Optimally Efficient Accountable Time-Stamping

Ahto Buldas*!, Helger Lipmaa*!, and Berry Schoenmakers**2
! Kiiberneetika AS, Akadeemia tee 21, 12618 Tallinn, Estonia
{ahtbu,helger}@cyber.ee
2 Dept. of Mathematics and Computing Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

berry@win.tue.nl

Abstract. Efficient secure time-stamping schemes employ a 2-level ap-
proach in which the time-stamping service operates in rounds. We say
that a time-stamping service is accountable if if it makes the TSA and
other authorities accountable for their actions by enabling a principal to
detect and later prove to a judge any frauds, including attempts to re-
order time-stamps from the same round. We investigate the paradigm of
time-stamping services based on simply connected graphs, and propose
a simple, yet optimal, accountable time-stamping service, using what we
call threaded tree schemes. We improve upon the previously best scheme
by Buldas and Laud by reducing the size of a time stamp by a factor of
about 3.786 and show that our construction is optimal in a strict sense.
The new protocols also increase the trustworthiness of the publication
process, which takes place at the end of each round.

1 Introduction

A time-stamping service is a collection of protocols providing long-term authen-
tication of digital documents together with the moment in time at which they
were submitted for authentication. Time-stamping is expected to become an in-
tegral part of the legal framework for digital documents, as it enables one to
prove in court that a document existed at some given point in time. In addition,
time-stamping helps to significantly lower the level of trust currently required
of a public-key infrastructure by making it possible to prove that a document
was signed before the revocation act of the corresponding signature key was
stamped. As such, one will frequently depend on time-stamping to resolve the
status of documents and corresponding signature keys, which motivates the need
for a clear understanding of the security and efficiency requirements of time-
stamping.

In the context of time-stamping it is common to regard time as a relative
notion. We say that a (time-)stamping service provides relative temporal authen-
tication if one is able to decide which stamp has been issued first for each pair

* Supported partially by Estonian Science Foundation grant 3742.

** Part of this work was done while visiting Kiiberneetika AS.

H. Imai, Y. Zheng (Eds.): PKC 2000, LNCS 1751, pp. 293-305, 2000.
© Springer-Verlag Berlin Heidelberg 2000

294 Ahto Buldas et al.

of time-stamps. Following Haber and Stornetta [[590,HS91], a cryptographic
way to achieve such a relative order for the documents is to create dependencies
between the time certificates attached to the documents, where later certificates
are obtained by applying a collision-resistant function to earlier ones. A short
description of the existing time-stamping schemes is given in Section 3.

We consider time-stamping services that operate in rounds, where clients
will issue requests to a central time-stamping authority (TSA) which in turn
hands over the cumulative round stamp to the publication authority (PA) so the
latter may publish it. In order that the time-stamps are meaningful in court, it
is required that one is able to actually prove that a relative temporal ordering
holds for any pair of time-stamps (even for time-stamps from the same round),
or to prove that an authority deviated from the protocols (be it accidentally
or intentionally). It is important to note that no single player in the scheme
(including the TSA and PA) is required to store all of the time stamps for the
rounds in which it takes part.

A time-stamping service is accountable, if it makes the TSA and other au-
thorities accountable for their actions by enabling a principal to detect and later
prove to a judge any frauds, including attempts to reorder time-stamps from the
same round. Moreover, if a honest party followed the protocol but is still accused
of forgeries, she can explicitly disavow any false accusations. Section 4 addresses
the security objectives in more depth, where we will rely on notions such as
simply connected graphs and authentication graphs, which are introduced in
Section 2.

In Sections 5-7 we present our main contributions. In Section 5 we introduce
a notion of general ¢-schemes, based on simply connected graphs. In particu-
lar, we define two instances of it: anti-monotone schemes [BLLVO8,BL98], and
our threaded tree schemes. We show that while the latter scheme is not anti-
monotone it satisfies the same security objectives as achieved by anti-monotone
schemes. The important difference is that the size of the time certificates be-
comes approximately 3.786 times shorter than for the optimal anti-monotone
schemes of [BL.98], and overall the scheme also becomes simpler.

