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Abstract. In order to choose a secure elliptic curve for Elliptic Curve
Cryptosystems, it is necessary to count the order of a randomly selected
elliptic curve. Schoof’s algorithm and its variants by Elkies and Atkin
are known as efficient methods to count the orders of elliptic curves. In-
telligent Choice System(ICS) was proposed to combine these methods
efficiently. In this paper, we propose an improvement on the ICS. Fur-
ther, we propose several implementation techniques in the characteristic
2 case.

1 Introduction

When we use the Elliptic Curve Cryptosystems [3,16] (ECC for short), we first
have to define an elliptic curve over a finite field. Then, all cryptographic oper-
ations will be performed on the group of rational points on the curve and the
security of ECC depends on the order of the group. (We call this order the order
of the curve for short.) In order to avoid attacks that utilize some particular
character of curves, such as MOV reduction [15] or SSSA attack [21,22,18], it is
important to choose a curve randomly. Hence we need to count the order of a
randomly selected curve defined over a finite field.

When the curve is defined over a large prime field, we can use the SEA
(Schoof-Elkies-Atkin) algorithm [3,20,13] as the most efficient method to count
the order of a curve. Thanks to Lercier [11] and Couveignes [10], we can also
apply the SEA algorithm to curves over finite fields of characteristic 2. The SEA
algorithm consists of two completely different stages of subprocedures and is a
probabilistic algorithm. Thus, for an efficient implementation, it is important
to find an efficient combination of such subprocedures. In [6] the Intelligent
Choice System (ICS for short) was proposed to give an efficient combination of
subprocedures in the first stage and was applied to counting the orders of curves
over large prime fields.

In this paper, we propose an improvement on the ICS by considering not only
the cost of the subprocedures in the first stage but also that of the second stage.
Thus, the ICS is considered as a practical optimization algorithm which finds an
efficient path through two different stages. Further, we introduce “two-cycles”
subprocedure, by making use of the characters of the characteristic 2 fields. We
also propose an implementation of [11] using Grébner Basis.
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The experiments show that we can count the order of an elliptic curve over
GF(2%) in 212 seconds in average on a Pentium IT 400MHz PC. Incorporating
with the early abort strategy [12], we can generate one secure curve over GF'(2160)
within 266 seconds. Thus, we can generate secure elliptic curves quickly also in
the characteristic 2 field case.

In Section 2, we briefly look over the SEA algorithm and the ICS. In Sec-
tion 3, we propose an improvement on the ICS and apply it to the curves de-
fined over finite fields of characteristic 2. In Section 4, we also propose a new
subprocedure(two-cycles) and the implementation of [11] using Grobner Basis.
In section 5, we give our experimental results to show the new ICS works effi-
ciently. We also give our results on generating secure curves for ECC. We note
that a part of the results (Section 4) was already presented in [7] in Japanese.

2 SEA Algorithm and ICS

In this section, we recall the SEA algorithm and give brief overview of the ICS
[6]. Here we consider an elliptic curve E over a finite field GF(q) of ¢ clements.

2.1 Schoof’s Algorithm

First we will briefly recall the Schoof’s algorithm [19]. We denote the subgroup
of ¢-torsion points of E by E[¢] and the Tate module by T;(E) for a prime ¢.
The Frobenius endomorphism ¢ : (z,y) — (z?,y?) of E is defined on T;(F) as a
linear map and satisfies the equation: ¢? — t¢ + ¢ = 0, where t is the trace of ¢
which does not depend on ¢. Then #E(GF(q)) = q+1—t . If we find an integer
ty such that

¢*(P) + qP = t,¢(P) (1)

for any P € E[l], we get t = t, (mod ¢). By Hasse’s theorem, ¢ must satisfy
-2y/q <t < 2,/q. Therefore if we compute ¢ mod £ for various small primes
until their product exceeds 4,/q, we can uniquely determine the cardinality of
the curve by means of the Chinese Remainder Theorem.

We denote the (-th division polynomial by fo, whose degree is (¢2—1)/2 for
¢ > 3, and which vanishes precisely on the z-coordinates of the ¢-torsion points.
As we compute (1) in the ring GF(q)[z,y]/(e(z,y), fe(z)), where e(z,y) is the
defining polynomial of E, the dominant steps is the computation of x? and y4
in that ring. From this, the complexity of this algorithm will be O(logs(p)).

