of the DNS exploit vector,
measured in units of standard deviations from the mean values of the DNS training
data set vectors. We can notice from this table that the ASOQ value of 493 bytes
is highly anomalous with a distance of 23.393 standard deviations, since the training
data set had a mean ASOQ value of just 29.082 bytes. The ASOA value of 626 bytes
is also anomalous from the training data set with 5.427 standard deviations away from
the mean ASOA of 112.35 bytes. Further, the L_AQIT value of the -2.375 indicates
that the actual AQIT was in the order of 107237 i.e., in the order of milli seconds of
a second per second. This happens to be highly anomalous with a normalized value
of -12.664 standard deviations because the mean L_AQIT was in the order of -0.016,
corresponding to an AQIT value of close to one second per second.

The six-dimensional values of the winner neuron for this normalized DNS exploit
vector, and the distance in six dimensional space are shown in Table 3.4. We can
see that the winner neuron was at a distance of 22.314 standard deviations in the

six-dimensional space, resulting in the DNS exploit to be classified as an intrusion.



Table 3.3 DNS Normalized Exploit Vector

INTER

ASOQ

ASOA

L_QAIT

L_AQIT

DOC

1.906

23.393

5.427

-1.239

-12.664

-0.973

Table 3.4 DNS Winner Neuron

INTER

ASOQ

ASOA

L_QAIT

L_AQIT

DOC

Distance

0.708

6.072

-0.799

0.150

-0.212

-0.128

22.314
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To aid in the visualization of the six-dimensional space, we split the space into
two three-dimensional space views. The dimensions that take the X, Y, and Z axes
of the two views were chosen arbitrarily with the goal of showing the attack point
from the training data points clearly. The two three-dimensional views are shown in

Figure 3.1 and Figure 3.2.

3.2 Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) is the protocol used in the Internet
to transfer email traffic amongst hosts. SMTP was originally specified in RFC 821
[37] and has been obsoleted with the updated specification in RFC 2821 [23]. SMTP
by itself is a simple protocol, originally designed to transfer email messages with
characters from the 7 bit US - ASCII character set. SMTP has been further extended
to allow email to contain non-textual messages with the Multipurpose Internet Mail
Extensions (MIME). The MIME extensions specified in RFCs 2045-2049 [30, 31, 25,
28, 29], let the email be in characters from other character sets, to attach multi-media
messages, and so on. Email traffic is handled by Mail Tranfer Agents (MTA). These

agents use the SMTP protocol to communicate amongst each other.
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3.2.1 Normal Traffic

To train and evaluate SOMs for SMTP traffic, we used training and attack data
sets provided by the MIT Lincoln Laboratory - DARPA Intrusion Detection Eval-
uation project [6]. The data sets provided by the MIT Lincoln Laboratory include
training data sets (normal traffic free of attacks) and attack data sets (containing
labeled attacks). The inbounds module for tcptrace had the update interval value
set to its default value of 60 seconds. Unlike the DNS traffic, a connection timeout
value for the connection was not critical because SMTP runs on TCP and we could
generate the ‘C’ messages after seeing the FIN packets of the TCP connection.

The training data set included 2305 SMTP connection samples. The timeline
graph of a typical SMTP connection in the training data set is shown in Figure 3.3.
We can see from the timeline graph that a typical SMTP connection in the training

data set involves the following steps:

e SMTP clients initiate the connection with an EHLO command, after receiving
the initial “Server Ready” message from the SMTP server. The EHLO com-
mand in which the client identifies itself also has the semantics to check if the
server understands SMTP extensions. If the SMTP server does not support

SMTP extensions, it responds with a “Command Unrecognized” error message.

e If the EHLO command request failed, the SMTP client falls back to the HELO

command and identifies itself. The server responds with an “OK” message.

e The client then identifies the sender of the email with the “Mail From” com-

mand, which is acknowledged by the server.

e The client then specifies the receiver of the email (which typically is a user in
the SMTP server), with a “Rept To” command. If the specified email receiver

is a valid user, the server responds with a positive acknowledgement.

e Then the client indicates that it is ready to the send the contents of the email,
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Table 3.5 SMTP Training Data Statistics

Dimensions Mean | Standard Deviation
INTER 6.954 4.687
ASOQ 316.221 579.071
ASOA 36.911 9.971
L_QAIT -1.525 0.518
L_AQIT -1.344 0.702
DOC 3.640 75.111

with a “DATA” command. The server acknowledges this and conveys its readi-

ness to receive the email.

e The client then sends the contents of the email to the server. Depending on
the size of the email, multiple TCP segments worth of data may be sent. The

server responds with a “Mail Accepted” message.

e Finally the client conveys its willingness to close the connection with a “QUIT”
message. The server acknowledges the QUIT request, then closes the connec-

tion.
The mean and standard deviation values of the six dimensions of the connections in
the training data set are presented in Table 3.5.
We can observe the following traits of SM'TP traffic from this table :
e The mean INTER value indicates that on an average, SMTP connections in-

volve about 7 questions asked per update interval (60 seconds, in our case).