Section 6 presents an optimized set of time-stamping protocols using simply
connected graphs. As a novel feature, we present a publication protocol, in addi-
tion to the stamping protocol and the stamp completion protocol as described for
other time-stamping services. Finally, in Section 7, we prove that under general
assumptions our scheme based on threaded tree schemes is tightly optimal (i.e.,
optimality is not just asymptotic).

2 Preliminaries

2.1 Cryptographic Primitives

The basic cryptographic tools used in a time-stamping service are hash functions
and digital signatures. We let h : {0,1}* — {0, 1}* denote some fixed collision-
resistant hash function, where k is a security parameter. Furthermore, we let

Optimally Efficient Accountable Time-Stamping 295

sig 4 (M) denote A’s signature on message M. Since during stamping protocols
the principals must sign arbitrary data, we require the signature scheme to be
existentially unforgeable against adaptive chosen message attack.

2.2 Authentication Graphs

Let G = (V, E) be a directed acyclic graph such that V = {1,2,...,|V|} and
v < w whenever (v,w) € E, i.e., the vertices of G are topologically sorted (since
G is a directed acyclic graph, such a numbering always exists). For any W C V
we define E(W) = {v : (Gw € W)(w,v) € E} and E=}(W) = {v : (Fw €
W)(v,w) € E}. We assume that v = |V is the unique vertex with F({v}) = 0,
which we call the root of G. Finally, we let S(G) = {v € V : E71({v}) = 0} be
the set of source vertices of G.

Graph G is called simply connected if there is a directed path between each
pair of vertices v and w (going either from v to w or from w to v). For topologi-
cally sorted G it is equivalent to state that (v,v+1) € E for all v, 1 <v < |V].
For each pair v < w of vertices of a simply connected graph G we define the
distance d(v,w) as the length of the shortest path from v to w.

We say that U C V is computable from W C V if either (1) U C W or
(2) UNS(G) € W and E-*(U \ W) is computable from W. For any subset
W C V\ S(G), we say that the set Ag(W) = E~Y(W)\ W is the authenticator
of W. Clearly, W is computable from Ag(W).

Recall that h denotes a collision-resistant hash function. As a generalization
of Merkle’s authentication trees [Mer80], we introduce authentication graphs G as
labeled directed acyclic graphs with the labels assigned in the following manner.
Each source v of G is labeled by L, = H,, where H, is a given string (data
element) specific to source v. The label of a non-source vertex v is computed
as a function of the labels of its predecessors: L, = h(Lg-1(,)). Here Lg =
(Lyyy .-y Ly,), where vy, ..., v are the elements of S in strictly increasing order.
We often identify the labels of an authentication graph with its vertices and say
that a vertex is computed from its predecessors rather than the label of a vertex
is computed from the labels of its predecessors.

3 State of the Art

Modern time-stamping services provide relative temporal authentication, where
one verifies the relative order of stamp issuing, given any two time stamps. In all
such schemes the time certificate of a later issued stamp is dependent on earlier
stamps (a paradigm first proposed in [H590]).

Most of the proposed schemes are built upon authentication graphs. Linear
linking schemes [HS90] use a chain as the underlying graph. This solution is
clearly impractical, since certificate length increases linear with the number of
stamps issued so far. In the worst case, verification of a single time certificate
takes as much time as it takes the TSA to compute the stamps for all documents
issued so far.

296 Ahto Buldas et al.

Tree schemes [BAM91,BHS92] (using a tree as the underlying graph) were
motivated by the desire to minimize the storage and communication require-
ments. Since trees are not simply connected, this type of schemes do not provide
relative temporal authentication within rounds. To overcome this, the stamping
procedure was divided into rounds, so that the cumulative round stamp of every
round was published in an authenticated medium. Additionally, the duration of
rounds was assumed to be small enough to think about the stamping requests
submitted during the same round as simultaneous. Unfortunately, bounding the
round lengths reduces the compression effect.

Anti-monotone schemes [BLLVI8,BLIS] combine the simply connectedness
of linear schemes and efficiency of tree schemes, therefore sharing the best fea-
tures of these schemes. Anti-monotonicity makes the schemes slightly less ef-
ficient (and also, more difficult to understand and implement) than the tree
schemes.

