“Pseudorandom Intermixing”: A Tool for Shared
Cryptography

Yair Frankel', Philip MacKenzie?, and Moti Yung®

! CertCo, N.Y., NY, yfrankel@cryptographers.com, yfrankel@cs.columbia.edu
2 Bell Laboratories, Murray Hill, NJ, philmac@research.bell-labs.com
3 CertCo, N.Y., NY, moti@certco.com, moti@cs.columbia.edu

Abstract. Designing distributed cryptographic protocols that combine
correctness, security, efficiency and practical constraints can be very dif-
ficult. Here, we suggest a new modular tool that we call “pseudorandom
intermizing” which allows parties (or architectural components, such as
hardware devices) sharing pseudorandomness to mix extra correlated
pseudorandom information inside their computational results. We show
how the pseudorandom intermixing may ease the design, increase ef-
ficiency and allow more refined control of cryptographic protocols for
several important tasks, while maintaining “provable security.” It can
even turn a “heuristic protocol” into a “provably secure” one.

We concentrate on the area of “distributed public key systems,” which
has been a very active area of research in the last decade, and for which
there is a great interest in practical implementations of protocols. Among
other things, we demonstrate the first “fault-free non-interactive” proac-
tive maintenance protocol for RSA, which involves a single broadcast
round to perform an update, if parties do not behave maliciously. We
also demonstrate how to interlace access control within the messaging of
proactive RSA; this assures elimination of corrupted entities.

1 Introduction

Cryptographic protocol development is often a challenge for it requires careful
design to assure both security and efficiency. Therefore, general design mecha-
nisms which can be incorporated into protocols in a modular fashion and provide
easier proofs of security are highly desired.

In this work we develop a tool which we call pseudorandom intermixing. In
a nutshell, it is a notion that assures entangling of pseudorandom information
shared between parties with the cryptographic (algebraic) computational results
themselves! Namely, the pseudorandom intermixings change the local outcomes
of computations by adding pseudorandom elements to the computation, in a way
much similar to computing with a randomized key schedule.

As a result of pseudorandom intermixing, the local outputs appear random,
which makes it easier to simulate the protocol and prove its security. However,
since the outputs are not random, but rather t-wise random, and the intermix-
ing is deterministically generated (pseudorandom), they allow for handshaking
(assurance of collaboration) amongst all the active players.

H. Imai, Y. Zheng (Eds.): PKC 2000, LNCS 1751, pp. 306-325, 2000.
© Springer-Verlag Berlin Heidelberg 2000

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 307

A major area of applications of pseudorandom intermixing is distributed
cryptosystems, an important field which enables distributed trust, added secu-
rity, increased availability, and avoidance of single points of failure (for surveys on
the subject see [D92,F'Y98]). In particular we concentrate on distributed systems
based on RSA [RSA], which is perhaps the most widely used public-key function.
Such distributed RSA systems have been shown possible in various security /ad-
versarial models [B88,789,DF91,DDFY,FGY,GJKRIGFCMY,FGMY2,R]. The
cryptographic objective of a distributed threshold RSA function-sharing system
is to distribute the RSA signing capability so that any ¢ or more entities can
sign a message, yet an adversary that compromises at most ¢t — 1 entities can not
sign.!

1.1 The Basic Issues

In addition to considering enhanced security and efficiency of cryptographic pro-
tocols, we also consider enhanced control aspects which allow the parties better
tools to assure policy adherence.

In fact, many of the previous threshold cryptosystems missed vital control
aspects necessary for a sound and secure deployment when taking into consid-
eration the complete systems perspective and not just the purely mathematical
aspects of distributed function application. Here we resolve many of the open
issues of a secure system design for threshold cryptosystems by adding control
into the operation without adding much cost. In fact, we interlace access control
management into the design. To demonstrate the need, let us suppose that an
entity has been found to be corrupted (for example, an employee who is quitting
or being fired, an entity who lost a key due to a virus attack, etc.). Then, in sev-
eral threshold cryptosystems, when the adversary has the outputs of t — 1 good
parties then the adversary can make the signature. But, this is not what the
policy should allow! Rather, it should require a t quorum of good components.
It should further require that when one is identified as corrupt then that entity
should have no capabilities whatsoever. Indeed, proactive system [OY] resolve
the problem of cleaning up the system and ignoring components known to be
corrupt. However, they require all entities to be present and participate in a
costly update protocol in order to effectively remove a party. A better solution
would be to require the working parties to perform a handshake in order to know
and validate whom they are working with. Though completely non-interactive
protocols (e.g., [F'89,DDFY Sho]) may be efficient and mathematically interest-
ing, there are situations where they may have reduced security when corrupted
players are identified and when the policy requires to ignore them. (In addition,
the system audit mechanisms may require anyway to know which elements are
active). Pseudorandom intermixing interlaces ¢-wise access control to allow the
protocol to be non-interactive except for the announcement of the active players

! This is the same protection as in secret sharing [131,5h], but the signing operation
may be repeated as long as the key is valid.