This value is expected considering the fact that a typical connection involves
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7 questions: EHLO, HELO, Mail From, Rcpt To, DATA, Mail contents, and
QUIT, as specified in the timeline graph shown in Figure 3.3.

e The ASOQ value is approximately 316 bytes while the ASOA is approximately
37 bytes. We see that the average ASOQ is approximately an order of magni-
tude greater than the average ASOA. This is because the contents of the email
sent from the SMTP client to the SMTP server appear as questions. The an-
swers from the SMTP servers to the SMTP clients tend to be short as they
typically include just status messages validating the sender/receiver addresses,
short instructions for the sender, or any error messages. These messages tend
to be relatively small in size and a relatively low standard deviation value for

ASOA indicates the less variant nature of the ASOA values.

e The L_.QAIT and L_AQIT values tend to have approximately similar values,
approximately around -1.5 since the mean QAIT and AQIT values are in the
order of hundredths of a second per second. The DOC value is highly variant
with a standard deviation value of 75.11 for a mean of 3.64 seconds. This

indicates that the duration of SM'TP connections tends to be highly variant.

3.2.2 Anomalous Traffic

The anomalous traffic we used for analysis was collected offline from a data set
from the MIT Lincoln Laboratory data containing multiple types of attacks. The
attack we analyzed, exploits a buffer overflow bug in the sendmail [8] mail transfer
agent. The sendmail program is one of the commonly used mail transfer agents in
the Internet and implements the SMTP protocol. Sendmail version 8.8.3 had a bug
in the processing of MIME headers giving rise to a buffer overflow vulnerability. This
vulnerability has been specified in CERT advisory [4]. It has been described in further
detail in [14]. The attack [7] exploits this vulnerability by sending a maliciously
crafted SMTP request with a large MIME header, to execute arbitrary commands

as root by inheriting the privileges of the sendmail program, which typically runs as
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root. The attack works by first overflowing the buffer in the server side and modifies
the return address to point to the code sent as the MIME header in the packet. The
MIME header includes the code to add a root user account to the /etc/passwd file.
Upon successful exploit, the attacker can login to the victim system with this new

root account.

3.2.3 Training

A training process similar to the one followed in 3.1.3 for training a SOM for DNS
traffic was used. Six dimensional values of 2305 SMTP connections were collected to
be the training data set. These six dimensional vectors were then normalized with the
Normalizer submodule as described in section 2.1.3.2. A SOM of dimensions 13x19
was built and initialized to linear values in the range of training data set as specified
in section 2.1.3.3.

The initial phase of training was performed with the following parameters :
e The learning rate factor o was set to a high value of 0.9.

e A gaussian neighborhood function with an initial neighborhood radius of 13

that linearly reduced to 1 at the end of training.
e The number of iterations set to 2305 with the goal of showing to the SOM, each
of the training data set vectors once.

The SOM constructed at the end of the initial phase was used as input in the final

fine-tuning phase of training. The training parameters were set as follows :
e The learning rate factor o was set to a low value of 0.05.

e A gaussian neighborhood function with an initial neighborhood radius of 5 that

linearly reduced to 1 at the end of training.

e The number of iterations set to a high value of 123500, based on the heuristic

of having the number of iterations to be 500 times the number of neurons in

the SOM (500x13x19=123500).
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Table 3.6 SMTP Exploit Vector

INTER | ASOQ | ASOA | L.QAIT | LLAQIT | DOC

0.362 | 1121.250 | 128.400 | -2.924 -0.008 | 11.094

At the end of the two phases of training, the training data set itself was fed back
to the SOM to see the efficiency of the SOM model. The SOM model modeled 98.18%
of the training data set vectors with a winner neuron within 20 distance, and cleared

our 95.44% gaussian heuristic.

3.2.4 Anomaly Detection

The six dimensional vectors of the sendmail buffer overflow attack connection are
shown in Table 3.6.

The locator program was fed this SMTP exploit vector as input. It first normalizes
this vector based on the mean and standard deviation statistics of the SMTP training
data set shown in Table 3.5. The normalized exploit vector is shown in Table 3.7.
We can notice from this table that the ASOA value is highly anomalous with a
distance of 9.176 standard deviations from the mean value of ASOA. When malicious
packets are sent to the sendmail server, the server responds with multiple “Command
Unrecognized” messages in a response. This response packet is 310 bytes in size,
which is much bigger than an average SMTP response packet in size. This drives the
net ASOA value to a high value of 128.4 bytes, and is considered highly anomalous
since the mean and standard deviation values of ASOA from the training data set are
37 bytes and 9.971 respectively.