Accumulator schemes [BdAN93] (the only known viable alternative to the
graph based schemes) further reduce the storage requirements, by introducing
a trapdoor into the scheme. However, accumulator schemes share all drawbacks
of tree schemes. They have also another principal weakness: one has to trust
the coalition of parties who generated the trapdoor information. Hence, usage
of such schemes would directly violate the objective of reducing trust in stamp-
ing services. To date, there is no known efficient construction of trapdoorless
accumulators (see [San99] for recent work in this area).

4 Time-Stamping Objectives

A stamping service consists of a set of principals with the time-stamping au-
thority (TSA) and the publication authority (PA) together with a quadruple
(S,C,V, P) of protocols. The stamping protocol S is used by a participant to
hand over a message to the TSA for time-stamping. During the stamp com-
pletion protocol C' a participant obtains a time certificate from the TSA. The
verification algorithm V is used by a principal having two time certificates to
verify the temporal order of the corresponding stamping events. The publication
protocol P is used by a TSA to handle the round stamp (short fingerprint of the
round) to the PA who will publish it on some authenticated and easily accessible
medium.

We say a time-stamping service is accountable if the next two properties hold
whenever there is at least one uncorrupted party (say, one honest client inter-
ested in legal value of a particular time stamp) during the creation of stamped
information:

— Fraud detection. The service makes the trusted third parties accountable for
their actions by enabling a principal to detect and later prove to a judge any
frauds affecting the relative ordering between time-stamps.

— Anti-framing. If a party has honestly followed the protocol but is still accused
in forgeries, she can explicitly disavow any false accusations.

Optimally Efficient Accountable Time-Stamping 297

One of the crucial requirements of an accountable time-stamping service is
to withstand reordering attacks, where the TSA assigns an earlier stamp to
a document submitted later than another document, i.e., they should provide
relative temporal authentication. While network latency makes it impossible to
detect microscale reordering attacks, it should be intractable for the stamping
service to forge the order of time stamps for documents submitted in significantly
different time moments. An ideal time-stamping service should provide relative
temporal authentication between any pair of documents.

Simple time-stamping services (like hash-and-sign and simple tree schemes)
not ensuring relative ordering of time stamps within rounds are highly vul-
nerable to reordering attacks. However, these attacks can partially be elimi-
nated by using the stamping protocols defined in [BLLV98], where directly after
the vth stamping request H, the TSA returns a signed receipt on some value
L, = h(Hy,...,H,) to the client, where h is a collision-resistant hash function
(informally, we say then that L, is (one-way) dependent on H;, i = 1,...,v).
If L, is additionally dependent on L;, 1 < i < v, the client can use TSA’s
signatures on the values L, to prove any frauds.

Unfortunately, this methodology helps only until TSA’s signature can be
trusted (in the worst case, only until the end of the current round). If all L,
were not authenticated by the round stamp, there would be no way to detect
the frauds after TSA’s key becomes invalid. Hence, a time-stamping service is
accountable only if the round stamp authenticates all the values L,,, where every
L, is dependent on L, _1. Moreover, every L, should be dependent on the round
stamp of the previous round. The resulting structure can be seen as a dependency
graph that has the round stamp as a label of its root and as a subgraph a simply
connected graph with vertices labeled by values L,, where the edges correspond
to applying a collision-resistant hash function, and the sources correspond to the
data elements H,. For efficiency we assume that each L, is a k-bit output of a
fixed hash function h. We additionally assume that L; is equal to the stamp for
the previous round, since the rounds have to be connected. A time certificate
has to contain sufficient data to prove that the mentioned dependencies hold.
We shall make these informal notions precise in the next sections.

It is important to realize what time-stamping does and what it does not.
For example, there is a type of reordering attack that is often used as an argu-
ment against linking schemes. Let Hq, ..., H, be the stamping requests during
a round. Before “officially” closing the round, the TSA may issue additional
time stamps for H,,, H,_1,..., Hy in reverse order. After that the TSA is able,
for any pair of stamps of H; and Hj, to present proofs for the statements “Hj;
was stamped before H;” and “H; was stamped before H;”. It may seem, there-
fore, that using linking schemes and signed receipts does not give any advantage
compared to simple hash-and-sign scheme.