2.2 SEA Algorithm and Isogeny Cycles

Elkies’ idea is to make use of a degree (¢ —1)/2 factor gy of fo when it is possible
to compute g¢ in GF(q)[z]. (In this case, ¢ is called an Elkies prime. Otherwise
( is called an Atkin prime). The factor gy represents an eigenspace of ¢, which
can be computed as a kernel of an isogeny map. Thus, ¢ mod ¢ is calculated
by the eigenvalue of the eigenspace. (We note that the ratio of Elkies primes is
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expected as 1/2. ) This method will reduce the complexity to O(log®(p)). Rather
than determining the unique value of t mod ¢, Atkin obtained certain restrictions
on the value for Atkin prime case. Then the true value of ¢ is found among a lot
of candidates by the match-and-sort technique [L0]. (See [20] for the detail.)
The SEA algorithm is obtained by combining the above two and consists of
two stages, namely, (I) collecting information stage and (II) trial search stage:

Outline of the SEA algorithm

(I) Collecting informations on ¢ mod ¢ for various ¢’s until []£ > 4,/q :
(1) Compute the modular polynomial @;(x, j).
(2) Check if &(x) = &4(z,5(E)) has a root in GF(q).
(2-E) If &(z) has a root in GF(q) (we call £ an Elkies prime)
calculate t; = t mod ¢ using gy.
(2-A) Otherwise (we call £ an Atkin prime)
calculate possible values of ¢ mod ¢. We denote the set of possible
values of ¢t mod /¢ by 7.
We denote the set of Elkies primes and the set of Atkin primes by £ and A,
respectively.
(IT) Determining the value ¢ by trial search: Now, there are a lot of candidates
T for the value of ¢, where

T mod ¢ =ty for £ € £ and T mod ¢ € T, for £ € A.

The value of ¢ is (uniquely) determined by testing if (¢ + 1 —T)P = O for
each candidate T, where P is a sample rational point of E and O is the point
of infinity.

The isogeny cycles method [3] was proposed to improve the SEA algorithm,
where ¢ mod ¢2, t mod #3, ... can be computed efficiently from ¢ mod ¢ when / is
an Elkies prime. Incorporating the isogeny cycles method, the stage (I) allows
information on ¢ mod ¢* for some positive integer k. Thus, in the stage (I), we
will gather informations of ¢ mod ¢* for some primes ¢ and integers k > 0. We
call the product of all primes or prime powers the counter whose information
will be used in the stage (II). When counter exceeds 4,/¢ in the stage (I), we
enter the next stage (II).

2.3 ICS

In implementation of SEA, the following choices are very important for the total
efficiency;

1. decision whether to apply the isogeny cycles method for ¢t mod £* or not,
when we find an Elkies prime /,

2. decision whether to compute the candidates for the value of ¢ or just abandon
it, when we find an Atkin prime, and

3. the setting on the upper bound CanMAX on the number of candidates of the
trace and usage of informations with respect to Atkin primes.



Efficient Implementation of Schoof’s Algorithm in Case of Characteristic 2 213

Thus, to give the most efficient realization (implementation), we have to find
good combinations (choices) of subprocedures. In [(], this “combination prob-
lem” was dealt with and the ICS was proposed as a systematic and practical
answer. It has the following functions corresponding to the problem.

The functions of the ICS [(]

(A) At each step in the stage (I), the subprocedure M with the smallest esti-
mated complexity complex(M) is chosen among the possible subprocedures.
Usually, complex(M) is set by the complexity of the dominant steps of M.

(B) For each Atkin prime ¢, the decision if we use the information on ¢ mod ¢
in the stage (II) will be made by introducing an index (Atkin indez).

(C) By the virtual (Atkin/isogeny cycles) methods, we can enter the stage (II)
from the stage (I) dynamically.

When we handle curves over large prime fields GF(p), the ICS chooses one
from the following at each step in the stage (I): (See Figure 1.)

(
(
(
(

a) Schoof’s original algorithm,

b) Atkin/Elkies’ method,

¢) the isogeny cycles method,

d) the virtual method (a short cut to the stage (II)) proposed in [6].

44 Choice of the next method |

|Atkin-Elkies | | Schoof | |isogeny cycles || virtual |

Not Yet _1—”, > 4\/5 9 Trial Search Stage

Fig. 1. The diagram of the ICS

3 The New ICS for Curves over GF(2")

In order to apply the ICS to the characteristic 2 case efficiently, we enhance the
ICS as follows:

(i) We find an efficient path from the stage (I) to the stage (II).
(ii) We add a special subprocedure which makes a good use of the speciality of
the characteristic 2.