It is interesting to note that although the attack packets themselves are observed
as questions by the inbounds module, they are not anomalous in size, given that

the mean and standard deviations of ASOQ values are 316.221 bytes and 579.071



Table 3.7 SMTP Normalized Exploit Vector

INTER

ASOQ

ASOA

L_QAIT

L_AQIT

DOC

-1.407

1.390

9.176

-2.701

1.903

0.099

Table 3.8 SMTP Winner Neuron

INTER

ASOQ

ASOA

L_QAIT

L_AQIT

DOC

Distance

-0.112

-0.171

0.411

-1.026

1.567

-0.023

9.158
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respectively in the training data. However, the size of responses happen to be much
more anomalous, and aid in the classification of the attack as an intrusion.

The winner neuron for this normalized SMTP exploit vector, and the distance in
six dimensional space is shown in Table 3.8. We can see that the winner neuron was
at a distance of 9.158 standard deviations in the six-dimensional space, resulting in
the SM'TP exploit being successfully classified as an intrusion.

To aid in the visualization of the six-dimensional space, we split the space into two
three-dimensional space views. The two three-dimensional views are shown in Figure
3.4 and Figure 3.5.

Note: The training data sample that appears distinctly far from the rest of the
samples in Figure 3.5, is a normal SMTP connection that involved sending an email
from the SMTP client to the server. However the connection was kept open persis-
tently after the email was sent, for a prolonged period of time, close to 1 hour. This
connection is part of the MIT Lincoln Labs training data set containing normal traffic
free of attacks. However, it would be classified as an intrusion by the SOM model

due to the highly anomalous value of DOC found.
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3.3 HyperText Transfer Protocol

The HyperText Tranfer Protocol is the application layer protocol used by hosts
for communication in the world-wide web. Users run web-browsers to act as their
HTTP clients, to communicate with web servers. HTTP allows the transfer of HI'ML
documents, which may include images, multi-media documents and several other
types of data, besides textual data. HTTP version 1.0 was specified in RFC 1945
[18]; the current HTTP version 1.1 is specified in RFC 2616 [22] and includes support
for persistent HT'TP connections, support for web-proxies, etc. Persistent connections
let web-clients use a single HI'TP connection to get all the objects in a web-page,
instead of opening a new TCP connection to fetch each individual object, as was done
in HTTP version 1.0.
Although most of the HTTP traffic follows the client-server paradigm with web-
browsers (web clients) requesting web-pages, and the web-server serving them, HTTP
also lets the web client furnish information to the web-server when the client fills out
a so called “form”.
3.3.1 Normal Traffic

Training data for HT'TP traffic included six-dimensional characteristics collected
from 7194 HTTP connections. The training data statistics are presented in Table 3.9.

We can observe the following traits of HI'TP traffic from this table :

e The INTER dimension has a mean value of approximately 0.8 questions per

second, with a standard deviation value of 0.75.

e The mean ASOQ value is approximately 600 bytes, while the mean ASOA value
is approximately 6800 bytes. This is an indication of the fact that most of the
data in web-traffic tends to flow from web-servers to web-clients, though some
data is also seen flowing in the opposite direction. The high standard deviation
values found for ASOQ and ASOA dimensions indicates the extreme variance

of the two dimensions.
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Table 3.9 HTTP Training Data Statistics

Dimensions Mean | Standard Deviation
INTER 0.829 0.773
ASOQ 589.120 743.973
ASOA 6802.338 59463.781
L_QAIT -1.383 0.874
L AQIT -3.714 3.324
DOC 9.463 27.244

e The QAIT value seems to be on the order of hundreths of a second per second,
while the AQIT value tends to be in the order of ten-thousandths of a second per
second. This seems to indicate that relatively longer time is taken for the web-
server to answer a question from the web client, than in the opposite direction;
this is expected since web-client requests typically travel across the Internet to
reach web-servers. The relatively low value of AQIT seems to indicate the fact
that it takes very less time for a web-client to generate the next question, once
the answer to a previous question is received. Web browsers tend to pipeline
web requests one after the other so that a request could be sent immediately

after the response is received.

e The mean DOC is approximately 9 seconds. However the connection duration
tends to be highly variant in nature, which is indicated by the high variance

value of approximately 27.

3.3.2 Anomalous Traffic
The anomalous traffic generated in the network was based on the HTTP Tunnel

program. HTTP Tunnel [5] is a public domain program that can be used to create
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application layer HTTP tunnels between two hosts. Once an HTTP tunnel is setup
between two hosts, any type of traffic can be run on top of HI'TP. The HTTP tunnel
program can potentially be used by attackers inside an organization to break firewall
rules.

