Skip to main content

Folding and Cutting Paper

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1763))

Abstract

We present an algorithm to find a flat folding of a piece of paper, so that one complete straight cut on the folding creates any desired plane graph of cuts. The folds are based on the straight skeleton, which lines up the desired edges by folding along various bisectors; and a collection of perpendiculars that make the crease pattern foldable. We prove that the crease pattern is flat foldable by demonstrating a family of folded states with the desired properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: Proc. 2nd Int. Computing and Combinatorics Conf., Hong Kong, pp. 117–126 (1996)

    Google Scholar 

  2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. JUCS 1(12), 752–761 (1995)

    Google Scholar 

  3. Bern, M., Demaine, E., Eppstein, D., Hayes, B.: A disk-packing algorithm for an origami magic trick. In: Proc. Int. Conf. Fun with Algorithms, Italy (June 1998)

    Google Scholar 

  4. Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM Symp. Discrete Algorithms, Atlanta, January 1996, pp. 175–183 (1996)

    Google Scholar 

  5. Demaine, E.D., Demaine, M.L.: Computing extreme origami bases. Tech. Rep. CS-97-22, University of Waterloo (May 1997)

    Google Scholar 

  6. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and one straight cut suffice. Tech. Rep. CS-98-18, University of Waterloo (1998)

    Google Scholar 

  7. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. In: Proc. 14th ACM Symp. Computational Geometry, Minneapolis, June 1998, pp. 58–67 (1998)

    Google Scholar 

  8. Frederickson, G.N.: Updates to Dissections: Plane and Fancy (July 1997), World Wide Web., http://www.cs.purdue.edu/homes/gnf/book/Booknews/ch2.html

  9. Gardner, M.: Paper cutting. In: New Mathematical Diversions (Revised Edition), ch. 5, pp. 58-69. MAA, Washington, D.C. (1995)

    Google Scholar 

  10. Geretschlager, R.: Euclidean constructions and the geometry of origami. Math. Mag. 68(5), 357–371 (1995)

    Article  MathSciNet  Google Scholar 

  11. Houdini, H.: Paper Magic, pp. 176–177. E. P. Dutton & Company (1922)

    Google Scholar 

  12. Hull, T.: On the mathematics of flat origamis. Congr. Numer. 100, 215–224 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Huzita, H., Scimemi, B.: The algebra of paper folding (origami). In: Proc. 1st Int. Meeting of Origami Science and Technology, Ferrara, December 1989, pp. 215–222 (1989)

    Google Scholar 

  14. Justin, J.: Towards a mathematical theory of origami. In: Proc. 2nd Int. Meeting of Origami Science and Scientific Origami, Otsu, November-December 1994, pp. 15–29 (1994)

    Google Scholar 

  15. Kawasaki, T.: On the relation between mountain-creases and valley-creases of a flat origami. In: Proc. 1st Int. Meeting of Origami Science and Technology, Ferrara, December 1989, pp. 229–237 (1989)

    Google Scholar 

  16. König, D.: Theorie der endlichen und unendlichen Graphen. Akademische Verlags-gesellschaft, Leipzig (1936)

    Google Scholar 

  17. Lang, R.J.: A computational algorithm for origami design. In: Proc. 12th Symp. Computational Geometry, Philadelphia, May 1996, pp. 98–105 (1996)

    Google Scholar 

  18. Lang, R.J.: TreeMaker 4.0: A Program for Origami Design (1998)

    Google Scholar 

  19. Loe, G.M.: Paper Capers. Magic, Inc., Chicago (1955)

    Google Scholar 

  20. Lord, E.A., Wilson, C.B.: The Mathematical Description of Shape and Form. Ellis Horwood Limited, West Sussex (1984)

    Google Scholar 

  21. Nakamura, G.: Personal communication (December 1998)

    Google Scholar 

  22. Sen, K.C.: Wakoku Chiyekurabe (Mathematical Contests) (1721)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demaine, E.D., Demaine, M.L., Lubiw, A. (2000). Folding and Cutting Paper. In: Akiyama, J., Kano, M., Urabe, M. (eds) Discrete and Computational Geometry. JCDCG 1998. Lecture Notes in Computer Science, vol 1763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46515-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46515-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67181-7

  • Online ISBN: 978-3-540-46515-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics