
A. Olivé (Eds.): ER 2003 Ws, LNCS 2784, pp. 112-123, 2003.
© Springer-Verlag Berlin Heidelberg 2003

An Active Approach to Model Management for
Evolving Information Systems

Henrik Gustavsson1, Brian Lings2, and Bjorn Lundell1

1 University of Skovde, Department of Computer Science
P.O. Box 408, SE-541 28 Skovde, Sweden

{Henrik.Gustavsson, Bjorn.Lundell}@ida.his.se
http://www.his.se/ida/

2 University of Exeter, School of Engineering and Computer Science
Prince of Wales Road, Exeter EX44PT, UK

B.J.Lings@dcs.exeter.ac.uk

Abstract. It is desirable to be able to interchange design information between
CASE tools. Such interchange facilitates cooperative development, helps in
avoiding legacy problems when adopting new tools, and permits the use of dif-
ferent tools for different life-cycle activities. Exchanging model transformation
information is particularly demanding in the context of cooperative maintenance
of evolving systems. In this paper we suggest an approach using active trans-
formation rules. We show how transformation rules can be expressed using a
modest extension of the Object Constraint Language of the UML standard, and
actively interpreted. The approach allows existing UML-based tools or reposi-
tory systems to be readily extended to actively manage models in evolving in-
formation systems.

1 Introduction

In CASE tools in general, and in repository systems in particular, it is desirable to be
able to interchange information between different tools in a toolset [4], [9]. Such in-
terchange can facilitate cooperative development, through the exchange of design
documents. It can also help in preserving design information when a new tool is
adopted. Under some circumstances it may also permit the use of different tools for
different life-cycle activities.

Many CASE tools today use mappings or design transformations to automate different
tasks within an IS lifecycle design process. Few tools, however, support user definable
design transformations, and those that do use proprietary languages for their definition
[13]. Interchanging a set of models for the purpose of cooperative development can
therefore be problematic. In particular, if the interchange is between tools that do not
support the same set of design transformations, inconsistencies will be introduced. We

An Active Approach to Model Management for Evolving Information Systems 113

argue, therefore, that design transformations must themselves be interchanged, and in
such a way as to facilitate their use in an importing tool.

What is required is an architecture which will allow efficient execution of design
transformations in a tool, and the export of both transformations themselves and de-
tails of their usage in a design, for example in transforming a conceptual model into a
logical one. The set of interrelated design models could then be successfully manipu-
lated using an importing tool, without it previously having been configured to handle
the transformations involved. Such extensibility in the IS modelling area is the goal of
the research reported here.

1.1 Transformations

In the area of meta modelling and repository systems, adoption of the UML [26],
MOF [27] and XMI [25] standards has made it possible to interchange information
and to guarantee extensibility in meta modelling systems [9]. A number of implemen-
tations of repository systems that currently support UML also support XMI inter-
change of data, including the France Telecom model repository tool [1] and the
SPOOL design repository [19]. These projects support extensible, standards based
meta models. In addition to supporting an extensible meta model, the Microsoft
Repository [3] also supports the expression of transformations. It uses a model called
the OTM (open transformation model) to define and store transformations. The main
purpose of this is to support transformations in data warehouses, so the model for
transformations is affected by its roots within the data warehousing field. However, in
most other cases, mappings and transformations (or model management features [2])
used in tools connected to repositories are neither interchangeable nor extensible.

The use of proprietary languages for transformations inhibits interchange between
tools. The Microsoft Repository uses a proprietary combination of SQL and OLE
software to execute transformations. The DB-MAIN project [13] mainly uses a proce-
dural language with a constraint language to define pre and post conditions for trans-
formations. A logic-based language has been proposed elsewhere [23].