For example, Let us assume that an organization had a firewall policy to allow
web traffic to a host A, while denying all other types of traffic. An insider having
access to host A can setup an HTTP tunnel on A and run an HTTP tunnel server on
web port 80. Then, an HTTP tunnel client could be started on a host B outside the
organization, to communicate with A. If the HT'TP tunnel server on A was configured
to connect to the local telnet server port on A, a user on host B can use the HTTP
tunnel to telnet to A. All application data generated by the user on B, encapsulated
in HTTP, appear as HI'TP traffic to the firewall, and successfully reaches host A.
The tunnel on Host A then decapsulates the data riding on top of HI'TP, and sends
it to the local telnet port, enabling the user on host B to telnet to A. The replies sent
by the telnet server are received by the local HT'TP tunnel server on A, encapsulated
as HTTP packets, and sent across the tunnel to the HT'TP tunnel client on host B.

HTTP tunnel uses the POST and GET methods of HT'TP to encapsulate arbitrary
application data traffic on top of HT'TP. The POST method is meant for web-clients
to send data to web-servers, typically while submitting a “form”, while the GET
method is designed for HTTP clients to retrieve specific web-pages from the web-
server. The HTTP tunnel server is started on a port allowed by the organization
firewall, typically port 80. It is also configured by the malicious user inside the
organization, to establish a local connection with the application port in which the
user on host B wants to communiicate. The HTTP tunnel client establishes two TCP
connections with the HT'TP tunnel server port: One for sending data using the POST
method (POST connection), and another for receiving data using the GET method
(GET connection).

Thereafter, data is sent on the POST connection and replies are fetched from
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the tunnel server via the GET connection. The tunnel client times out the POST
connection after it has been open for a time threshold, which defaults to 300 seconds.
Once the POST connection had been open for the time threshold, the tunnel client
closes and re-establishes the POST connection with the HT'TP tunnel server. The
HTTP tunnel server closes the GET connections, after content-length bytes have been
sent on the connection. The content-length value is the value chosen and replied by
the HT'TP tunnel server, in response to the initial GET request, defaulting to 10K
bytes. HT'TP tunnel clients reopen their GET connections when they find that their
connection had been closed by the server.

To generate anomalous data using the HT'TP tunnel, an HTTP tunnel server was
setup on our lab machine on port 80 and it was configured to connect to the local
telnet server running on port 23. An HTTP tunnel client was started on a host across
the Internet, to connect to the telnet server running on the lab machine on the HT'TP
tunnel. Network data was collected when the remote machine “telnet”-ed to the lab
machine via the tunnel on port 80. This anomalous port 80 traffic was analyzed with
a SOM built for genuine port 80 HTTP traffic.

3.3.3 Training

A training dataset of 7194 HTTP connections collected from our network was
used in the SOM training phase. These six dimensional vectors were normalized with
the Normalizer submodule; a SOM of dimensions 16x27 was built and initialized to
linear values in the range of values of the training data set.

The initial phase of training was performed with the following parameters :

e The learning rate factor o was set to a high value of 0.9.

e A gaussian neighborhood function with an initial neighborhood radius of 16

that linearly reduced to 1 at the end of training.

e The number of iterations set to 7194 with the goal of showing to the SOM each

of the training data set vectors once.



Table 3.10 HTTP Tunnel Traffic

INTER | ASOQ | ASOA | L.QAIT | L.AQIT | DOC
0.004 | 17.200 | 22860.200 | -5.699 | -5.854 | 247.687
0.023 | 491.667 | 0.000 | -5.523 | -10.000 | 307.706
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The training parameters were set to the following values in the final fine-tuning phase

of training. The training parameters were set as follows :

e The learning rate factor o was set to a low value of 0.05.

e A gaussian neighborhood function with an initial neighborhood radius of 5 that

linearly reduced to 1 at the end of training.

e The number of iterations was set to a high value of 216000, based on the heuristic

of having the number of iterations to be 500 times the number of neurons in

the SOM (500x16x27=216000).

At the end of the two phases of training, the training data set itself was fed back
to the SOM to see the efficiency of SOM model. The SOM model modeled 98.83% of

the training data set vectors with a winner neuron within 20 distance, clearing our

95.44% gaussian heuristic.

3.3.4 Anomaly Detection

The telnet connection running on the HT'TP tunnel lasted for approximately 10

minutes, during which 13 connections (3 POST connections and 10 GET connec-

tions) were opened.We present in this section, the GET and POST connections that

turned out to be highly anomalous amongst the 13 conections. The six dimensional

vectors of those GET and POST connections are shown in Table 3.10 in lines 1 and

2 respectively.
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The locator program was fed the HT'TP Tunnel Traffic vectors of GET and POST
connections as input. It first normalizes this vector based on the mean and standard
deviation statistics of the HT'TP training data set shown in Table 3.9. The normalized
HTTP Tunnel traffic vector is shown in Table 3.11. We can observe from tables 3.10
and 3.11 that the GET connection (first line in the table) exhibits highly anomalous
values of LLQAIT and the DOC values.