308 Yair Frankel et al.

(entities) within a round or a period and yet to enable access control based on
known dishonest/unavailable parties.

There are various other operational aspects. One important aspect of systems
is that the system must have minimal availability and security requirements yet
require minimal resources. Let us give an example based on the proactive RSA
ramp 2 scheme [R]. This system in its simple form allows for a reduction in the
available players to perform future signatures when an entity becomes inactive
yet uncorrupted. Moreover, to turn the RSA ramp scheme back into an RSA
threshold scheme, we require (for a scheme with a total of [entities) either
private memory of size O(I?) or interaction of all players after each signature via
a proactive update, making it into an [-out-of-/ system (visualize the availability
requirement change when /=100 and ¢=3). Both measures result in extremely
cumbersome systems from any practical perspective and the simplicity of the
simplified approach is lost. Another example is the non-interactive robustness
assurance of [GJIKRI6] with check vectors. This method requires incorporating
additional security requirements on parties which normally are treated as unsafe
(e.g., the combiner is required to have secret keys—this is against the original
model where the combiner is merely an abstraction). Such a single point of failure
is dangerous—it requires a unique combiner to be available to assure robustness
of operation.

The above examples, show that many designs which are legitimate mathemat-
ical exercises resulting in new ideas which may even optimize a single parameter
(and we do not object to such investigations per se), may nevertheless be un-
desirable in actual systems. The balance of availability, security, efficiency and
flexible control is essential in the design of practical systems.

1.2 Ouwur Results
Our specific results on distributed cryptosystems include:

Security By incorporating pseudorandom intermixing, we are able to convert
the simple yet heuristic threshold RSA protocol of [DF91] into a provably
secure protocol. Pseudorandom intermixing is able to achieve this by convert-
ing public values which are not known to be simulatable into random-looking
values that are easy to simulate.

Efficiency By incorporating pseudorandom intermixing, we are able to reduce
the communication requirements of the secure threshold RSA protocol of
[FGMY?2] and reduce the communication of robustness/checking informa-
tion in the robust threshold RSA of [FGMY?2]. Moreover, we show how the
shared pseudorandomness enables elimination of interaction, turning inter-
active protocols into “fault-free non-interactive” ones (a notion of efficient
protocols put forth in [FF]). In particular, we show how to use pseudorandom
intermixing to eliminate interaction in the distributed RSA signing protocol
of [FGMY?2] and give the first non-interactive proactive update.

2 See [BM] for a reference to ramp schemes; essentially it allows for reduced threshold
throughout the system’s operation.

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 309

Access Control Pseudorandom intermixing allows easy access control manage-
ment, where parties can be included (excluded) from a designated “working
set” by including (excluding) the parties’ shared pseudorandomness from the
computation. As a result, the correctness of the final result in a distributed
computation implies the correct working set is involved.

Isolation Pseudorandom intermixing individualizes each computation, by ef-
fectively changing the key based on the common message. This can help in
foiling side-channel cryptanalysis (based on timing or power consumption
leakage).

We feel that the practice of cryptographic systems needs generic tools that
can, in a modular fashion, enhance various properties of numerous protocols
and working environments (as we mention above). Pseudorandom intermixing
is such a tool and is based on mixing public and private key cryptography in a
new way. It seems to us that perhaps it may provoke more thinking about new
cryptographic tools with wide modular applicability.

We comment that the use of shared randomness in distributed protocols
and how it enables certain designs was recently presented (in an independent
work) [G199] where shared randomness is treated as a “compressed resource.”
They used the resources for general multi-party computation and proactive se-
cret sharing. Our work has a bit different flavor: we show how the resource can
be integrated into “existing protocols” in a modular fashion, thus showing the
“incremental nature” of the resource, also our area of application is the more
pragmatic “distributed cryptosystems.” In addition, we pseudorandomly derive
the correlated randomness from common inputs, and thus effectively “individual-
ize” each computation, which may help against side-channel attacks (e.g. timing
attacks). The general idea of building basic tasks from shared randomness was
first put forth in a generic theoretical context in [B97].

Organization: We discuss some basic tools we use in Section 2, and we pro-
vide an informal description of pseudorandom intermixing in Section 3. We then
present numerous applications of pseudorandom intermixing to threshold cryp-
tography in Section 4. Finally, in Section 5 we give applications to fault tolerant
protocols (robust and proactive ones).

2 Background

Here we describe the basic cryptographic functions and components that we use
in the paper.