Many different uses have been found for design transformations (see [12], [13], [15],
[16], [23]). Most of these sources, however, do not discuss how the modelling deci-
sions leading up to a design transformation are to be represented. Nor do they discuss
how to represent the information required to perform a design transformation - not all
relevant information is directly present in a model (for example, required parameters
from the user). Other systems, such as the DAIDA project, use a knowledge-based
approach to design transformations. This allows sophisticated deductions to be made
from the knowledge base, for instance which transformations were used in mapping
between models [17].

The DB-MAIN project, however explores the use of design histories as a means to
represent design decisions [14]. The model before a transformation is not maintained

Henrik Gustavsson et al. 114

in its entirety, but modelling decisions are indirectly captured through state transitions.
Using this ‘history’, a model can be wound back to the time before a certain transfor-
mation was applied, so that the transformation can be reapplied with, for example, a
different set of input parameters, resulting in a different destination model.

However, the use of design histories to achieve a higher degree of modelling transpar-
ency has a number of drawbacks. Firstly, a very sophisticated versioning system is
required which supports multiple and branching histories. In addition, the system must
be capable of inferring modelling decisions and properties from these histories. Sec-
ondly, it may in some cases be difficult to tell whether a certain change in a model is
due to the application of a transformation or direct user intervention. This is because
design histories serve a dual purpose, in that they support both historical information
about previous versions of a model and an indirect representation of those modelling
decisions. Knowledge based approaches, on the other hand, require sophisticated in-
ference engines, and use proprietary languages and representation techniques which
thus make them unsuitable for a scenario where interoperability between different
tools is of prime importance.

In an earlier paper [10] we have suggested an approach by which design transforma-
tions can be freely interchanged between tools. Transformations are represented using
a conservative extension of the OCL language. The approach is independent of pro-
prietary languages and techniques. Further, since more and more tools are adding
support for OCL [24], it will become increasingly straightforward to adopt this ap-
proach in existing tools. The approach in that paper, however, has a significant draw-
back: rule execution is independent of the event that triggers a transformation. This
problem makes the approach less powerful and significantly less suitable for mainte-
nance. In this paper we suggest how to remove this drawback, developing the OCL
language to support reactive behaviour suitable for co-operative management of model
evolution.

1.2 OCL as a Conceptual Language for Meta-modelling Constraints and Actions

Active databases have been proposed, over the years, for a wide variety of different
tasks in many different application areas. In repository systems, active databases have
been used to automate common tasks such as general model processing [18] and
change management [8]. Such proposals, however, have relied in large part on plat-
form dependent models or languages. This would impede successful application of the
techniques to systems which do not share a common platform.

The Object Constraint Language [20] is part of the UML standard [26]. Amongst other
things, it is used to introduce pre and post conditions to, and to place guards on, meth-
ods. The language is platform independent, declarative and efficient for querying and
navigating object-oriented data. Even though the OCL language, as a conceptual lan-
guage, is intended for object-oriented modelling, it can be used with other forms of
modelling. It can, for instance, be used to specify constraints on SQL databases [7].

An Active Approach to Model Management for Evolving Information Systems 115

This versatility makes OCL a good language for platform independent specification of
conditions in repository systems and meta models.

An extension to the OCL language to support actions [21] has been put forward, but
the proposal stopped short of suggesting that such actions be executed using an OCL
interpreter. However, to achieve a high degree of modelling transparency [5], the
simultaneous update of interrelated parts of dependent models is needed. The most
common way to achieve this is by transforming a model into one which reflects the
required changes – that is, active behaviour.

1.3 A Novel Approach to Modelling Transparency

This project takes a novel approach to increasing modelling transparency in that trans-
formation patterns representing modelling decisions made by a user are represented
explicitly as part of the modelling information stored in a repository. The repository
thus directly represents transformations, the parameters needed to perform each se-
lected instance of a transformation, and the results of such transformations (in the
form of updated models). In order to completely support the desired increase in mod-
elling transparency, the objects that result from a transformation are also connected to
the source objects using ordinary associations. This allows a connection to be navi-
gated, for instance to allow a tool user to find the set of relational tables that result
from the transformation of an entity type.