In the GET connection, the HT'TP tunnel client makes a GET request for the
index.html webpage, and requests that the connection be persistent. This initial
request is the only data seen flowing from client to server. Thereafter, all the replies
flow from the tunnel server to the client.

The inbounds module for tcptrace recognizes bursts of data as questions and an-
swers, i.e. a sequence of data packets flowing from the tunnel client to the tunnel
server and vice-versa is counted as a single burst of data, and hence, as a single
question or answer until a packet of non-zero data length is received in the opposite
direction, or a TCP FIN packet is seen to denote the end of a data burst. Pure TCP
ACK packets flowing in the opposite direction do not terminate the data burst as
perceived by the inbounds module for tcptrace. Hence the entire GET connection is
found to have a single question and an answer. All replies from the web-server form
a single answer, because, once the GET request is made and data starts flowing from
the tunnel server, there are only pure TCP ACK packets seen from the tunnel client.
Hence, the QAIT value is calculated only once, when the first data packet is seen
on the tunnel from the server after the GET request is made. Such a QAIT value,
calculated and normalized to a 60 second update interval, turns out to be very low, in
the order of micro-seconds, which results in the L_QAIT value of -5.699, which is con-
sidered to be highly anomalous, being approximately -4.94 standard deviations from
the mean L_QAIT value of -1.383. The AQIT value is measured only finally, when
the TCP FIN packet is seen to denote the end of the connection. This value is also

found to be low, because, the FIN packet is generated at the end of the connection by
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the tunnel server itself, right after sending the last byte of data, causing the perceived
AQIT to be very low, in the range of microseconds. However, it is not found to be
anomalous since the L_AQIT value exhibits a very high standard deviation of 3.324.
The duration of the connection (DOC) happens to be 247 seconds approximately,
and is highly anomalous with a distance of 8.74 standard deviations, considering that
the mean value of DOC in the training data was approximately 9 seconds, with a
standard deviation of approximately 27.

Similarly, since the POST connection lasts for 307 seconds approximately, the
DOC dimension is considered highly anomalous. The ASOA value is found to be 0
bytes in Table 3.10 because all the data in the POST connection flows from the tunnel
client to the tunnel server, with only pure TCP ACKSs arriving from the tunnel server.
The L_AQIT value is also calculated to be -10.000 since no sample was available to
calculate AQIT as there were no answers. The AQIT is found to be its initial value
of 0 at the end. Log 10 of 0 is negative infinity, a value which is reported by the
trc2inp module as the low value of -10.000. The L_QAIT is found to be anomalous
with the value of -5.523, which corresponds to a QAIT value in microseconds. This
again is due to the fact that no data flowed in the opposite direction, causing all data
from tunnel client to server to be perceived as one question. The QAIT value was
calculated when the FIN packet was seen on the connection. This happens to be low,
as the first FIN packet seen is also sent from the tunnel client.

To summarise, both the GET and POST connections are found to be anomalous
because the packet flow in both directions is found to be almost completely uni-
directional, which is unusual for HTTP traffic, and because of the fact that the
connections last a much longer time compared to the normal HTTP traffic used in
training.

The locator module found the same winner neuron for the GET and POST con-
nection traffic, which is presented along with the six-dimensional distance of GET

and POST connections from the winner in Table 3.12.



Table 3.11 HTTP Normalized Tunnel Traffic

INTER | ASOQ | ASOA | L.QAIT | LLAQIT | DOC
-1.068 | -0.769 | 0.270 -4.937 -0.644 8.744
-1.044 | -0.131 | -0.114 | -4.735 -1.891 | 10.947
Table 3.12 HTTP Winner Neuron
INTER | ASOQ | ASOA | L.QAIT | LLAQIT | DOC | Distance
-0.953 | -0.389 | 0.022 -1.460 1.131 5.895 4.855
-0.953 | -0.389 | 0.022 -1.460 1.131 5.895 6.743

62

We can see that the winner neuron was at a distance of 4.835 and 6.743 standard
deviations in the six-dimensional space for the GET and POST connections, resulting
in them being successfully classified as intrusions. The two three-dimensional views
of six-dimensional space for HT'TP traffic, are shown in figures Figure 3.6 and Figure

3.7.

3.4 Running Time Analysis

To provide an estimate of the running time of the modules involved in real-time
analysis of connections, an off-line analysis was performed by collecting network dump
files of varying sizes. The results of this analysis are presented in detail in Appendix A.
In this analysis, network traffic collected in tcpdump-style dumpfiles of varying sizes
were collected offline and were given as input to the Data Processor module which
sent its output to the ANDSOM module. The ANDSOM module then processed the
network connections to find intrusions based on the SOM algorithm.