The RSA algorithm: The RSA key generator produces two large random
primes p; and po, and computes a composite n = p; - po and the Euler totient
function ¢(n) = (p1 — 1)(p2 — 1). The generator chooses a public key (e, n),
where ged(e, p(n)) = 1, and private key d, such that ed = 1 mod ¢(n). The
one-way (hard) direction of RSA (used in decryption or signature of a message
m) is S, = m? mod n, whereas the public (easy) direction (used in encryptions
and verification of signature) is the inverse function z¢ mod n for a message

310 Yair Frankel et al.

z. Typically for signatures, the message m to be raised to the power d is a
cryptographic hash of the real message M.

Discrete logarithm: Let P be a prime and g a generator of a subgroup of
Zp of large order. The function f(z) = g* mod P is one-way (finding « is called
the discrete log problem). The Diffie-Hellman key exchange [DH] can be built
on it. We can similarly define discrete logarithms over composites.

Pseudorandom functions: With a pseudorandom function family, given a
random member of the family the result at any chosen input point looks random,
and sampling it polynomially many times cannot distinguish it from a truly
random function. We often denote a pseudorandom function family as PRF and
an element from PRF indexed by k as PRFy. Formal definitions are in [GGM].
Recently, designing pseudorandom functions from pseudorandom permutations
(block ciphers) has been discussed in [HWIKS].

Distributed Cryptography: We deal with systems where the capability
to apply a cryptographic function (an RSA private function, in our case) is dis-
tributed in a threshold scheme. We have a group of [servers who securely share
a private key d via shares si,...,s;. The servers are connected to a common
broadcast medium C, called the communication channel, with the property that
messages sent on C' reach every party connected to it. We assume that each
server has a local source of randomness and that the system is synchronized
(and w.l.0.g. that servers act synchronously). When a quorum of ¢ shareholders
are available they can cooperate to compute the function, yet less than a quo-
rum cannot break the system. Formally, in our security proofs we assume the
corrupting adversary is non-adaptive throughout the lifetime of the system and
is restricted to corrupt at most ¢t — 1 shareholders. Such an adversary is called a
(t — 1)-restricted adversary.

In a threshold RSA system, the function computation consists of a quo-
rum of ¢t servers who obtain an input m, generate partial signatures for m, and
output these results to a not necessarily trusted combiner (which may simply
be a designated server). The combiner, using the quorum of ¢ partial signatures
and input m generates the signature of the message, m? mod n.® After signing
a message, security is maintained in the sense that a quorum of ¢ servers is
again needed to sign a new message. When the signing operation is guaranteed
(with high probability) to be polynomial-time under arbitrary malicious behav-
ior of a (t — 1)-restricted adversary, the system is called robust. If the system
is maintained against a mobile adversary it is called proactive.

3 Pseudorandom Intermixing

The idea behind pseudorandom intermixing is simple. It involves entangling
together (1) a cryptographic computation, and (2) a computation on pseudo-
random numbers, such that the combined result is the same as that of the cryp-

3 We note that since we do not put trust in the combiner, (1) it must be the case that
the partial signatures do not provide any information that could help an adversary
sign a new message, and (2) the combiner certainly should not hold any private keys.

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 311

tographic computation alone. In this paper, the cryptographic computation will
generally be the computation of certain partial results of a distributed computa-
tion that will be summed together, and we will intermix (add in) pseudorandom
numbers that sum to zero. Thus the result of the cryptographic computation
will be unaffected by the pseudorandom numbers, although the “partial results”
will be, in effect, randomized.

Here we give an example. Assume there is a set of users indexed by a set A,
and each user 7 has a share s; of a secret s where s = Zz’eA s;. Also assume that
cach pair of users (i, j) shares a value p; ; = p,;, which for now we may assume
was chosen randomly from a large domain. It is easy to see that

> > pij-sign(j —i) =0,

i€A jEA,jH#i

since each p;; cancels p;, (because they are added together with opposite
signs). Now each user i can compute a pseudorandom intermixing value r; =
> jen ji Pij -sign(j — i), and it follows that »°,c 4 7 = 0. User ¢ may now com-
pute an entangled output s; + r;, and we note that the sum of the entangled
outputs is the secret:

Z(si—kri):Zsi—FZn:s—kO:s.

i€/ i€ i€

The final result is the same as the non-entangled computation, so why com-
plicate the process? The issue is that during the process, the individual entangled
outputs “look” random, and as we will show in the next section, this enables
easier proofs of security in some involved distributed protocols.

We note that the p; ; values will actually be generated by a pseudorandom
function. That is, each pair of users (i,j) will share a key 0;; = 0j; to a
pseudorandom function PRF, and they generate p; ; = PRF,, ,(m) where m is
a tag for the intermixing, such as a message to be signed. This tag serves a dual
purpose of verifying that all users are working on the same computation at the
same time.

The shared keys to PRF are relatively easy to generate using Diffie-Hellman
key exchange. They can also be considered “disposable,” since revealing them
does not compromise the security of the main cryptographic function. We will
see an example of this when we discuss the robust threshold RSA protocol.