In a previous paper we have shown that transformation rules can be expressed using a
conservative extension of OCL. In this paper we show how a tool can be made to react
to state changes in its meta modelling repository through the addition of events to
transformation rules. A further modest extension to the OCL language is proposed, to
support context variables to receive parameters from event occurrences. We have
tested the ideas through the implementation of an active repository system with an
event detector and rule manager suitable for model management in a UML environ-
ment. The proof of principle system used to test the examples used in the paper is
available on request (henke@ida.his.se).

2 Overview of Approach

Although the approach outlined is designed to be generally applicable for multi-model
management, our chosen application context is CASE data interchange for cooperative
design. We believe it is beneficial in such contexts to support the active interchange of
design transformations.

In the general approach, each design transformation is represented by a set of rules
which, given specific model and parameter information, can be used to bring about
that transformation. This offers better support for the incremental update of models

Henrik Gustavsson et al. 116

typical of cooperative design. The OCL language has been chosen to represent design
transformations1. However, OCL traditionally supports neither updates nor active
behaviour. Other authors have suggested extensions to OCL for introducing active
behaviour [21]. In our work, we extend the OCL language and its interpreter to allow
the expression of active behaviour with update. In general, the fundamental issues to
be addressed in moving to active behaviour are [28]: event specification and detection,
access to context information by rules, and access to state transition information.

The proposed extension uses an ECA (Event Condition Action) format for rules to
provide support for active design transformations. The use of ECA rules gives a num-
ber of benefits over a condition action based approach [6]. Firstly, events and condi-
tions play different roles in the system, allowing the repository to react directly to state
changes in the context in which they occur. Making the event explicit thus allows finer
grained control over when execution occurs. This increases flexibility in execution
semantics. This latter is important, since this project strives to be as platform inde-
pendent as possible so that the ideas in the approach can be adapted to fit existing tool
environments. There is also a performance benefit in that by using an event to trigger a
condition check, fewer conditions have to be evaluated for the same database state.

2.1 Meta-model Extensions for Active Behaviour

There are different ways in which reactive behaviour can be supported, each placing
different requirements on the rule scheduler and event detection mechanism. One very
important consideration for this project is the ease with which the techniques can be
incorporated into existing CASE technology. The suggested methodologies should
thus be simple enough to be easily implemented in existing tools or tool infrastruc-
tures.

It has only been found necessary to include primitive database events in the rule sys-
tem; no transformations so far studied have required the introduction of temporal or
composite events. Hence, the rule system proposed only recognises events that occur
when objects are inserted into the model, when objects are updated in the model, and
when objects are deleted from the model. However, it has been found useful to distin-
guish a separate set of event types for the modification of collections, i.e. the creation,
deletion and update of associations between objects in models.

In order to support the specification of active OCL rules, it has been necessary to
extend the OCL rule language beyond that suggested in our previous work [10] by the
addition of a list of events that can trigger a transformation rule:

Contextclass: <Context class specification>
Event: <event specification>
Condition: <condition specification>

1 An explanation of the rationale behind the choice of this language can be found in [8].

An Active Approach to Model Management for Evolving Information Systems 117

Declaration: <declaration specification>
Action: <action specification>

In order to be able to represent transformations directly within the models, some kind
of meta modelling support is necessary. In order to achieve a high degree of interop-
erability this model has been kept as simple and as generic as possible, in contrast
with, for example, the Microsoft Repository approach [3] that models transformations
with proprietary and domain specific structures. A number of superclasses have been
proposed previously [10] for this purpose in a non-active environment; these can be
inherited by the other meta model classes. The only extension required is the addition
of an event property to the rule class.