The following example shows a weakness in this argument (cf. [BLLVIS,
Section 3.1]). First, a client requests a stamp L, of a nonce from the TSA.
Subsequently, she stamps her signature o on the actual document X and L,,.
The TSA may then issue additional stamps for X and o. However, no one is able

298 Ahto Buldas et al.

to back-date new documents relative to o without cooperating with the signer.
Note that this attack is hard to prevent if the underlying graph is not simply
connected, and that usually the TSA is trusted not to mount such an attack.

5 Schemes Based on Simply Connected Graphs

5.1 General Construction

The first efficient accountable time-stamping service proposed in [BLLVIS]is
based on anti-monotone schemes. Briefly, the intuition behind this scheme is to
define the time certificates in such a way that for any v and w, v < w, the union
of the vth and wth time certificates contains set-theoretically a dependent path
between the corresponding stamps L, and L,,. In what follows we show that
up to 3.786 times shorter certificates can be achieved if we instead assume that
said union contains only information sufficient to compute this path. For this
we shall define a general framework that includes in particular anti-monotone
schemes and the new optimal threaded authentication schemes.

Let G = (V, E) be a rooted simply connected graph with a single source. Let
¢ : V — {red, black} be an arbitrary function, such that ¢(1) = red. We regard
¢ as a red/black-coloring of G. The ¢-scheme [G]y is constructed from G by
adding individual data elements, that is, a new vertex vy and an edge (vg,v), to
every black vertex v. Then we say that vy is a data element connected to vertex
¢. We say that P : V — 2V is a pass-through function if it maps an arbitrary
vertex v to a path (w,...,v,...,|V]), such that (1,w) € E.

Definition 1. Let [G], be a ¢-scheme, where G = (V,E), and let P : V — 2V
be a pass-through function. Now, let v € V be a black vertex. We define head(v)
to be the set of vertices in Ajgy, (P (v)) that can be computed from the set of data
elements connected to black vertices w < v, and we set tail(v) = Ajgp, (P(v)) \
head(v). The time certificate Cert(v) of a source v € S([G]y) is defined as

Cert(v) = (Uv Lhead(v)v Ltail(v))-

Recall that every source v of an authentication graph G corresponds to some
string H,,. Intuitively, Cert(v) consists of the minimal amount of data necessary
to verify whether v lies on a path between 1 (for which the label is equal to the
last round stamp) and |V (for which the label is equal to the current round
stamp). If v is represented by k bits then |Cert(v)| = k(|A[g), (P(v))| +1).

Jumping ahead a little, in the time-stamping protocols head(v) corresponds
to the maximum subset of Ajgy, (P(v)) that the stamping authority knows di-
rectly after stamping the vth element and tail(v) corresponds to the remainder
of the authenticator. Since Lpeaq(v) is dependent on all data elements issued thus
far, by returning his signature on Lpeaq(v) (or on some value that is one-way de-
pendent on Lheaq(y)) to a client directly after issuing the vth stamp, the stamping
authority commits himself to all data elements stamped before the vth element.
Transmission of the certificate to a client at the end of the round commits the
authority to every data element of this round even if the authority’s signing key
gets compromised later on. (The time-stamping protocols are given in Section 6.)

Optimally Efficient Accountable Time-Stamping 299

[GTs

Fig. 1. Construction of [G], for anti-monotone G.

5.2 Anti-Monotone Schemes

Next we show that even if using exactly the same base graphs as in [BLLVIS)]
one can get a significant improvement over their solution. A simply connected
graph G = (V, E) is anti-monotone if the in-degree of each vertex is at most 2,
and if for all (v1,w1), (ve,w2) € F we have that v < wgy < w; implies v1 < vo.
Let ¢ : V — {red, black} be such that ¢(v) = black iff v # 1. The anti-monotone
¢-scheme [G]y is a ¢-scheme constructed from anti-monotone graph G.

As shown in [BLLVOg], in this case tail(v) N head(w) is nonempty for any
v < w. Since Cert(v) (respectively Cert(w)) contains by definition information
necessary to compute all the elements in Ly, (respectively in Lpead(w)), then
for any u € tail(v) Nhead(w), the union of Cert(v) and Cert(w) contains sufficient
information to verify that L, is dependent on L, and L,, is dependent on L,,.