We note that the enhancement (i) is also applicable to the order counting of
curves over large prime fields.
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3.1 Finding an Efficient Path from Stage (I) to Stage (II)

In the original ICS we set the upper-bound CanMAX on the total number of
candidates of ¢ which will be tested in the stage (IT). However, to get the best
total timings, we have to take care of the cost of the stage (II) and find an
efficient path (flow of computations) from the stage (I) to the stage (II).

To find such an efficient path, we consider the virtual method as a procedure
between the stage (I) and the stage (II). That is, one can decide to enter the
stage (II) even if counter does not exceed the bound 4,/q. In this case, we apply
the virtual method before the computation in the stage (II).

Stage (I) — virtual method if necessary — Stage (II)

At each step in the stage (I), the choice of the next subprocedure and the deci-
sion whether one enters the stage (II) or not are made at the same time by the
new function Single-Depth-Search (SDS in short). Here, we introduce a sub-
procedure My which does nothing. We call My no-operation. Let other possible
subprocedures be My, ..., M.

Single-Depth-Search:

(1) Compute the estimate ET(M) of total time for each subprocedure M as
follows:

(i) For My, estimate the total time when one enters the stage (II) directly.
(Between the stage (I) and stage (II), one executes the virtual method
if necessary.)

(ii) For other M;, 1 < i < k, estimate the total time when one executes M;
and then enters the stage (II). (Between the stage (I) and stage (IT), one

executes the virtual method if necessary.)
(2) Among ET(My), ...,ET(My), find the smallest one, say ET(Mj).
If My = My, one enters the stage (II).
Otherwise, one chooses M as the next procedure.

Repeating the function SDS at each step, we have a practical realization of
multiple-depth-search which will give the most efficient flow of computations.
The new ICS has the following functions: (See Figure 2.)

The functions of the new ICS with SDS

(N-A) At each step in the stage (I), the subprocedure with the smallest esti-
mated total time is chosen among the possible subprocedures by the function
SDS. If the output is My, we enter the stage (II).

(N-B) For each Atkin prime ¢, the decision if we use the information on ¢ mod ¢
in the stage (II) will be made by introducing an index (Atkin index).

Next, we will give the details of estimating the total time.

Estimate of the Total Time: Let M be the chosen method and NV; the ex-
pected number of the candidates in the stage (II) after the execution of M with
probability p; for each . Then, the estimate ET(M) of the total time is given by

cprcomplex(M) + Z Cm—s,iPiV/ Ni, (2)
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no—operation case

Choice of the next method Trial Search Stage

(single-depth-search) L virtual |
] 1
(===
Atkin/Elkies| | Schoof _: isogeny cycleq
:P_iv-vigge: | two-cycles | | no-operation |

Fig. 2. The diagram of the new ICS

where ¢, Cm—s,i are weights (in R) and complex(T') denotes the complexity
of the dominant step of T over the field arithmetics, which is also used in the
function (A) in the original ICS. We determine the weights cas, ¢m—s,i by data
of actual computations on a real computer. Of course, these depend on the
computational environment (the CPU, the compiler, etc.). We note that, for the
Atkin/Elkies’s method for a prime ¢, the expected information on ¢ is ¢t mod £
with 1/2 possibility and a set 7y of candidates with 1/2 possibility. From these,
we estimate the expected number of candidates.

3.2 Additional Subprocedures of ICS for Curves over GF(2")

We can use the following special subprocedures (e),(f) in the stage (I) in the
SEA algorithm, by which we can improve the effect of the ICS. (For the large
prime field case, the method (f) is also applicable, but the method (e) is not,
since the method (e) uses the special characters of characteristic 2 fields.)

(e) A method to compute ¢t mod 2™ for positive integers m,
(f) A method based on Dewaghe’s idea [1] to compute ¢ mod ¢ for an Atkin
prime /.

For simplicity, we call the method (e) the two-cycles method, and the method (f)
Dewaghe’s method. Compared with the methods (b) and (c) in the original ICS
in Section 2.3, the methods (e) and (f) do not seem to have much “contribution”
in the stage (I), however, they seem to work very well as “short cuts” to the
stage (II). We will give details of two-cycles method in Section 4.1 and show its
practical effect in Section 5.1. As our current implementation does not support
Dewaghe’s method, we omit its description.

Remark 1 In the author’s experiments, we computed t mod 2% for appropriate

k at the beginning of the SEA algorithm.