2.2 Event Types and Context Variables

The behaviour of an active set of models may be heavily dependent on the cascading
of rules (if multiple levels of models are used). It has been found useful to differen-
tiate between primary events and secondary events. Primary events occur as a direct
result of user interaction, for example check-in of a model or direct modification of a
modelling object. Secondary events occur when the model contents are modified by a
transformation rule. By differentiating between the six primary event types and the six
secondary event types, it is possible to perform different actions depending on whether
an update came from inside or outside the repository. This gives increased control
over rule cascades since a rule, through its triggering event, has knowledge of whether
it is executing as the consequence of a cascaded event or as a direct result of an update
by a tool user. For example, it allows increased control over cycles in rule cascades.

In active databases, context variables (event parameters [6]) contain information about
the state of the data before and after updates, so that rule behaviour can be expressed
in terms of state change. In order to support this type of behaviour for the active set of
models it is necessary to extend OCL to allow the use of context variables in trans-
formation rules. In earlier work [10], we introduced updates to the OCL language. In
particular, the aliasing mechanism present in the OCL standard definition was used to
allow new objects to be referenced, and thus be modified in different ways. In order to
limit the scope of the necessary changes to an OCL interpreter, it would be beneficial
to further use the aliasing mechanism in supplying context variables.

In the prototype implementation, user updates to the repository are taken to be atomic
actions. Transformation rules are therefore executed only after the metadata updates
corresponding to these atomic actions. We have introduced two new global aliases for
use as context variables. They work in the same way as the “SELF” alias, which iden-
tifies the context object. The “OLD” alias identifies the object state before the trigger-
ing update, and the “NEW” alias the object state after the triggering update. These
context variable aliases have slightly different meanings depending on the type of
event triggering the rule using the aliases (see table 1).

Henrik Gustavsson et al. 118

Table 1. Event types and context variable descriptions

Event Alias Description

Insert NEW Provides access to the values of the newly inserted object.
Since the object is new, there is no “OLD” variable.

Delete OLD Provides access to the object as it was before deletion.

Update OLD
NEW

Provide pointers to the information before and (respectively)
after the update.

Collection
Insert

NEW Provides access to the object which has been added to the
collection.

Collection
Delete

OLD Provides access to the object which is going to be removed
from the collection.

Collection
Update

OLD
NEW

Only occurs for 0..1 or 1..1 cardinalities. In this case, the
“OLD” alias provides access to the object in the collection
before the update, and the “NEW” alias provides access to the
object in the collection after the update.

Since the OCL language displays collections and properties in the same way, but since
the actual handling of associations and properties must account for conceptual differ-
ences, this separation simplifies the management of these two types of event.

A specific update collection event type is also introduced for collections that contain at
most one object. When this is changed so that it identifies some other object, an update
collection event is fired, indicating an update of an existing collection. The main dif-
ference between collection events and property events is that in property events, the
object in the new and old variables is of the context class type. In contrast, for collec-
tion events, the new and old variables refer to the object that was added/removed from
a collection, which may not be of the same type as the context class.

3 Example of Approach

To allow easy comparison with existing approaches, an example rule set has been
created which demonstrates some important types of transformation handled in the
related work cited earlier (section 1.1). The set of example transformation rules and
the example meta model (see figure 1) are not intended to be complete, but are de-
signed to show the characteristics of an active approach. We have successfully cap-
tured the design transformations used in the real-world example cited in [22], where a
company was unable to adopt CASE technology because none of the current genera-
tion of CASE-tools evaluated allowed import of the existing models.

The example in this paper uses a simplified version of a well known E-R notation
[11]. It is not intended to suggest new or more advanced transformations than those
used to demonstrate alternative approaches. However, through the use events the tech-

An Active Approach to Model Management for Evolving Information Systems 119

nique is also able to support incremental update of models without having to regener-
ate a complete schema, a feature important in maintenance scenarios.