Let dpi(G) = maxyev (d(1,v) +d(v,|V])). Buldas and Laud proved in [BLIS]
that for any anti-monotone graph G, dp(G) > 1.8931og, |S(G)| + O(1). Using
the ¢-scheme [G], we get that the length of a certificate Cert(v) is equal to
log, |S(G)| + |head(v)| + Jtail(v)|, and hence, max, |Cert(v)| > (k+0(1)) - dp(G).
However, the binary linking schemes of [BLLV98,B1.98] used redundant certifi-
cates such that max, |Cert(v)| > (2k+o0(1)) - dpt(G) and hence casting the prob-
lem in a more general view has helped to reduce the length of the certificates by
a factor of two.

5.3 Threaded Authentication Trees

The security of the last construction depends only on the property that there
is a vertex u that can be computed from the union of Cert(v) and Cert(w). As
such element always exists (take the root), the anti-monotonicity property is not
necessary for the stamping service to be accountable. Below we present a new
construction based on threaded authentication trees. Optimality of this scheme
in the general case will be proven later.

For Merkle’s authentication tree T, of depth d, the certificate length for a
vertex v is k(d + 2), where k is the size of the outputs of hash function h.
In their stamping system, Benaloh and de Mare [BdM93] added a new vertex

300 Ahto Buldas et al.

Fig. 2. Threaded tree scheme [W3],.

1 with edges (1,w), for any w € S(Ty), to Merkle’s authentication tree. The
resulting graph has certificate length k(d 4 3), and the vth certificate contains
dependency from R,_;1 to L, to R,. We will proceed further by adding edges
to the Benaloh-de Mare scheme in such a way that the resulting graph will be
simply connected, but without enlarging the certificates. The method presented
below is not unique in this respect, but has the advantage that it permits an
efficient implementation.

Let T, = (V, E) be the complete binary tree of depth d. We number the
vertices of Ty level by level, starting at the lowest level (at depth d) and from
left to right so that the leaves get numbers 2,...,2% 4+ 1, and the root gets
number |V| = 291 Let ¢ : V — {red,black} color the sources of T, (i.e.,
vertices 2 < v < 29 4+ 1) black and inner nodes red.

We define the threaded authentication tree Wy as the graph built from Ty by
applying the next two steps:

1. for each v € S(Ty) consider the unique root path P(v) starting from v
and add an edge (w,v) for each left child w of a vertex on P(v) provided
w & P(v), and

2. add a vertex 1 and, for each v € §(T}), add an edge (1, v). Vertex 1 is labeled
by L1 = R,_1, where r is number of the current round. We color 1 red, since
it corresponds to a data element.

Note that the set of vertices w for which the edge (w,v) was added in the
step 1 is equal to head(v). We define the dth threaded tree scheme to be the ¢-
scheme [Wy]e. Clearly, a threaded authentication tree Wy is simply connected
(consider a postorder traversal of the binary tree Ty), but it is not anti-monotone.

As an example, consider the threaded tree scheme [W3], of Figure 2. Graph
W3 is simply connected because it contains the postorder traversal 2—3— 10—
4—-5—-11—-14—-6—-7—12—-8—9—13—15—16 as a directed path. Then

Optimally Efficient Accountable Time-Stamping 301

INPUT: (C, Ly, Rr—1, Ry, Hy), where C = (v, X, 7), X = (X1y-+-sXm)s T = (T1y- -+, Tn)-
Reject if x1 # Ryr—1 or x2 # H, or 7, # R,.
Reject if L, # h(x).
{:=Ly,p:=1;q:=3.
For ¢ := 0 to log, v do:

if (v—1) & 2° =0 then £:= h(¢,7,); p:=p+ 1 else £ := h(xq,£); q¢:= q+1.
Reject if £ # R,.. Otherwise accept.

Fig. 3. Certificate verification algorithm VfyCert for threaded tree schemes.

head(4) = (1,44,10), tail(4) = (5,15), head(8) = (1,84,12,14), tail(8) = (9),
Cert(4) = (4; Ly, L4¢, Lio; Ls, L15) and Cert(8) = (8, Ly, Lg(p, Lqo, L4; Lg) The
set Cert(4) U Cert(8) contains sufficient information to first compute and then
verify the following path from R,_; to L4 to Lg to R,, where r is the number
of the current round:

Ry 1=1L1 — La=Nn(R—1,L4,,L10) = L11 = h(Ly, L5) —
——— ~~

—_———
head(4)Nhead(8) head(4) tail(4)
Lis=h(Lio ,L11) — Lg = h(R,_1,Lg,, L12, L14) —
~—
head(4) head(8)
Lyz =h(Ls, Ly) — Lis = h(Lia ,L13) — Lig = h(L1a , L15) = Ry .
~~ ~~ ~~ =~~~
tail(8) head(8) head(8) tail(4)

Certificate verification algorithm VfyCert (which is used in the verification algo-
rithm) is shown in Figure 3.