3.3 Effects of the new ICS in Characteristic 2 Case

The original ICS requires the upper-bound CanMAX on the total number of can-
didates of ¢, on which the total efficiency depends heavily. To get an appropriate



216 Tetsuya Izu et al.

CanMAX, we have to measure the timings on a number of examples. On the other
hand, in the new ICS, the effect of CanMAX on the total efficiency becomes much
smaller and we can find more efficient value of CanMAX. In the original ICS,
CanMAX for curves over GF(q) with 155 bit size ¢ was set as 108, but it can be
increased to 10° in the new ICS. Of course, the function SDS has actual effect in
the case where the number of candidates becomes close to CanMAX.

Examples 2 Here we demonstrate the detail of actual computation by exam-
ples on a PC with Pentium II 400MHz CPU. We select examples for which
the function SDS works well. In the below, series of triples represent the trace
of computation, where each triple consists of the selected method, the selected
prime, and the actual cost (in seconds). For simplicity, we write a,e and i for
Atkin’s method, Elkies’ method and the isogeny cycles method, respectively. (For
the definition of Eg, see Section 4.1.)

(1) Eg, where 8= a® + a2, over GF(2'%%) = GF(2)(«a). It took 27.5 seconds by
the ICS without SDS, however, it took 18.9 second by the ICS with SDS. We list
the final steps in the computations.

no SDS: [e,41,2.6],[a,43,2.3] — virtual method — Stage (II)

SDS: [e,41,2.6],[a,43,2.3],[e,47,3.1] — virtual method — Stage (II)

(2) Eg, where 8= a% +a® + o + 1, over GF(2'%%) = GF(2)(«a). It took 119
seconds by the ICS without SDS, however, it took 95.7 seconds by the ICS with
SDS. We list the final steps in the computations below.
no SDS: [a,67,11.0],[e,71,14.1],[a,73,14.6] — virtual method — Stage (II)
SDS: [a,67,10.9],[e,71,14.1],[i,11,6.8] — virtual method — Stage (II)

4 Implementations of Subprocedures

In order to make the ICS work efficient, subprocedures must be efficiently com-
putable. Here we pick up subprocedures which are important and completely
different from subprocedures for odd characteristic fields, and give some details
on them. (Cf. [7].) From now on, let K = GF(2").

4.1 Two-Cycles Method for Curves over GF(2™)

The two-cycles method utilizes the special characters of the characteristic 2
fields. Here, we consider elliptic curves defined as follows:

E,: v*+yzr=2+a, a€K (3)

We note that each elliptic curve defined over K is K-isomorphic to some F, or
its quadratic twist.

The two-cycles method uses the fact that E,[2%] = Z/2FZ is the eigenspace
of the Frobenius endomorphism and the 2*-division polynomial can be computed
efficiently. Let go =0, g1 = = + /a, and for each i > 1

1—2
gi=g21+ Vaz ][ (4)
j=1
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Then, for points P = (x,9),Q = (2/,y') on E with Q = 2* P, we have

2k+1

r 9k
T = ko (5)
hi;

where hy = x]_[f;ll g3 (See [14].) Since the point of order 2 on E, is (0,/a),
the z-coordinate of each point of order 2¥ is a root of gi_1(x). By generalizing

this fact, we have the following. (We note that the z-coordinate of a point P of
order 2% is K-rational, then P is K-rational.)

Lemma 3 Suppose that a point of order 2% is K -rational and its x-coordinate,
say o, is already computed. Then, the x-coordinate of each point of order 2F+*
s a root of the following polynomial of degree 2°.

Jk,s = 93 + 2\5/0”6 hs =0 (6)

Each point of order 4 is K-rational and so ¢ = 1 (mod 4). Then, the z-
coordinate of each point of order 8 is a root of the polynomial g, of degree
2. Factoring go, we get the z-coordinate of a point of order 8, if go has a rational
root, or we get t = 5 (mod 8), otherwise. Repeating this procedure, we can
compute t =1 (mod 2*) efficiently if each point of order 2¥ is K-rational.

Examples 4 Let K = GF(2'%%) = GF(2)(a), where a'® + a5 +1 = 0. On
the curve E, : y2 +yx = 23 + o, points of order 22° are K-rational. In this case,
the two-cycles method works efficiently and the order #FE,(K) was computed
within 7.6 seconds on a PC with Pentium II 400MHz CPU.