���������	

���

����

���

������	

���

�������

��

����������������	

�� ������������

���

�������������

���

������������	��

��

��������	

���

�������

���

�������������

���

������������	��
���

��������

���
�����������
���

����������

���

������������	

���

������
���

������
���
���������

��

���

���

����������

���
�����������	

���

�������	
����

�������� ��
 �������

 !"�����

������ �����#��
����
��������

�����

���
���
����

��������� ��
 �������

 !"�����
����"

�������

Fig. 1. A simple example meta model without transformation metadata included

The goal in the example is to transform an ER Entity to a relational model table, and
transform ER attributes to table attributes while retaining the attribute names and the
key attributes of the original entity. This simple transformation requires two separate
rules, one that transforms the entities and one that transforms the attributes. An impor-
tant feature of this rule set is that it can handle incremental updates of the attributes;
when a new attribute is added to an existing entity, the corresponding attributes are
generated automatically. Since supporting incremental updates of other modelling
objects would require more rules, this example only supports incremental updates for
the ER attributes. Rules expressed in logic for performing the inverse of this transfor-
mation were suggested in [23].

Contextclass: EREntity
Event: INSERT
Declaration: RelTable T1
Condition: Implementedby->isempty
Action: T1.create;T1.name:=self.name;
T1.Implements:=self

Contextclass: ERAttribute
Event: INSERT
Declaration: Relattribute RA
Condition: IMPLEMENTEDBYRA->isempty

Henrik Gustavsson et al. 120

Action: RA.CREATE;SELF.implementedbyra:=RA; RA.attname
:=self.attname; RA.containedin :=
self.Containedinentity.implementedby;RA.Pkstate :=
self.PKstate

One well-known transformation suggested in another related paper [13] is the trans-
formation of relationships into foreign keys. This transformation is performed by the
rule listed below. Another rule would be required to deal with the case when the car-
dinalities are reversed. Further rules could also be added if options other than generat-
ing a foreign key are to be handled.

Contextclass: ERRelationship
Event: INSERT
Delcaration: RELFK FK
Condition: Fromcard="1" and Tocard="N" and implemented-
byfk->isempty
Action: FK.create; FK.relname:=self.name;
FK.implementsrel:=self; FK.fromtable :=
self.toentity.implementedby; FK.totable :=
self.fromentity.implementedby

Contextclass: RELATTRIBUTE
Event: IINSERT
Declaration: RELattribute RA
Condition: Referencedby->isempty and containe-
din.fromFK->notempty and PKstate="1"
Action: containedin.fromfk->iterate(
 FK| RA.create; RA.containedin:=fk.fromtable;
 RA.PKstate:="0"; RA.attname:=self.attname;
 RA.createdby:=FK; RA.references:=self)

The example rule set also contains rules to perform cascade update and cascade delete
of ER attributes. These rules will allow the tool user to delete attributes or to rename
ER attribute names without having to regenerate the whole relational model. Using
events significantly reduces the number of conditions to be evaluated to support this
type of behaviour.

Contextclass: ERATTRIBUTE
Event: DELETE
Condition: IMPLEMENTEDBYRA->notempty
Action: IMPLEMENTEDBYRA.REFERENCEDBY->iterate(RA |
RA.delete); IMPLEMENTEDBYRA.DELETE
Contextclass: ERATTRIBUTE
Event: UPDATE ATTNAME
Condition: IMPLEMENTEDBYRA->notempty
Action: IMPLEMENTEDBYRA.REFERENCEDBY->iterate(RA |
RA.attname:=self.attname); IMPLEMENTEDBYRA.attname :=
self.attname

An Active Approach to Model Management for Evolving Information Systems 121

4 Analysis and Discussion

We have proposed an approach to concisely representing design transformations
through the use of reactive behaviour, implemented using active rules expressed in a
conservative2 extension of the OCL language. The approach allows a compliant tool to
use an enhanced set of design transformations for a set of models without the tool
itself having to be modified. Since the language used to represent transformations is
based on standardized languages and representation techniques (UML/MOF), with
standardised ways to interchange models (XMI), existing tools or repository systems
can be extended for compliance with relative ease. The approach has advantages over
proposals which use proprietary languages, such as [15] and [23]. Examples have been
presented to illustrate efficient, incremental update of interchanged models is sup-
ported using the approach.

