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Abstract

Two models for simple translation between ordered trees are introduced. First is

that output is obtained from input by renaming labels and deleting nodes. Several

decision problems on the translation are proved to be tractable and intractable.

Second is term rewriting system, called k-variable linear translation. The e�cient

learnability of this system using membership and equivalence queries is shown.

1 Introduction

By rapid progress of network environment, the use of a lot of text data in the form of

HTML and XML is available. Such texts are called markup texts which are expressed by a

rooted ordered tree. A root is the unique node of the meaning which points to the whole

document, the other internal nodes represent many tags, and the leaves represent the

contents of the document and attributes of tags. For example, \chapterfIntroductiong

denotes that the tag \chapter" has a child \Introduction" as its attribute.

We can de�ne various type of tags in the document type de�nition of XML and the

result is that a special meaning is added to a part of document. These tags are useful

in order to take the part out from a large text. However, these tags are locally de�ned

and other user may de�ne these tags by other names. Then, compared with relational or

object databases, the distributed documents among network are heterogeneous.

Therefore, it is necessary to translate the structures of documents (semi-)automatically

in order to exchange data through network. The applications of the translation are widely

found, e.g., Web browsing using XML-to-HTML translation like XSLT [4], query language

such as XQL using XML database, and distributed database such as digital library using

wrapper generator.

There are two types of data exchange models considered in this paper. One is extraction

and another is reconstruction. The extraction is a very simple translation T ! t such

that a small tree t is obtained by only (1) renaming labels of T or (2) deleting nodes of T .

This model is suitable for the situation that a user takes out speci�c entries from a very

large table as a small table, or renaming a speci�c tag without changing the structure of

the document.
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On the other hand, the reconstruction is more complicated. It is characterized by

term rewriting f ! g for term f and g with variables. In this model, we can do more

complicated transformation of trees so that exchanging any two subtrees of an input tree

and renaming labels depending on ancestors or descendants of the current node. For

example, it is possible to change the order of title and author in digital books card. This

translation can not be de�ned by the erasing homomorphism because the order of any

two node must be preserved. However, an erasing homomorphism also can not be de�ned

by the term rewriting, e.g., deleting any tag of subsection and making its children become

the children of the parent of the tag. This operation is called embedding in graph theory.

Thus, one model does not properly contain the other model.

This paper is organized as follows. In the next section, we give the formal de�nitions

of the erasing homomorphism and term rewriting system. We also de�ne the problem of

identifying translation rules for given pairs of trees as examples with respect to the both

models. In particular, single example is given in case of the erasing homomorphism, that

is this problem is a decision problem. In case of the term rewriting system, we de�ne the

class of k variable linear translation system in which any rule contains at most k variables

and no variable appears in a term twice. These restrictions guarantee the termination

and con
uence of the rewriting system.

In Section 3, the complexity of announced decision problem is considered. We �rst deal

with a subclass of erasing homomorphism, called erasing isomorphism. This problem

contains the tree inclusion problem [9] as a special case. The �rst result is that the

hardness of this problem is not spoiled even if the given trees are in depth 1, that is

strings. It is open whether this problem is in P, but we show that a nontrivial subproblem

is in P. Moreover, we prove the NP-completeness of erasing homomorphism with respect to

the restrictions either given trees are strings or output tree is labeled by a single alphabet.

In Section 4, the learning problem of linear translation system from membership and

equivalence queries [1] are considered. The hypothesis space is the class of translation

systems and the target class is the class of k-variable linear translation systems. A coun-

terexample for a hypothesis is an ordered pair (t; t

0

) of trees such that exactly one of the

hypothesis and the target can translate t to t. We present a learning algorithm based

on the theory of [2, 3] and we show that our algorithm identi�es each target using at

most O(m) equivalence queries and at most O(kn

2k

) membership queries, where m is the

number of rules of the target and n is the number of nodes of counterexamples.

2 Tree Translation Models

2.1 Erasing homomorphisms

In this subsection, we introduce a very simple class of tree translations, called erasing

homomorphisms, as a formal model of data extraction from semi-structured data. In

Section 3, we will study the identi�cation problem for erasing isomorphisms from given

examples.
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For a �nite set A, we denote by A

�

the set of all �nite sequences over A and by A

+

the set A

�

n f�g, where � is the null sequence. Let card(A) denote the cardinality of A.

A tree is a connected, acyclic, directed graph. A rooted tree is a tree in which one of the

vertices is distinguished from the others and is called the root. We refer to a vertex of a

rooted tree as a node of the tree. An ordered tree is a rooted tree in which the children

of each node are ordered. That is, if a node has k children, then we can designate them

as the �rst child, the second child, and so on up to the k-th child.

The node(T ) denotes the set of nodes of tree T , jT j denotes the number of nodes of T

for each i 2 node(T ), let `(i) denote the label of i. An alphabet � is a set of symbols. In

this paper, we use � as the set of labels for trees. A labeled tree T is considered as a pair

of a graph Sk and a mapping h from node(Sk) to � such that h(i) = A i� `(i) = A for

each i 2 node(Sk) = node(T ). We call the tree Sk a skeleton of T and the skeleton of a

tree T is denoted by Sk(T ). Let T=n be a subtree of T whose root is n 2 node(T ).