The results of this off-line analysis indicate that the ANDSOM module together
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Figure 3.6. HT'TP Tunnel Traffic: 3D View #1
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with the Data Processor module could process network traffic rates ranging approxi-
mately from 70 Mbps to 300 Mbps. The processing rate was found to be dependent
on the size of the dumpfile, the number of connections found, and the average data

rate found on the network for the duration of the data capture.
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4. Conclusion

In this chapter, we present a summary of the design and operation of the AND-
SOM module, discuss its advantages and disadvantages, and follow it up with some

recommendations for future work.

4.1 Summary

A new approach to intrusion detection was introduced to the INBOUNDS intru-
sion detection system with the addition of the ANDSOM module. The ANDSOM
module uses the Self-Organizing Map algorithm to build a two-dimensional lattice of
neurons called a Self-Organizing Map. The goal of the SOM algorithm is to capture
the essential characteristics of data from a multi-dimensional input signal space, into
geometrical relationships of neurons in a two-dimensonal lattice.

If the input signal space can be characterized by k parameters, individual data
points in the input signal space are specified as k-dimensional vectors. Neurons in the
two-dimensional lattice are also chosen to be k-dimensional vectors. A training data
set of k-dimensional vectors is then selected from the input signal space covering the
spectrum of operational behavior. The neurons in the lattice are then initialized to
values covering the range of values in the training data set.

During the training phase, training data is “shown” to all the neurons in the
lattice, and a winner neuron closest to the training data in k-dimensional space is
selected. The winner neuron and its neighbor neurons are then moved slightly towards
the training data point in k-dimensional space. This training is done in two phases:
an initial phase with a high learning factor that lasts for a lesser number of iterations,

and a fine-tuning phase with a lower learning factor lasting for a larger number of
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iterations. At the end of training, the SOM lattice captures the essential characteristic
patterns of the input signal space.

During the operational phase, data points are fed to the neurons of the trained
lattice, and the distance between the winner and the input data point in k-dimensional
space is measured. An intrusion alert is raised if this distance is found to be more
than a threshold distance.

The ANDSOM module used six dimensions to characterize network traffic: In-
teractivity (INTER), Average Size of Questions (ASOQ), Average Size of Answers
(ASOA), Log base 10 of Question-Answer Idle Time (L-QAIT), Log base 10 of
Answer-Question Idle Time (L_AQIT), and the Duration of Connection activity (DOC).

We built Self-Organizing Maps for different classes of traffic, including DNS,
SMTP, and HTTP traffic for the six dimensions. A buffer overflow attack exploiting
bugs in the BIND daemon version 8.2.x (DNS) was classified as an intrusion by the
SOM we built for DNS traffic, because of the anomalous size of ASOQ found during
the attack. The SOM we built for the SMTP traffic, classified the buffer overflow
attack in the Sendmail program version 8.8.3 (SMTP) as an intrusion based on the
anomalous size of ASOA found due to the relatively larger size of responses generated
by the Sendmail server under attack. Also, the SOM we built to model HTTP traffic
classified the HTTP traffic generated when a user encapsulates arbitrary data on top
of an application layer HT'TP tunnel as an intrusion. This was done based on the fact
that such a tunnel connection lasted much longer than the average HT'TP connection
and since the L_QAIT value turned out to be relatively low. In all three intrusions
specified, a winner was found in the lattice of neurons of the respective SOM, which
was more than 2 units in the six-dimensional space. This fact was used to classify

them as an intrusion, since the threshold was set to 2 units.
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4.2 Comparison With Statistical Approach

We compared the performance of the SOM-based approach with the statistical
approach based on the Abnormality Factor method (described in Section 1.2.2.1 ),
used previously in INBOUNDS. Statistical models were built to model DNS, SMTP,
and HTTP traffic using the same training data set used for building their respective
SOM models. For each class of traffic, the mean and standard deviation values of the
five dimensions : INTER, ASOQ, ASOA, QAIT, AQIT were collected from the train-
ing data set. The Abnormality Factor method uses two parameters Standardization
Factor (SF) and a Threshold (THRESH) to evaluate if the “distance” of the sample
from the model was high enough to raise an intrusion alert ( Section 1.2.2.1 ). Since
the way this distance measure is evaluated is different from the euclidean distance
measure used in the SOM model, we calculated the distance measure as follows to
be able to compare with the performance of the SOM model. For each of the five
dimensions of a training data set sample, the difference was calculated from its mean
in units of standard deviation. For e.g., if dim1 was the value of dimension 1, and
m1, sd1 were its mean and standard deviation, the difference dif f1 was calculated

as
dlffl — (diml—ml

sdl

The Root Mean Square value was found from the difference values found for all
the dimensions as:

RMS= \/dz'ff12 +dif f22 + ...+ dif f5°. If the RMS value found was greater

than 2 units, it was classified as an intrusion. Note that the SOM model also uses a
distance of 2 units of standard deviation from the winner neuron as its threshold to
make an intrusion alert.