For any vertices v,w € Wy, v < w = d(v,w) < 2d — 1. Thus, the verification
can be done very efficiently, and |Cert(v)| = k(d 4 3), for all v. It will be proven
in Section 7 that this is also the lower bound. While in the case of schemes
used in [BLLV98,BLIE], the union of two time certificates contained the whole
“proof” of dependency, in the current case the proof itself is not contained in,
but can still be computed from the union. That is, intuitively, the main source
of the redundancy in the anti-monotone schemes compared to the new scheme.
We think that this result is interesting in its own right in graph theory.

6 Protocols

As mentioned in Section 4, protocols are crucial for the overall security of a
time-stamping service. In this section we briefly describe the three protocols con-
stituting our time-stamping service. The stamping protocol and the stamp com-
pletion protocol are improvements over the protocols of [BLLV9S, Section 4.2],
using threaded authentication trees. The publication protocol is an additional
protocol required in our model of time-stamping. See Figure 4 for an overview
of the protocols. We assume the base graph G and the functions P and ¢ to be
fixed.

302 Ahto Buldas et al.

a) Stamping protocol. b) Publication protocol c) Stamp completion protocol.
Hy (er,sigrga(er)) v
A TSA TSA PA A TSA
(v, Ly, sigrga (v, Lw)) (cr;sigpa (crs sigTsa (er))) (Cert(v), sigrs a (Cert(v)))

Fig. 4. Protocols of a time-stamping service.

The following algorithm is used in the stamping protocols to verify whether
v1,v2 € S([G]y) and v1 < vy (i.e., whether the corresponding documents H,,
and H,, were stamped during the same round and further that H,, was stamped
before H,, was). Note that the algorithm proposed in [BLLV98] included an
unnecessary checking whether tail(v1) N head(ve) # 0 as a separate step.
VERIFICATION ALGORITHM. Let C' = (v, Ly, L.), where v is a non-source vertex
and x and 7 are paths in [G]4, such that v is computable from x and |V] is
computable from 7. Let VfyCert(C, L,, L|y|) be a function that accepts iff y is
authenticator of some path from 1, to v and 7 is authenticator of some path
from vy to |V|, and the value of a candidate v computed from the values in
L, is equal to v (the same verification is done for |V| and L.). The algorithm
V gets as input a tuple (C1,Ca, Ly, , Ly, Rr—1, Ry, Hy,), where C; = (v;, X3, Ti)
and accepts iff (1) VfyCert(Cy, Ly,, Rr—1, Ry, H,) holds, for i € {1,2}; and (2)
v < V3.

STAMPING PROTOCOL. See Fig. 4(a). The client A begins the protocol by sending
hash H,, of the vth document to the TSA. The TSA calculates L, = h(Lhead(v))-
adds L, to the database of stamps, and sends A the second message. The client
checks if the message is of the right form (note that he cannot yet verify whether
L, was computed correctly).

PUBLICATION PrOTOCOL. See Fig. 4(b). Here ¢, = (Ljy|,r) and R, = Ly is
the cumulative round stamp of the rth round. After the end of the rth round
the TSA begins the publication protocol by sending the tuple (¢;, sigpga (¢)) to
the PA. The PA checks if the message is of the right form. If it is, he sends the
TSA the second message and publishes

a, = (¢r,sigrsa(cr), sigpa (cr,sigrsalcr)))

on an accessible authenticated medium (e.g., in a newspaper). The TSA checks
if the second message is of the right form. If it is, he waits for the publication
and then checks if the published value «!. is equal to «.. If it is not, he sends «.
and the newspaper with o/ to the judge.