Suppose each label is a symbol in an alphabet �. Let � denote the unique null symbol

not in �. We de�ne two operations on tree T . One is renaming, denoted by a! b, to

replace all labels a in T by b. Another is deleting, denoted by a! �, to remove any node

n for `(n) = a in T and make the children of n become the children of the parent of n.

Let S = fa! b j a 2 �; b 2 �[ f�gg be a set of operations. Then, we write T !

S

T

0

i� T

0

is obtained by applying all operations in S to T simultaneously.

De�nition 2.1 Let (T; P ) be a pair of trees over an alphabet �. Then, the problem of

erasing homomorphism is to decode whether there exists a set S of operations such that

T !

S

P . The input tree T is called target and P pattern. This problem is denoted by

EHP (T; P ).

De�nition 2.2 The problem of erasing isomorphism, denoted by EIP (T; P ) is to decide

whether T !

S

P such that if a! b 2 S, then a! c 62 S for all c 6= b.

There is other restriction for these problems. Let EHP (T; P )

k

and EIP (T; P )

k

denote

the problems that the depth of the input tree T is bounded by k, where the depth of T

is the length of the longest path of T . In particular, a string is a tree with depth 1.

When we consider the restriction that any two nodes of a pattern tree P are labeled by

distinct symbols, this problem is the special case of EIP (T; P ). Moreover, this problem

is equivalent to the tree inclusion problem [9] which is decidable in O(jT j � jP j) time.

2.2 Tree translation systems

In this subsection, we introduce a formal model of data reconstruction for semi-structured

data, called tree translation systems, which is more expressive than the class of erasing

isomorphism in the last subsection. In Section 4, we will consider the identi�cation

problem for tree translation systems in an interactive setting.

First, we introduce the class of ranked trees whose node label is ranked and the out-

degree of a node is bounded by the rank of its node label, where we do not allow any
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Figure 1: A translation by erasing isomorphism

operations such as deletion and insertion that may change the out-degree of a node. Let

� = [

n�0

�

n

be a �nite ranked alphabet of function symbols, where for each f 2 �, a

nonnegative integer arity(f) � 0, called arity , is associated. We assume that � contains

at least one symbol of arity zero. Let X be a countable set of variables disjoint with �,

where we assume that each x 2 X has arity zero.

De�nition 2.3 We denote by T (�; X) the set of all labeled, rooted, ordered trees t such

that

� Each node v of t is labeled with a symbol in � [X, denoted by t(v).

� If t(v) is a function symbol f 2 � of arity k � 0 then v has exactly k children.

� If t(v) is a variable x 2 X then v is a leaf.

We call each element t 2 T (�; X) a pattern tree (pattern for short).

A pattern tree is also called a �rst-order term in formal logic. We often write T by

omitting � and X if they are clearly understood from context. For pattern t, we denote

the set of variables appearing in t by var(t) � X and de�ne the number of the nodes of

t by size(t). A pattern t is said to be a ground pattern if it contains no variables.

A position in pattern t is simply a node of t. For pattern t, we denote by occ(t) the

set of all positions in t. If there is a downward path from a position � to another position

w in t, we say that either � is above � or � is below �, and write � � �. If � � � but

� 6� � then we say that � is strictly above �, � is strictly below � and write � > �. For

pattern t and position � 2 occ(t), the subpattern appearing at �, denoted by t=�, is the

labeled subtree of t whose root is located at �.

A pattern t is called linear if any variable x 2 X appears in t at most once. A pattern

t is of k-variable if var(t) = fx

1

; : : : ; x

k

g. For k � 0, we use the notation t[x

1

; : : : ; x

k

]

to indicate that pattern t is a k-variable linear pattern with mutually distinct variables

x

1

; : : : ; x

k

2 X, where the order of variable in t is arbitrary. For k-variable linear pattern
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t[x

1

; : : : ; x

k

] and a sequence of patterns s

1

; : : : ; s

k

, we de�ne t[s

1

; : : : ; s

k

] as the term

obtained from t by replacing the occurrence of x

i

with patterns s

i

for every 1 � i � k.

Now, we introduce tree translation systems.

De�nition 2.4 A tree translation rule (rule for short) is an ordered pair (p; q) 2 T �T

such that var(p) � var(q). We also write (p! q) for rule (p; q). A tree translation system

(TT) is a set H of translation rules.

De�nition 2.5 A translation rule C = (p; q) is of k-variable if card(var(C)) � k, and

linear if both of p and q are linear.

For every k � 0, we denote by LR(k) and LTT (k) the classes of all k-variable linear

translation rules, and all k-variable linear tree translation systems (LTT(k)), respectively.

We also denote by LTT = [

k�0

LTT (k) all linear tree translation systems.

De�nition 2.6 Let H 2 LLT be a linear translation system. The translation relation

de�ned by H with the set M(H) � T �T is de�ned recursively as follows.