When we compute ¢ mod 28%¢ by using g s, we can use a technique similar
to the match-and-sort technique in the isogeny cycles method ([6]). Since the
value # = t mod 2¥*5~1 is already computed, either ¢ = ¢’ (mod 2¥*%) or
t =t +2ks=1 (mod 28%) holds. Thus, finding a pair (u,v) of integers such
that (i) either ut’ = v or u(t' +28T=1) = v holds, and (ii) u? + v? is as small as
possible, and testing if

up(P) = vP, (7)
we can determine the value ¢ mod 2~F+%.
Estimate of Complexity: In the new ICS, we can use the following estimate

on the complexity. Suppose that we have already computed ¢ mod 25+5~1. Then
we consider that the computation of ¢ mod 2**#, requires

(n 4+ c max{|ul|, [v|}) x U?, (8)

where U = deg(gx,s), n is the extension degree of K and c is a constant.
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4.2 Isogeny Map Computation by Lercier’s Method

Here, we will discuss on the efficiency of the isogeny map computation for
curves over GF(2"). In the implementation, we tested Lercier’s method [11],
Couveignes’s second method [2] and a simple modification of Couveignes’s sec-
ond method based on interpolation and we found that Lercier’s method is more
efficient than others, even in the case suited for Couveignes’s second method,
i.e. a given curve has rational points of a large order 2*. To give a practical im-
plementation of Lercier’s method, we utilize Grobner basis computation facility
of Risa/Asir computer algebra system [17]. Then, the ratio of the computation
of isogeny maps in the whole computation is quite small. For example, the ratio
is around 7 % for curves over GF(2'%%) and GF(2!9).

Implementation with Grobner Basis Computation In Lercier’s method
[11], one computes the isogeny map by solving a certain system S of algebraic
equations over K and those algebraic equations are derived from the commu-
tativity of the isogeny map and the translation of the point of order 2. In a
practical point of view, the key of Lercier’s method is that S has the unique
solution belonging to GF(2)*, where k is the number of indeterminates in S.
Since S is defined over K, we can transform S to another system Sy of algebraic
equations over GF'(2) with the same indeterminates. Then Sy becomes so-called
an “over-determined” system. To solve such a system, the Grobner basis com-
putation seems very useful and efficient. (See [1] for the notion and algorithms
of Grébner basis.)

Now, suppose that 71, ..., 7 are indeterminates in the system Sy and I(Sp)
is the ideal in GF(2)[m1, ..., ;] generated by all polynomials in Sy. Since Sy has
the unique solution, with respect to any term order, the Grébner basis of 1(Sp)
is (m1 —ex,...,m, —ek), where e; € GF(2) and (eq,...,ex) is the solution of Sy.

By several experiments, we observe that many of equations in Sy are linear.
Moreover, there seems a certain randomness in the distribution of coefficients of
equations, which implies that for each 7;, the ratio of equations having a term
containing m is close to 1/2. From these observation and the property of the
“sugar” strategy [5] in the computation of the Grobner basis, the computation
of the Grobner basis with sugar strategy becomes close to the computation of
solving of a system of sparse linear equations. Hence, the Grébner basis can
be computed quite efficiently in this case. As a result, the cost of generating
algebraic equations is much larger than that of solving the system in the exper-
iments.

Of course, the Grobner basis computation is a general method which can
handle non-linear equations. So, it can also compute “exceptional” cases, where
the system S is not sparse or has a large degree, precisely.

5 Experimental Results

We have implemented the new ICS using Risa/Asir computer algebra system [17]
and examined its ability and efficiency by experiments on a number of examples
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on a PC with Pentium IT 400 MHz CPU. We used the same settings on the
complexity estimate function complex for Atkin/Elkies methods and the isogeny
cycles method as in [6], and made a special table for the two-cycles method
based on data of actual computations. Same as in [6], we did not use the original
Schoof’s method. For the experiment, we pre-computed modular polynomials
for curves over GF'(2™). The timings of the experiment and the detailed analysis
on the timings certainly show the efficiency/progress of the new ICS and the
implementations of subprocedures.

5.1 Order Counting

We selected four fields GF(2'%%), GF(2'%0), GF(2'%%), GF(2%%), chose 200
curves over each field as

> +yr =2 +a, 2<n(a) <201,

and measured the average time needed to compute the order of one curve. (For
GF(2%9), we chose 150 curves.) Here, n(a) denotes the binary expression of an
element a in K, that is, n(a) = Y. a;2" if a = Y a;af, where a; € {0,1} and
« is the primitive element. Moreover, in order to analyze the effect of the ICS,
we tried several combinations of functions of the ICS and applied them for 200
curves over GF(2169).