We found that for both the DNS and SMTP traffic, the statistical model success-
fully detected the intrusions. However, when the training data itself was fed back to
the model to validate it, the percentage of false-positives generated was significantly

higher than the percentage generated by their respective SOM models.
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For DNS, only 78.54% of the 8857 training data samples were within a distance
of 2 units from the model, giving rise to a false-positive percentage of 21.46%. The
corresponding false-positive percentage of training data in the SOM model was 1.19%.
Similarly, for the SMTP traffic the statistical model generated 30.85% false-positives
for the 2305 training data samples, while the SOM model generated 1.82%.

The HTTP statistical model could not detect anomalous traffic generated using
the HTTP tunnel ( Section 3.3.2 ), since it did not have the sixth dimension DOC
(Duration of Connection) in its design, on which the anomaly was observed. Further,
the HTTP statistical model generated 11.9% false-positives for the HTTP training
data set containing 7194 samples, while the SOM model generated 1.17%.

To summarize, we find that though the statistical model is capable of detecting the
intrusions detected by the corresponding SOM model, the false-positive rate seems
to be much higher upon validation. This is because, having a single sample point to
model a class of traffic is a much weaker way to model a traffic class, when compared

to having a lattice of trained neurons in a SOM model characterizing it.

4.3 Advantages and Disadvantages

The ANDSOM module can capture and successfully classify an intrusion if its six-
dimensional characteristics are different from the normal characteristics used during
the training phase. In contrast to typical signature-based intrusion detection systems
that need to store the signature of an attack to detect it, the ANDSOM module can
detect never-before-seen attacks if the traffic characteristics are different from normal
operational characteristics.

However, the ANDSOM model has the limitation that the attacks that resemble
normal operational behavior may not be detected, giving rise to false negatives. Fur-
ther, the SOM model cannot completely capture the characteristics of data points in
the six-dimensional space. The training phase is considered complete when 95.44% of

the training data set samples fall within 2 units in six-dimensional space from their
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winner neurons in the SOM. This implies that the remaining 4.56% of training data
set, themselves will be classified as intrusions that would turn out be false-positives.
This is a limitation of the SOM algorithm; it can capture the behavior exhibited
by the bulk of a traffic class, but corner-case behavior occuring infrequently may be

classified as intrusions, giving rise to false-positives.

4.4 Future Work

The ANDSOM module uses the basic SOM algorithm, using a gaussian neighbor-
hood function and a hexagonal map topology. As a continuation of our work, it could
be interesting to study the effects of modification to the SOM algorithm, including
trying other neighborhood functions and different map topologies. Further, we have
assumed that the distribution of data in the training data set to be gaussian in na-
ture, to arrive at the 2 o — 95.44% heuristic. Though this has been quite successful,
it would be interesting to construct and validate maps assuming different distribu-
tions for data in the training data set, and with various values of threshold with the
gaussian heuristic, assuming the distribution to be gaussian.

The run-time analysis of various modules in the INBOUNDS system discussed in
Appendix A indicates that the bulk of the time involved is consumed by the tcptrace
program with the INBOUNDS module. Future work could involve improving the
processing time efficiency of this module.

Other variants of SOM, like the Adaptive Subspace Self-Organizing Map (AS-
SOM) may also be tried to build maps, to capture multi-dimensional data character-
istics, to see if they yield better results in intrusion detection.

The ANDSOM module analyzes the characteristics of each individual connection
and makes a decision on whether the connection seems normal or anomalous. The
ANDSOM module can classify intrusions only if each individual connection looks
anomalous; it cannot detect a Denial of Service(DOS) attack in which each individual

connection would seem normal, but the attack is due to the presence of an anomalous
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number of them at the same time in the network. The ANDSOM module may be
extended to study the behavior of the set of all connections of a particular class of
traffic in the network, for e.g., the set of all e-mail connections in the network as a
whole. New dimensions to capture the total number of connections of a particular type
in the network at any instant, and other dimensions to capture the net characteristics
of a class of traffic may be added. It would then be interesting to see if the ANDSOM

module modified thus can classify Denial of Service attack conditions as intrusions.
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A. Running Time Analysis

We performed an off-line analysis of the modules in the INBOUNDS system to get
an estimate of their real-time performance. The results of the analysis are presented
here.