� Identity: For every pattern p 2 T , (p; p) 2M(H).

� Congruence: If f 2 � is a function symbol of arity k � 0 and (p

i

; q

i

) 2 M(H) for

every i then (f(p

1

; : : : ; p

k

); f(q

1

; : : : ; q

k

)) 2M(H).

� Application: If (l[x

1

; : : : ; x

l

]; r[x

1

; : : : ; x

l

]) 2 H is a k-variable linear rule in H, where

0 � l � k, and (p

i

; q

i

) 2M(H) for every i then (l[p

1

; : : : ; p

k

]; r[q

1

; : : : ; q

k

]) 2M(H).

If C 2 M(H) then we say that rule C is derived by H. The de�nition of the meaning

M(H) above corresponds to the computation of top-down tree transducer [6] or the a

special case of term rewriting relation [5] where only top-down rewriting are allowed.

Lemma 2.1 Given pair C 2 T �T and LTT (k) H, the problem of deciding the member-

ship C 2 M(H) can be computed in O(mn

5

) time, where m = card(H) and n = size(C)

.

Proof: By using dynamic programming, we can compute all position pairs � 2 occ(C)

such that C=� 2M(H) with the time complexity stated above.

2

In what follows, we will normally denote patterns by letters p; q; s and t, transla-

tion rules by capital letters C;D, and translation systems by capital letter H, possibly

subscripted. Now, we extend the notions of sizes, the set of variables, positions, and sub-

patterns for rules as follows. For rule C = (p; q), we de�ne size(C) = size(p) + size(q),

var(C) = var(p) [ var(q).

A position pair in rule C = (p

1

; p

2

) is any pair (�

1

; �

2

) such that �

i

2 occ(p

i

) for every

i = 1; 2. We denote the set of position pairs in C by occ(C) = occ(p)�occ(q). For position

pairs � = (�

1

; �

2

) and � = (�

1

; �

2

), we extend � by � � � i� �

i

� �

i

for every i = 1; 2.
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The strict order > is de�ned by � > � i� � � � but � 6� � . For rule C = (p

i

; p

2

) and

position pair � = (�

1

; �

2

), the subrule at � is the rule C=� = (p

1

=�

1

; p

2

=�

2

). For rule C,

a subrule D of C at � is said to be smaller than subrule E of C at � if � � � holds.

De�nition 2.7 Let C = (l[x

1

; : : : ; x

l

]; r[x

1

; : : : ; x

l

]) be a k-variable linear rule and D 2

T �T be a rule. If there exist some (p

i

; q

i

) 2 M(H

�

) for every i such that D =

(l[p

1

; : : : ; p

k

]; r[q

1

; : : : ; q

k

]) then we say that C covers D relative to H

�

and write C �

H

�

D.

3 Deciding Translation Rules by Single Examples

In this section, we consider the erasing homomorphism and the erasing isomorphism

problem. First, the EIP (T; P ) is considered. This problem is a sub-problem of the

EHP (T; P ). Since all these problems are clearly in NP, our interest is in the point that

which problem is in P. The following result tells us that the restriction for trees to be

strings does not make EIP (T; P ) easy.

Theorem 3.1 EIP (T; P ) is polynomial time reducible to EIP (T; P )

1

.

Proof: The reduction is constructed as follows. Let node(T ) = f0; 1; : : : ; ng, where 0 is

the root. For each 0 � i � n, compute n strings such that `(i) = A i� a

i

Aa

i

Aa

i

= (a

i

A)

2

a

i

,

where let f`(0); : : : ; `(n)g \ fa

0

; : : : ; a

n

g = ;.

Next, construct the string t(0) from T recursively as follows.

1. For each leaf node i of T , let t(i) = (a

i

`(i))

2

a

i

� a

i

`(i)a

i

`(i)a

i

.

2. For each internal node i, let t(i) = (a

i

`(i))

2

� t(j

i

) � � � t(j

k

) � a

i

, where j

i

; : : : ; j

k

are

the children of i.

Similarly, compute the string p(0) from the pattern P . The (t(0); p(0)) is log-space

reducible.

Let T

�

be the set of trees over an alphabet �, and t(T

�

) be the set of all strings

obtained by the above construction for T 2 T

�

. We �rst show that there exists a one-to-

one mapping h between T

�

and t(T

�

). Since the string t(0) is uniquely obtained from T ,

it is su�cient to show that T 6= T

0

implies t(0) 6= t

0

(0).

In case of jT j 6= jT

0

j, clearly jt(0)j 6= jt

0

(0)j because jT (0) = 5n for n = jT j. In case of

Sk(T ) 6= Sk(T

0

), there exist i; j 2 node(T ) such that j is a child of i in T but not in T

0

.

Then, t(0) contains a string of the form (a

i

`(i))

2

� � � t(j) � � � a

i

. However, t

0

(0) contains

(a

i

`(i))

2

�a

i

and � does not contain t

0

(j). Thus, t(0) 6= t

0

(0).