There are a number of implications for tool vendors wishing to benefit from the pro-
posed approach; we perceive three different classes of tool that may utilize an im-
ported model or export a tool-specific model.

Tools in the first class have no support for alternative design transformations, their
representation or interchange. Design transformation information has no meaning to
these tools, and will be ignored. Such a tool can only usefully export a model; any
importing tool must be provided with the transformations used. Building the corre-
sponding model connections would be a non-trivial task.

Tools in the second class allow a user to select from a set of alternative design trans-
formations. For collaboration purposes, these selections should be interchangeable
using standardised export formats. Translators must be written for this purpose. Any
information that documents a transformation alien to the tool has no meaning to it.
The importing translator for the tool has to distinguish the associations between ordi-
nary modelling objects from those between modelling objects and transformation
pattern objects, which behave differently. As with class 1, any tool importing from a
class 2 tool must be provided with the transformations used.

Tools in the final (class 3) class support all of the different types of information. Such
a tool has to distinguish between the various association types only by looking at the
meta information. From our earlier analysis, this final class is likely to require support
for global navigation between the different modelling objects, which together form a
complete set of models for a given domain.

To turn a class 2 tool into a class 3 tool, it is only necessary to develop an extension of
the internal transformation engine to interpret OCL actions. The prototype implemen-
tation has shown this to be a modest extension to existing OCL interpreters.

2 In the sense that existing tools can be readily updated to support the extensions.

Henrik Gustavsson et al. 122

References

1. Belaunde, M.: A Pragmatic Approach for Building a Flexible UML Model Repository In:
UML 1999, Lecture Notes in Computer Science, Vol. 1723. Springer-Verlag, Berlin Hei-
delberg New York (1999) 188-203.

2. Bernstein, P.A.: Generic Model Management: A Database Infrastructure for Schema Ma-
nipulation. In: 9th International Conference on Cooperative Information Systems, LNCS
2172, Springer (2001) 1-6

3. Bernstein, P.A., Bergstraesser, T.: Meta-Data Support for Data Transformations Using
Microsoft Repository. IEEE Data Engineering Bulletin 22(1), IEEE (1999) 9-14

4. Blaha, M.R., LaPlant, D., Marvak, E., Requirements for Repository Software. In:
WCRE’98 Honolulu, Hawaii, USA. IEEE Computer Society Press (1998) 164-173

5. Brinkkemper, S.: Integrating diagrams in CASE tools through modelling transparency.
Information and Software Technology 35(2) (1993) 101-105

6. Dayal, U.: Ten Years of Activity in Active Database Systems: What Have We Accom-
plished? In: ARTDB 1995, Workshops in Computing, Springer-Verlag, Berlin Heidelberg
New York (1995) 3-22

7. Demuth, B, Hußmann, H, Loecher, S.: OCL as a Specification Language for Business Rules
in Database Applications. In: UML 2001, Springer-Verlag, Berlin Heidelberg New York
(2001) 104-117

8. Gal, A., Etzion, O.: Handling Change Management using Temporal Active Repositories. In:
OOER 1995, Lecture Notes in Computer Science, Vol. 1021 Springer-Verlag, Berlin Hei-
delberg New York (1995) 378-387

9. Gray, J.P., Liu, A., Scott, L.: Issues in software engineering tool construction. Information
and Software Technology 42 (2000) 73-77

10. Gustavsson, H., Lings, B.: CASE-tool interchange of Design Transformations. In: 18th
British National Conference on Databases: BNCOD 2001, Lecture Notes in Computer Sci-
ence, Vol. 2097. Springer-Verlag Berlin (2001) 75-88

11. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. 3rd edn. Addison-Wesley,
Reading (2000)

12. Fahrner, C., Vossen, G.: A survey of database design transformations based on the Entity-
Relationship model. Data & Knowledge Engineering 15(3) (1995) 213-250