Table 1 shows the timings of counting the orders of curves over each field.
We also put the best and the worst time in the table. To know the effect of the
function SDS, we tested the ICS with SDS and that without SDS. The speed up
(the progress) by the SDS is almost 3 % and the expected “practical complex-
ity” seems around O(n®) which also shows the quality of the implementation. In
smaller field, as the two-cycles method works very well, the effect of the SDS is
rather small. Table 2 shows the detailed analysis on the effect of each function
in the ICS, where SDS means the use of SDS, re-ordering means the use of
Atkin index (see Section 2.3) and isogeny means the use of complex to choose
the isogeny method. So, the number (3) corresponds to the original ICS applied
to curves over GF(2") and the number (8) corresponds to the ordinary SEA
algorithm with isogeny cycles method. Table 2 suggests that the new ICS at-
tained nearly twice faster than the ordinary SEA with isogeny cycles method.
Moreover, it also suggests that our further enhancement on the ICS improved
the efficiency nearly 40 % up compared with the original ICS.

5.2 Finding Secure Elliptic Curves

For secure ECC, it is strongly recommended to use a curve whose order is prime
or almost prime. For this purpose, we can use early abort strategy [12]. In this
strategy, we check if the order has a factor in each step of the computation of
t mod /. If we find that the order is not almost prime, we can abandon the curve
and try the next one. The effect of the strategy is supported by mathematical
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Table 1. Timings for counting orders (seconds):

degree SDS average time best time worst time CanMAX

155 USE 20.3 7.6 42.7 10°
NO 21.0 8.6 44.5 108
160 USE 22.2 14.2 50.3 10°
NO 22.8 15.5 50.2 108
196 USE 79.8 404 155.4 1010
NO 82.2 40.7 149.7 5 x 108
239 USE 212.0 107.4 578.2 5 x 100
NO 216.0 113.7 548.7 10°

Table 2. Effects of functions of the ICS (seconds):

No. SDS two-cycle isogeny re-ordering virtual average best worst

(1) YES YES  YES YES YES 222142 503
(2) NO YES  YES YES YES 228155 50.2
(3) NO NO  YES YES YES  31.019.1 775
(4) NO YES  NO YES YES 259 16.6 53.3
(5) NO YES  YES NO YES  27.115.2 88.8
(6) NO YES  YES YES NO  29.620.1 505
(7) NO NO  YES YES NO 381233 775
(8) NO NO  NO NO  NO 426373 78.4

analysis [9,12]. Here, we incorporated the strategy to our implementation with
the ICS and searched a number of secure curves.

For GF(21%%) and GF(22%?), we generated curves E, randomly and tested if
the order of the quadratic twist of F, is written as 2 X p for some prime number
p. So, we searched “secure curves” among the quadratic twists of randomly
generated curves. We generated 20 “secure” curves over each field and list the
average time to find one curve in Table 3. From the timings, we are convinced
that one can generate secure curves quite efficiently.

Table 3. Secure Curve Generation (seconds):

finite field G F(2'%°) GF(22%)
average time 266 3783

Remark 5 We note that even if the order #E, is divisible by larger power of 2,
its quadratic twist is not divisible by 4. Thus, the two-cycles method never does
harm in finding a secure curve.
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6 Concluding Remarks

We have introduced the new ICS and could speed up the order counting process
40 %. Comparing with the process without the ICS, the new ICS process is more
than 90 % faster. We also proposed several practical implementations that can be
used in the characteristic 2 case. As a result, incorporating with the early-abort
strategy, we can choose secure curves from randomly selected elliptic curves in a
short time. For example, our experiment shows that we can generate one secure
curve over GF(2!69) within 266 seconds. We note that for order counting of
curves over large prime fields our current implementation with SDS is about 20
% faster for curves over GF(2%49 4 115) than that in [6], where we do not use
fast arithmetics technique.

Our future work will be speeding up the process and calculation of curves de-
fined over bigger fields. The important factors are (1) finding the better settings
in the ICS, (2) improvements on the match-and-sort algorithm, (3) improvements
on isogeny calculation, and (4) speeding up the calculation of eigenvalues.

The new ICS can handle any efficient subprocedures and it can be applied to
any elliptic curves over any ground fields (e.g. OEF [23]) in the SEA algorithm.
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