In case of Sk(T ) = Sk(T

0

) and T = T

0

, there exists i 2 node(T ) such that `(i) of T is

not equal to that of T

0

. Then, t(i) 6= t

0

(i) and the occurrence of t(i) in t(0) is equal to

that of t

0

(i) in t

0

(0). Since jt(0)j = jt

0

(0)j, it holds t(0) 6= t

0

(0). Thus, there exists such a

one-to-one mapping h.



Identi�cation of Tree Translation Rules from Examples 7

Next we show that T !

S

P i� t(0)!

S

h

p(0). Suppose there exists such an S and let

divide S into S

�

= fa! b j a; b 2 �g and S

�

= fa! � j a�g. There exists T

0

such that

Sk(T

0

) = Sk(P ), T !

S

�

T

0

, and T

0

!

S

�

P .

On the other hand, t(0)!

S

0

t

0

, where S

0

= S

�

[ fa! � j A! � 2 S

�

; t(0) has aAaAg.

Since t(0) contains a

i

Aa

i

� � � t(k)�a

i

i� the node i of T labeled by A, t(0)!

S

0

t

0

corresponds

to that T !

S

�

T

0

, that is t

0

= t

0

(0). Moreover, t

0

(0) !

S

�

p(0). Thus, T !

S

P implies

t(0)!

S

h

p(0) for S

h

= S

0

[ S

�

.

Suppose the contrary that t(0) ! p(0). Let t(0) !

S

�

t

0

(0), where S

�

= S

1

[ S

2

,

S

1

= fA! � j A 2 �g and S

2

= fa! � j a 62 �g. And let t

0

(0) !

S

0

p(0), where

S

0

= fa! b j b 6= �g.

Assume that t(0) contains a sting of the form aAaA and exactly one of A! � 2 S

1

and

a! � 2 S

2

is satis�ed. Then, t

0

(0) contains aa or AA. However, by the de�nition of the

string p(0), it contains no square of a symbol. It is a contradiction for t

0

(0) ! p(0) via

S

0

because S

0

contains no deleting operation. Thus, we can suppose that for any aAaA

contained in t(0), A! �; a! � 2 S

�

. Hence, A! � 2 S

1

, a

i

! � 2 S

2

, and t(0) contains

(a

i

A)

2

i� i 2 node(T ) and `(i) = A. It follows that T !

S

1

T

0

. Since S

0

maps any symbol

not in � to itself, t

0

(0)!

S

0

p(0) implies T

0

!

S

0

P . Then, T !

S

�

[S

0

P .

Therefore, EIP (T; P ) is reducible to EIP (t(0); p(0)), that is EIP (T; P ) is polynomial

time reducible to EIP (T; P )

1

.

2

Let w = a

1

a

2

� � � a

n

2 �

n

. The i-th symbol of w is denoted by w[i]. The substring

a

i

a

i+1

� � � a

j

of w is denoted by w[i; j]. An occurrence of a string � on w is a number

i such that w[i; i + j�j � 1] = �. The number of occurrences of � in w is denoted by

](�;w). The set of all occurrences of � in w is denoted by occ(�;w).

Let w; �; � be strings. There exists an overlap of � and � on w if there exist occurrences

i and j of � and � on w such that i < j < j�j+ i� 1 or j < i < j�j+ j � 1.

If a string is of the form A�A for some A 2 � and ](A; �) = 0, then we call the string

an interval of A. A string w 2 �

�

is called k-interval free if w contains an overlap of at

most (k � 1) intervals.

A string w 2 �

�

is said to have a split if there exists an 1 � i � jwj � 1 such that

[pre(i)

w

] \ [suf(i)

w

] = ;, where pre(i)

w

(suf(i)

w

) is the pre�x (su�x) of w in length i

and [w] is the set of symbols in w.

De�nition 3.1 The problem EIP (T; P )

1

is denoted EIP (T; P )

k

1

if if T and P are both

k-interval free.

Lemma 3.1 If T and P are 3-interval free and have no split, then EIP (T; P )

3

1

is decid-

able in polynomial time in jT j and jP j.

Proof: For given T , de�ne hT i

i

recursively as follows.

1. Let hT i

1

= occ(T [1]; T ).
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2. If hT i

1

; : : : ; hT i

i

= occ(a

i

; T ) are de�ned a

i

6= suf(1)

T

, then let hT i

i+1

= occ(a; T )

such that an interval of a

i

contains a and an interval of a contains a

i

.

The sequence hT i

1

; : : : ; hT i

i

is uniquely decided because if both occ(a; T ) and occ(a

0

; T )

satisfy the condition for hT i

i+1

, then either an a contained in intervals of a

i

and a

0

or

an a

0

contained in intervals of a

i

and a. This is a contradiction for that T is 3-interval

tree. Moreover, since T has no split, if suf(1)

T

= a, then the end of the sequence must

be hT i

i

= occ(a; T ).

All symbols appearing in T at least two times are classi�ed into three categories. First

is the above hT i

i

. We can compute the sets of all hT i

i

and hP i

i

0

, denoted by hT i and hP i

in O(jT j

2

+ jP j

2

) time.