STAMP COMPLETION PROTOCOL. See Fig. 4(c). At the end of the rth round, A
gets the value o, from the medium, checks if it is of correct form, and sends the
request v to the TSA. The TSA returns the second message m. The client checks
if the signature is correct. If it is, he computes the cumulative hash Ly from
Cert(v) and compares it against the value in ¢,. If the verification algorithm V'
rejects on input Cert(v), the client sends «, and the message m to the court.

Optimally Efficient Accountable Time-Stamping 303

The above of protocols rebalances the communication, compared these in
[BLLV98], by moving the burden from the stamping protocol to the stamp com-
pletion protocol, with the intuition that a lightweight stamping protocol helps to
avoid trivial reordering attacks. Because of the collision-resistance of hash func-
tion h, transmission of L, is sufficient if G is a simply connected authentication
graph.

7 Optimality

As informally argued in Section 4, the round graph G = (V, E) of a time-
stamping service has to be based on a simply connected graph for which the
corresponding ¢-scheme is such that for any source v, Ly is included in v’s cer-
tificate. More precisely, for any source v, there has to be a node w in every root
path of v, such that (1,w) € E and w is computable from (1,...,v) but not
computable from (1,...,v —1). We say that a graph satisfying these conditions
is good.

For a good graph G we define a(G) = max,cs(e) minp |Ag(P(v))|, where
P ranges over all pass-through functions. Recall that h : {0,1}* — {0,1}*.
Then by the definition of certificates, |Cert(v)| = k(minp |ag(P)| + 1), and thus
max, |Cert(v)| = k(a(G) + 1). Hence, a tight lower bound on a(G) yields a
tight lower bound on max, |Cert(v)|. If G is a round graph, then the number
of time-stamps issued per round is equal to n = |S(G)| — 1, since one source
corresponds to the previous round stamp. Next we prove that for any good
graph G, a(G) > logyn + 2. Hence, time-stamping service based on threaded
tree schemes is certificate length optimal if we cannot assume anything more
but existence of (one) collision-resistant hash-function.

Theorem 1. (1) For a rooted directed acyclic graph G, a(G) > log, |S(G)| + 1.
(2) For a good graph G, a(G) > log,(|S(G)] — 1) + 2.

Proof. (1) We show in several steps how a given rooted directed acyclic graph
G can be transformed by local modifications to a complete binary tree Ty such
that |S(Ty)| > |S(G)| and a(Ty) < a(G).

First step (eliminating fan-in > 2). Replace any vertex with s > 2 incoming
edges with a binary tree with s sources (Fig. 5, 1). Let G; be the resulting
graph. Then clearly |S(G1)| = |S(G)| and a(G1) < a(G).

Second step (eliminating fan-out > 1). Every vertex with fan-out > 1 can be
replicated (Fig. 5, 2). An application of this step pushes the vertices with fan-
out > 1 “downwards” in the graph. The final applications just replicate the
sources, without adding any vertices with fan-out > 1. Thus, we can repeat the
procedure until we get a binary tree G2 with no vertex having fan-out > 1.
Trivially, [S(G2)| > |S(G1)| and a(G2) = a(Gh).

Third step (making G2 complete). Any vertex v € V(G2) with only one pre-
decessor can be deleted (Fig. 5, 3). Let the resulting graph be Gj. Trivially,
|S(G3)| = |S(G2)| and a(Gs) = a(Ga).

304 Ahto Buldas et al.

oW
[RTI

Fig. 5. Local graph modifications in Theorem 1.

Fourth step (balancing G3). If G5 is not yet a complete binary tree, there exists
a source v € V(G3) such that d(v, |V (G3)|) is less than the height of G3. We
proceed by adding two vertices as predecessors of v (Fig. 5, 4). Let the resulting
graph be Gy. Trivially, [S(G4)| = |S(Gs)| and a(Ga) = a(Gs).