13. Hainaut, J.-L.: Specification preservation in schema transformations – application to seman-
tics and statistics. Data & Knowledge Engineering 19 (1996) 99-134

14. Hainaut, J.-L., Henrard, J., Hick, J.M., Roland, D., Englebert, V.: Database Design Recov-
ery. In: CAiSE 1996 Lecture Notes in Computer Science, Vol. 1080. Springer-Verlag, Ber-
lin Heidelberg New York, (1996) 272-300

15. Hainaut, J.-L., Englebert, V., Henrard, J., Hick, J.M., Roland D.: Database reverse engineer-
ing: From Requirements to CARE tools. Automated Software Engineering 3, 1996, Kluwer
Academic Publishers (1996) 9-45

16. Halpin, T.A., Proper, H.A.: Database Schema Transformation & Optimization. In:
OOER’95: 14th International Conference on Conceptual Modeling, Springer Lecture Notes
in Computer Science, Vol. 1021, Springer-Verlag, Berlin (1995) 191-203

17. Jarke M., Rose T.: Managing Knowledge about Information System Evolution. In: Proceed-
ings of the 1988 ACM SIGMOD International Conference on Management of Data,
SIGMOD Record 17(3) (1988) 303-311

18. Jasper, H.: Active Databases for Active Repositories. In: ICDE 1994, IEEE Computer Soci-
ety (1994) 375-384

An Active Approach to Model Management for Evolving Information Systems 123

19. Keller, R., Bédard, J.-F., Saint-Denis, G.: Design and Implementation of a UML-Based
Design Repository. In: CAiSE 2001, Lecture Notes in Computer Science 2068, Springer-
Verlag, Berlin Heidelberg New York (2001) 448-464

20. Kleppe, A., Warmer, J.: The Object Constraint Language: Precise Modeling with UML,
Addison-Wesley (1999)

21. Kleppe, A., Warmer, J.: Extending OCL to include actions. In: 3rd International Conference
on the Unified Modelling Language, UML, Springer-Verlag, Berlin Heidelberg New York
(2000)

22. Lundell, B., Lings, B., Gustafsson, P.-O.: Method support for developing evaluation frame-
works for CASE tool evaluation. In: 1999 Information Resources Management Association
International Conference - Track: Computer-Aided Software Engineering Tools, IDEA
Group Publishing, Hershey (1999) 350-358

23. McBrien, P., Poulovassilis, A.: A Uniform Approach to Inter-Model Transformations. In:
Advanced Information Systems Engineering, 11th International Conference CAiSE’99, Lec-
ture Notes in Computer Science, Vol. 1626, Springer-Verlag, Berlin Heidelberg New York
(1999) 333-348

24. Medvidovic, N., Rosenblum, D.S., Redmiles D.F., Robbins, J.E.: Modeling software archi-
tectures in the Unified Modeling Language. ACM Transactions on Software Engineering
and Methodology 11(1) (2002) 2-57

25. Object Management Group: XML Metadata Interchange (XMI) Document ad/98-10-06,
http://www.omg.org/docs/ad98-10-05.pdf (1998)

26. Object Management Group: OMG Unified Modeling Language Specification, Version 1.3,
June 1999 (1999)

27. Object Management Group: Formal MOF 1.3 Specification formal/00-04-04,
http://cgi.omg.org/cgi-bin/doc?formal/00-04-03.pdf (2000)

28. Paton, N.W., Diaz, O.: Active database systems. ACM Computing Surveys 31(1) (1999) 63-
103

	1 Introduction
	1.1 Transformations
	1.2 OCL as a Conceptual Language for Meta-modelling Constraints and Actions
	1.3 A Novel Approach to Modelling Transparency

	2 Overview of Approach
	2.1 Meta-model Extensions for Active Behaviour
	2.2 Event Types and Context Variables

	3 Example of approach
	4 Analysis and Discussion