Second is [hT i

i

] which is a set of occ(a; T ) such that at least two intervals of a

i

for

occ(a

i

; T ) 2 hT i contains a and occ(a; T ) 62 hT i. We can compute all [hT i

i

] and [hP i

i

0

] in

O(jT j + jP j) time.

Third is [hT i

i

]

j

which is the sequence of occ(a; T ) such that ](a; T ) � 2 and exactly

one interval of a

i

for occ(a

i

; T ) 2 hT i contains a. We can compute [hT i

i

]

j

and [hP i

i

0

]

j

0

in

O(jT j + jP j) time.

Let T !

S

P and a! b 2 S. Then, since T and P are 3-interval free, occ(a; T ) 2 hT i

i� occ(b; P ) 2 hP i, occ(a; T ) 2 [hT i

i

] i� occ(b; P ) 2 [hP i

i

0

], and occ(a; T ) 2 [hT i

i

]

j

i� occ(b; P ) 2 [hP i

i

0

]

j

0

. A correct matching for occ(a; T ) and occ(b; P ) is computed as

follows. Let n = jhP ij.

(1) For hT i, hP i, and i = 1; : : : ; n, check whether there exists a k such that;

(1-a) The length of hT i

k+i

is equal to that of hP i

i

.

(1-b) The number of a

k+i+1

in j-th interval of a

k+i

is equal to that of b

i+1

in j-th

interval of b

i

, where occ(a

k+i+1

; T ); occ(a

k+i

; T ) 2 hT i, occ(b

i+1

; P ); occ(a

i

; P ) 2

hP i.

For all i = 1; : : : ; n, occ(a

k+i

; T ) 2 hT i, and occ(b

i

; P ) 2 hP i, the number of a

k+i+1

in j-th

interval of a

i

is equal to the number of b

i+1

in j-th interval of b

i

, where 1 � j � n� 1.

This check is done in O(n(jT j+ jP j)) = O(jT j

2

).

If there is no such a k, then answer \no" and terminate. If a k is found, then make

the matching S = fa

k+i

! b

i

j i = 1; : : : ; ng and go to the next stage.

(3) If a

k+i

! b

i

2 S, then for each occ(b; P ) 2 [hP i

i

], �nd an occ(a; T ) 2 [hT i

k+i

] such

that the number of b in the j-th interval of b

i

is equal to the number of a in the j-th

interval of a

k+i

. This check is done in (jT j+ jP j). If there is no occ(a; T ) for an occ(b; P ),

then let S = ; and go to the condition (1) to �nd the next k, and add all the a! b to S

otherwise.

(4) Let [hP i

i

]

j

= (occ(b

1

; P ); : : : ; occ(b

m

; P )) and (occ(a

1

; T ); : : : ; occ(a

m

; T )) be a sub-

sequence of [hT i

k+i

]

j

. If jocc(a

1

; T )j = jocc(b

1

; P )j; : : : ; jocc(a

m

; T )j = jocc(b

m

; P )j, then

add all the a

1

! b

1

; : : : ; a

m

! b

m

to S. This check is done in O(jT j+ jP j).
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For any other a in T such that ](a; T ) � 2, let a! � 2 S. Now the remained matching

is a! b for ](a; T ) = ](b; P ) = 1. This check is done in O(jT j + jP j). The total time to

check whether T ! P is O(jT j

2

+ jP j

2

).

2

Theorem 3.2 EIP (T; P )

3

1

2 P.

Proof: Each string w is represented by a concatenation of w

1

; : : : ; w

n

such that w =

�w

1

� � � �w

n


, where all w

i

have no split, and for every symbol a in �, �; : : : ; 
, ](a; w) = 1.

Let T = �t

1

�t

2

� � � t

n


 and P = �

0

p

1

�

0

p

2

� � � p

m




0

. All symbols in �� � � � 
 appear

in T exactly once and all symbols in �

0

�

0

� � � 


0

appear in P exactly once. Thus, we

have that T !

S

P i� t

j

i

!

S

i

p

i

, where j

1

; : : : ; j

m

is a subsequence of 1; : : : ; n, and

j�j � j�

0

j; : : : ; j
j � j


0

j.

2

Theorem 3.3 The EHP (T; P ) is NP-complete even if P is labeled by a single alphabet.

Proof: The general problem is clearly in NP, then we prove only the hardness, that is 3-

SAT is log-space reducible to this problem. 3-SAT is the problem to decide whether there

exists a truth assignment for a given 3-CNF over the set X = fx

1

; : : : ; x

n

g of variables.

A 3-CNF is a Boolean formula of the form C =

V

m

i=1

C

i

and C

i

= (~x

i

1

_ ~x

i

2

_ ~x

i

3

), where

~x is a literal of a variable x. The reduction is as follows.

In this proof we use a special notation t(t

1

; : : : ; t

k

) for a graph which denotes that the

edges (t; t

1

) : : : ; (t; t

k

) are de�ned and the order t

1

< � � � < t

k

is �xed.