Network traffic was captured for varying durations ( 15 min, 30 min, 45 min,
1 hour, 2 hours, and 3 hours ) and stored as tcpdump-style dumpfiles. During the
analysis, traffic found in each of the dumpfiles was analyzed by the real-time inbounds
module for tcptrace which gave the ‘O’, ‘U’, and ‘C’ records as output. This output
was then fed to the trc2inp program to get the six dimensional vectors of complete
connections as output. This output was then fed to the locator program to perform
analysis of the traffic on the SOM built for http traffic.

The choice of using the SOM built to model http traffic was arbitrary; since
the goal was to get an estimate of the running time of modules, a SOM built for
any other traffic could have been used as well, and would have given similar results.
The communication between the modules was made through pipes, with each module
reading from standard input (stdin) and writing to standard output (stdout). Further,
as the goal was to measure just the run-time performance, all types of traffic found
in the dumpfile (including non-http traffic) was also processed with the SOM model
built for http traffic.

In the Table A.1, performance statistics of dumpfiles of varying durations of cap-

ture are listed.

e Duration: Duration in which the dumpfile was captured from the network.

e Bytes: Total number of bytes seen on the wire for the Duration.



Table A.1 Offline Data Analysis
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Duration

Bytes

Packets

Data Rate
(Mbps)

Conns.

Proc. Time

(sec)

Proc. Rate
(Mbps)

6 Nov 2001
12:00-12:15
(15 min)

88,425,003

238,276

0.79

1,033

4.05

174.66

6 Nov 2001
13:00-13:30
(30 min)

259,205,558

488,712

1.13

1,853

6.86

297.62

6 Nov 2001
14:00-14:45
(45 min)

400,026,477

886,399

1.19

1,865

13.32

240.26

24 Oct 2001
18:20-19:20
(1 hour)

1,096,577,208

2,536,807

2.44

10,704

57.11

153.61

30 Oct 2001
10:00-12:00
(2 hours)

1,954,570,814

5,322,218

217

87,817

214.6

72.86

30 Oct 2001
10:00-13:00
(3 hours)

2,810,266,341

7,686,773

2.08

124,935

295.6

76.06
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Packets: Total number of packets seen on the wire for the Duration.

Data Rate: The average data rate observed during the duration of data capture

(Bytes / Duration) in Mbps.

Conns: Total number of connections found in the captured traffic.

Proc. Time: The net processing time taken to process the dumpfile and perform

intrusion detection analysis using the SOM algorithm.

Proc. Rate: The processing rate (Bytes / Proc. Time) in Mbps.

We can observe from this table that the processing time increases with the size
of the dumpfiles, and the number of packets and connections found in them. The
processing rate varies from a minimum value of approximately 73 Mbps to a maximum
value close to 298 Mbps.

The running time of each of the modules: tcptrace, trc2inp, and locator was
analyzed separately for all the dumpfiles, and the results are shown in Table A.2.
The packet-processing rate and the connection-processing rate of each of the modules
are also listed in their respective columns. We find from this table that the bulk
of the processing time is consumed by the real-time inbounds module with tcptrace.
We also find that the running time of the locator module is roughly proportional
to the number of connections. This is expected since the locator module feeds the
six-dimensional vectors of a connection to the SOM and locates the winner. Thus its
running time is proportional to the number of connections processed.

We observe the average packet processing rate of the real-time module with tcp-
trace to be 54,392 pkts/sec. The average rate at which six-dimensional vectors of
connections are output by the ¢rc2inp module is found to be 4,688 conns/sec. The lo-

cator module then processes these connections at an average rate of 9,266 conns/sec.



Table A.2 Processing Time Analysis

Duration Pkts | Conns. tcptrace trc2inp locator
(sec) (sec) (sec)

(pkts/sec) | (pkts/sec) | (pkts/sec)

(conns/sec) | (conns/sec) | (conns/sec)

6 Nov 2001 3.4 0.2 0.13
12:00-12:15 | 238,276 | 1,033 70,081 | 1,191,380 | 1,832,892
(15 min) 303.8 5,165 7,946
6 Nov 2001 6.6 0.34 0.23
13:00-13:30 488,712 1,853 74,047 1,437,388 2,124,835
(30 min) 280.8 5,450 8057
6 Nov 2001 12.77 0.44 0.27
14:00-14:45 886,399 1,865 69,413 2,014,543 3,282,959
(45 min) 146 4,239 6,907
24 Oct 2001 46.64 8.63 1.02
18:20-19:20 | 2,536,807 | 10,704 54,391 293,952 2,487,065
(1 hour) 929.5 1,240 10,494
30 Oct 2001 188.3 13.88 7.93
10:00-12:00 | 5,322,218 | 87,817 98,265 383,445 671,150
(2 hours) 466.37 6,327 11,074
30 Oct 2001 254.9 21.9 11.24
10:00-13:00 | 7,686,773 | 124,935 30,156 350,994 683,877
(3 hours) 490.1 5,705 11,115