Thus for any graph G there exists a complete binary tree T, such that
IS(Ty)| > |S(G)| and a(Ty) < a(G). But |S(Ty)| = 2¢ and a(Ty) = d + 1,
thus for any graph G, a(G) > a(Ta) = logy |S(Ta)| + 1 > log, |S(G)| +1. O

(2) Let G = (V, E) be a good graph with n = |S(G)| — 1. W.lo.g. we can
assume that the minimal authenticator for any v € S(G) has the cardinality
a(@). Now let G be the subgraph of G spanned by V' \ {1}. By the definition
of good graphs, a(G1) = a(G) — 1. Since a(G1) > log, |S(G1)| + 1, we get that
a(G) > logyn + 2. O

8 Conclusion

The new time-stamping scheme achieves optimal lengths of time certificates
in a general sense (klogyn versus 3.786k log, n compared to the optimal anti-
monotone scheme [BL.98], where n is the number of time stamps issued during
a round). As compared to the formerly known most efficient tree schemes, the
new scheme has the same space complexity and only somewhat larger time com-
plexity, while being accountable like the scheme of [BLLV98]. We also presented
the first accountable publication protocol that makes it unnecessary to audit the
publication process.

In practice, a reliable time-stamping service is virtually impossible to achieve
if the TSA and the PA are not replicated. Further research in this area is def-
initely necessary. The formal notion of temporal security is not yet developed
and needs additional research; it is not even clear if it could be defined sepa-
rately from the security of other primitives. An interesting question is whether
more efficient time-stamping services could be built on stronger cryptographic
assumptions.

Optimally Efficient Accountable Time-Stamping 305

Acknowledgements

The authors are thankful to Stuart Haber, Markus Jakobsson, Peeter Laud,
Kaisa Nyberg and to the anonymous referees for feedback and helpful discussions.

References

[BAM91]

[BAMOY3)

[BHS92]

[BLOS]

Josh Benaloh and Michael de Mare. Efficient Broadcast Time-Stamping.
Technical Report 1, Clarkson University Department of Mathematics and
Computer Science, August 1991. 296

Josh Benaloh and Michael de Mare. One-Way Accumulators: A Decentralized
Alternative to Digital Signatures (Extended Abstract). In Tor Helleseth, edi-
tor, Advances in Cryptology—FEUROCRYPT 93, volume 765 of Lecture Notes
in Computer Science, pages 274-285. Springer-Verlag, 1994, 23-27 May 1993.
296, 299

Dave Bayer, Stuart A. Haber, and Wakefield Scott Stornetta. Improving
the Efficiency And Reliability of Digital Time-Stamping. In Sequences ’91:
Methods in Communication, Security, and Computer Science, pages 329-334.
Springer-Verlag, 1992. 296

Ahto Buldas and Peeter Laud. New Linking Schemes for Digital Time-
Stamping. In The 1st International Conference on Information Security and
Cryptology, pages 314, Seoul, Korea, 18-19 December 1998. Korea Institute
of Information Security and Cryptology. 294, 296, 299, 301, 304

[BLLV98] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-

[HS90]

[HS91]

[Mer80]

[San99]

Stamping with Binary Linking Schemes. In Hugo Krawczyk, editor, Advances
on Cryptology — CRYPTO 98, volume 1462 of Lecture Notes in Computer
Science, pages 486-501, Santa Barbara, USA, August 1998. Springer-Verlag.
294, 296, 297, 298, 299, 301, 302, 303, 304

Stuart Haber and Wakefield Scott Stornetta. How to Time-Stamp a Digi-
tal Document. In A. J. Menezes and S. A. Vanstone, editors, Advances in
Cryptology—CRYPTO ’90, volume 537 of Lecture Notes in Computer Sci-
ence, pages 437-455. Springer-Verlag, 1991, 11-15 August 1990. 294, 295
Stuart A. Haber and Wakefield Scott Stornetta. How to Time-Stamp a
Digital Document. Journal of Cryptology, 3(2):99-111, 1991. 294

Ralph C. Merkle. Protocols for Public Key Cryptosystems. In IEEE, editor,
Proceedings of the 1980 Symposium on Security and Privacy, April 14-16,
1980 Oakland, California, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1980. IEEE Computer Society Press. 295

Tomas Sander. Efficient Accumulators without Trapdoor. In The Second
International Conference on Information and Communication Security, Syd-
ney, Australia, 9-11 November 1999. To appear. 296

	Introduction
	Preliminaries
	Cryptographic Primitives
	Authentication Graphs

	State of the Art
	Time-Stamping Objectives
	Schemes Based on Simply Connected Graphs
	General Construction
	Anti-Monotone Schemes
	Threaded Authentication Trees

	Protocols
	Optimality
	Conclusion