(1) P is the tree de�ned by the graph (V

p

; E

p

) such that E

p

= E

p

0

[ E

p

1

[ E

p

2

for

E

p

0

= fr(t

0

; : : : ; t

m

)g, E

p

1

= ft

0

(s

1

); s

1

(s

2

); s

2

(a

1

; : : : ; a

n

)g, and

E

p

2

= ft

i

(p

(i;1)

; : : : ; p

(i;5)

) j i = 1; : : : ; mg, where

V is the set of all v and v

0

for (v; v

0

) 2 E

p

and the root is r. For any node v 2 V

P

,

let `(v) = c.

(2) T is the tree de�ned by the graph (V

t

; E

t

) such that E

t

= E

t

0

[ E

t

1

[ E

t

2

for

E

t

0

= fr(t

0

; : : : ; t

m

)g, E

t

1

= ft

0

(s

1

); s

1

(s

2

); s

2

(a

1

(b

1

); : : : ; a

n

(b

n

))g, and

E

t

2

= ft

i

(t

(i;0)

; : : : ; t

(i;4)

); t

(i;j)

(t

(i;j;1)

; t

(i;j;2)

) j i = 1; : : : ; m; j = 1; 2; 3g, where

V

t

is the set of all v and v

0

for (v; v

0

) 2 E

t

and the root is r. For each i = 1; : : : ; n,

let `(a

i

) = A

i

and `(b

i

) = B

i

. For each i = 1; : : : ; n, and j = 0; 4, let `(t

(i;j)

) = c

(i;j)

.

For each i = 1; : : : ; n and j = 1; 2; 3, let `(t

(i;j)

) = B

k

, `(t

(i;j;1)

) = `(t

(i;j;2)

) = A

k

if

the j-th literal of C

i

is positive, and let `(t

(i;j)

) = A

k

, `(t

(i;j;1)

) = `(t

(i;j;2)

) = B

k

if the

j-th literal of C

i

is negative. Any other node is labeled by c.
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The depth of each node b

1

; : : : ; b

n

of T is 5 and the depth of any other node is at most

3. On the other hand, the depth of each node a

1

; : : : ; a

n

is 4 and the depth of any other

node is 2. Thus, if T ! P , then E

t

1

! E

p

1

and E

t

2

! E

p

2

.

Moreover, if E

t

1

!

S

E

p

1

, then either A

i

! c; B

i

! � 2 S or B

i

! c; A

i

! � 2 S for

all i = 1; : : : ; n. We can consider the corresponding (A

i

! c; B

i

! � 2 S) , x

i

= 1 and

(B

i

! c; A

i

! � 2 S) , :x

i

= 1. We denote the operation corresponding to a truth

assignment f by S

f

. Note that only the matching S

f

decide whether E

t

2

! E

p

2

because

all labels in E

t

2

also appear in E

t

1

.

Suppose that the CNF C =

V

m

i=1

C

i

is satis�able by f . Then, for each clause C

i

of C, at

least one literal ~x

i

j

in C

i

satis�es that ~x

i

j

is positive and assigned 1, or ~x

i

j

is negative and

assigned 0. These are corresponding (A

i

! c; B

i

! �), or (B

i

! c; A

i

! �), respectively.

This operation deletes the children of t

(

i; j) for at least one of j = 1; 2; 3. It follows that

T=t

i

has 5, 6 or 7 children. In these cases, T=t

i

! P=t

i

by one of (c

(i;0)

! c; c

(i;4)

! c),

(c

(i;0)

! c; c

(i;4)

! �), and (c

(i;0)

! �; c

(i;4)

! �). Thus, we have T !

S

f

P .

Conversely, if the CNF C is unsatis�able, then for any assignment f , at least one C

i

is

not satis�able, that is ~x

i

j

is positive and assigned 0, or ~x

i

j

is negative and assigned 1. It

follows that all leaves of T=t

i

are not deleted by S

f

. This implies that T=t

i

has 8 children.

Thus, T=t

i

6! P=t

i

. Hence C is satis�able i� T ! P . The proof is completed.

2

Theorem 3.4 The EHP (T; P ) is NP-complete even if T is a string.

Proof: This problem is also reducible from 3-SAT de�ned in the above. A 3-CNF is of

the form C =

V

m

i=1

C

i

and C

i

= (~x

i

1

_ ~x

i

2

_ ~x

i

3

). The reduction is as follows.

(1) T = T

1

� T

2

, T

1

= A

2

x

1

:x

1

� � � A

2

x

n

:x

n

A

2

, T

2

= �

1

� � ��

m

,

(2) P = P

1

� P

2

, P

1

= A

2

x

1

� � � A

2

x

n

A

2

, P

2

= �

1

� � � �

m

such that

�

i

= ~x

i

1

u

i

~x

i

2

v

i

~x

i

3

A

2

and �

i

= x

i

1

x

i

2

x

i

3

A

2

i� C

i

= (~x

i

1

_ ~x

i

2

_ ~x

i

3

), where

](u

i

; T ) = ](v

i

; T ) = 1 for all i = 1; : : : ;m.

Let T ! P . Then A! A or A! �. Assume the latter. Then, jT

0

j = 2n + 5m and

jP j = 3n + 5m + 2, where T !

s

T

0

for s = fA! �g. Thus, T 6! P in this case. Since

A! A is �xed, if T ! P , then at least T

1

! P

1

and T

2

! P

2

. Moreover, for each

i = 1; : : : ; n, exactly one of x

i

and :x

i

of T

1

must be mapped to x

i

of P

1

.

There exists a one-to-one mapping: f ! S

f

such that the variable x

i

is assigned 1 by

f if x

i

! x

i

;:x

i

! � 2 S

f

, or x

i

is assigned 0 by f if x

i

! �;:x

i

! x

i

2 S

f

.

Suppose that the CNF C is satis�able for an assignment f . Then for each clause C

i

,

at least one of ~x

i

1

, ~x

i

2

and ~x

i

3

is assigned 1. It follows that at least one of ~x

i

1

, ~x

i

2

and

~x

i

3

of �

i

is not deleted by S

f

. Since u

i

! a and v

i

! b can be de�ned for any symbols

a and b, it holds that �

i

!

S

f

[fu

i

!a;v

i

!bg

�

i

. Thus, T ; P . Conversely, suppose that C

is unsatis�able by any f . Then for at least one �

i

, j�

0

i

j = 2 for �

i

!

S

f

�

0

i

. If follows that

T 6! P . Hence, it is proved that C is satis�able i� T ! P .

2
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4 Identi�cation of Tree Translations using Queries

In this section, we show that there exists a polynomial time algorithm that exactly iden-

ti�es any translation system in LTT (k) using equivalence and membership queries.

4.1 The learning problem

Our problem is identifying an unknown tree translation system H

�

from examples of

ordered pairs E 2 M(H

�

) that are either derived or not derived by H

�

. As a formal

model, we employ a variant of exact learning model by Angluin [1] called learning from

entailment[2, 3, 7, 8], which is tailored for translation systems.

Let H be a class of translation systems to be learned, called hypothesis space, and LR

be the set of all ordered pairs, called the domain of learning. In our learning framework,

the meaning or the concept represented by H 2 H is the set M(H

�

). If M(P ) = M(Q)

then we de�ne P � Q and say that P and Q are equivalent.

A learning algorithm A is an algorithm that can collect the information about H

�

using

the following type of queries. In this paper, we assume that the alphabet � is given to A

in advance and the maximum arity of symbols in � is constant.

De�nition 4.1 An equivalence query (EQ) is to propose any translation system H 2 H.

If H � H

�

then the answer to the query is \yes". Otherwise the answer is \no", and A

receives any translation C 2 LR as a counterexample such that either C 2M(H

�

)nM(H),

or C 2 M(H)nM(H

�

). A counterexample is positive if C 2 M(H

�

) and negative if

C 62 M(H

�

). A membership query (MQ) is to propose any translation C 2 LR. The

answer to the membership query is \yes" if C 2M(H

�

), and \no" otherwise.

De�nition 4.2 The goal of A is exact identi�cation in polynomial time. A must halt and

output a rewriting system H 2 H such that H

�

� H, where at any stage in learning, the

running time and thus the number of queries must be bounded by a polynomial poly(m;n)

in the size m of H

�

and the size n of the longest counterexample returned by equivalence

queries so far.

Although this setting �rst seems to be unnatural, it is known that any exact learnability

with equivalence queries implies polynomial time PAC-learnability [10] and polynomial

time online learnability [1] under a mild condition on the class of target hypothesis whether

additional membership queries are allowed or not [1].

4.2 The learning algorithm

Figure 2 gives our learning algorithm Learn LTT (k) that uses equivalence and member-

ship queries to identify a k-variable linear tree translation system H that is equivalent to

the target H

�

, but may be polynomially larger than H

�

.
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Algorithm Learn LTT (k);

Input: positive integer k;

Given: the equivalence and the membership queries for the target set H

�

2 LTT (k);

Output: a set H of linear tree translations equivalent to H

�

;

begin

H := ;;

until EQ(H) returns \yes" do

begin

Let E be a counterexample returned by the equivalence query;

D := Shrink(E;H); /* (See De�nition 4.3) */

H := H [ Expand(D; k); /* (See De�nition 4.4) */

end /* main loop */

return H;

Figure 2: A learning algorithm for k-variable linear tree translations using equivalence

and membership queries

In the algorithm, we denote by Shrink(E;H) and Expand(D; k) the procedures to

return any smallest positive sub-counter examples of rule E and to return the set of

k-variable linear rules, called LTT (k)-expansion of D.

De�nition 4.3 A rule D is called a smallest positive sub-counterexample if D is in

M(H

�

)nM(H) and and there exists no subrule D

0

of D strictly smaller than D such

that D

0

2 M(H

�

)nM(H). If D is a subrule of some rule E then we call D a smallest

positive sub-counterexample of E.

De�nition 4.4 For a positive counterexample D of H

�

w.r.t H and k � 0, we de�ne the

LTT (k)-expansion of D by Expand(D; k) = f C 2 LR(k) j C �

H

�

D; C 2M(H

�

) g:

The following lemmas state that these procedures Shrink and Expand work in poly-

nomial time.

Lemma 4.1 Given a positive counterexample E of H

�

wrt. H, a smallest positive sub-

counterexample of E can be computed in polynomial time in m and n using O(n

2

) mem-

bership queries, where m = card(H) and n = size(E).

Proof: For all pairs � 2 occ(E), we can check if the subrule D = E=� satis�es D 2

M(H

�

) using a membership query and if D 2M(H) in O(mn

5

) time by Lemma 2.1.

2

Lemma 4.2 Let D be a positive counterexample of H

�

wrt. H. Then, (i) the cardinality

of the set Expand(D; k) is bounded by O(n

2k

). Furthermore, (ii) Expand(D; k) can be

computed in polynomial time using O(kn

2k

) membership queries.
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Now, we prove the correctness of the algorithm LEARN LTT . Let � be a �xed

ranked alphabet and H

�

be the target translation system over �. In what follows, let

H

0

;H

1

; : : : ;H

n

; : : : and E

0

; E

1

; : : : ; E

n

; : : : (n � 0), respectively, be the sequence of hy-

potheses asked in the equivalence queries by the algorithm and the sequence of coun-

terexamples returned by the queries. H

0

is the initial hypothesis ;, and at each stage

n � 1, LEARN LTT makes an equivalence query EQ(H

n�1

), receives a counterexample

E

n

, and produce the next hypothesis H

n

from E

n

and H

n�1

. For unknown rule C 2 H

�

, if

C 2M(H) then we say that C is missing wrt. H, and otherwise we say that C is covered

by H.

Lemma 4.3 Let D be any smallest positive counterexample of H

�

wrt. H. Then, there

exists some missing rule C 2 H

�

wrt. H such that C �

H

�

D.

Proof: Since D 2M(H

�

), we know that there exist some rule C = (l; r) 2 H

�

and some

(p

i

; q

i

) 2M(H

�

) for every i such that D = (l[p

1

; : : : ; p

k

]; r[q

1

; : : : ; q

k

]) and thus C �

H

�

D.

Note that each (p

i

; q

i

) 2M(H

�

) is a subrule strictly smaller than D. Since D is smallest

positive sub-counterexample, we can see that (p

i

; q

i

) 2M(H) for all i. On the other hand,

If C 2 M(H) then the contradiction D 2 M(H) is derived by the de�nition of the set

M(�). Hence the result follows.

2

Lemma 4.4 If C �

H

�

D and C 2M(H

�

) for some C 2 LR(k) then C 2 Expand(D; k).

Lemma 4.5 For every n � 0, M(H

n

) � M(H

�

), and furthermore, the counterexample

E

n

is positive.

Proof: By construction, it is easy to see that Expand(D; k) � M(H

�

) and thus every

rule added to H is a member of M(H�). By induction on the construction of M(H), we

can show that H �M(H

�

) implies M(H) �M(H

�

). This proves the lemma.

2

Lemma 4.6 For every n � 0, let c

n

� 0 be the number of missing rules in H

�

wrt. H.

Then, c

0

= m > c

1

> � � � > c

n

> � � �, where m = card(H

�

).

Proof: First suppose that c

n

= 0. Then, for every n � 0, H

n

covers all rules in

H

�

, and thus M(H

n

) � M(H

�

). Since M(H

n

) � M(H

�

) from Lemma 4.5, this implies

that H

n

� H

�

and the algorithm terminates. On the other hand, suppose that c

n

> 0.

Since there is some missing clause C in H

�

, we know H

n

6� H

�

and thus a positive

counterexample E is given to the algorithm. Then by Lemma 4.1 a smallest positive

counterexample D is obtained. By Lemma 4.3 and Lemma 4.4, Expand(D; k) contains

some missing rule C 2 H

�

. Thus, c

n�1

> c

n

holds.

2

Theorem 4.1 The algorithm LEARN LTT of Figure 2 exactly identi�es any translation

system H

�

in LTT (k) using O(m) equivalence queries and O(kn

2k

) membership queries.

Proof: By construction of the algorithm, if it terminates then H = H

n

� H

�

. Hence, the

correctness of the algorithm immediately follows from Lemma 4.6. The time complexity

and the query complexity follows from Lemma 4.1 and Lemma 4.2 (ii). Hence the theorem

is proved.

2
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5 Conclusion

In this paper, we consider the extraction and reconstruction problems in semi-structured

data. We �rst show that nontrivial subproblem of the erasing isomorphism is in P and the

NP-completeness of the erasing homomorphism problem. It is an open question whether

there is a gap between the isomorphism and homomorphism problem. Next, we show

that if we allow a learner additional information obtained by active queries then the class

of k-variable linear translation systems is polynomial time identi�able using equivalence

and membership queries wrt. the translation relation.
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