Efficiency of size of keying information: It should be noted that even
though extra keys are needed for pseudorandom intermixing with distributed
RSA, our system is still storage efficient for practical implementations. In par-
ticular, we will deal with distributed cryptosystems where each server has a
constant number of RSA key shares and thus a total of O(l) RSA key shares
must be stored. There are O(I?) pseudorandom intermixing keys shared in the
entire system, but these are typically symmetric cryptography keys which are
perhaps an order of magnitude smaller than the RSA key shares. (Recall that
in [R] the threshold scheme requires O(I*) RSA keys in order to operate in a
fault-tolerant threshold scheme without degradation of security or availability.)

312 Yair Frankel et al.

We next investigate the application of pseudorandom intermixing to thresh-
old RSA protocols. We remark that the method also applies to Discrete Log
based systems in an analogous way. In Section 4.1 we convert the heuristic thresh-
old RSA protocol from [DF91] into a provably secure protocol. In Section 4.2
we improve the efficiency of the secure threshold RSA protocol from [FGMY?2].
In Section 5.1 we improve the efficiency of the robust threshold RSA protocol
from [FGMY2]. A non-interactive proactive protocol in the fault free case is
given in Section 5.2.

4 Applications to Threshold Cryptography

4.1 Pseudorandom Intermixing as Design Tool: Assuring Provable
Security

In Crypto '91, [DF91] developed a heuristically secure threshold RSA scheme
(see Appendix) in which servers do not need to communicate with each other
to sign a message (i.e., it is a non-interactive threshold signing where outputs of
servers which only have to know the working set, go to the combiner). The system
is not known to be secure because it has never been proven whether the partial
results sent from signing servers to the combiner S do not constitute sufficient
information to allow for an adversary (which may hold S and up to ¢ —1 servers)
to sign new messages. Here we demonstrate how pseudorandom intermixing can
take a protocol which is not known to be secure and make it into a secure one.

The protocol in [DF91] works in the following way. Server ¢ obtains share s;
from a trusted key distributer. The scheme is heuristically secure since it is not
known how an adversary with possession of t — 1 or less servers can learn useful
information that will compromise the system. Now, to sign a message m with

group A = {iy,..., 4}, each server i first generates s;', from s; and the current
active group A, (it holds that d — 1 = ZjeA s;’A) Server i outputs Sy, ;4 =

m®.4 mod n to the Combiner. The Combiner can now compute signature m? =
m];cx Sm.j,a mod n. This latest process is not known to be simulatable.

We now modify [DF91] using pseudorandom intermixing .

1. Each pair of servers (i,) share a private key o, ; = o;; for a pseudorandom
J 7,
function.
2. When applying a function on input m:
’
The partial result now becomes Sy, i1 = m°m.i.4 mod n where Slyn,j,/l =
53'/,/& + ZvEA\{j} sign(j —v) - PRF,,; , (m)].
3. The C)ombiner computes mHjeA m®m.i.a = md mod n (since ZJEA Sma =
d—1).

Fig. 1. Provably Secure DF91+pseudorandom intermixing

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 313

This slightly and modularly modified protocol (where fields in communicated
messages did not change) is now secure:

Theorem 1. Breaking the protocol of this subsection by a (t — 1)-restricted ad-
versary implies breaking RSA or that PRF is not a pseudorandom function family
(i.e., the protocol is a secure threshold RSA protocol).

Proof. (Sketch) We prove that if an adversary having possession of up to ¢t — 1
of the servers and the combiner can break the protocol then it can break RSA.
We use a standard argument that the system can be simulated with input given
to an attacker on the direct (non-distributed RSA scheme) who is allowed to
probe the system on messages myq, . .., ms and gets the signatures. The simulator
then gets (n, e, (my,m?), ..., (ms,m?)) where s = poly(h) for security parameter
h =log(n). Let A; = {ji1,.-.,7i.¢} be the set of servers working together to sign
message m;. Moreover, let the adversary control the combining functions as well
as servers indexed by A with shares of d such that |A] <t —1. We note that the
distribution of the adversary receiving up to ¢ — 1 shares is simulatable.

When [A4; N A| =t — 1 then trivially the simulator can compute m¢/(m; *

[Lica mf mod n, simulating the output of the server the adversary does
not control. In fact, also [DF91] can be simulated in this case. Now we discuss
the case in which it is not known how to simulate in [DF91]. When |A; N A| #
t — 1 then the output of any ¢ ¢ A is pseudorandom due to the definition of
Spmi.ioa; (except that the sum of all £ of them adds up to the given m<¢/m mod n).
Hence, we can simulate by choosing random elements Ry,..., Ri_1_|4 €r 2,
as the outputs for ¢ — 1 — |A| of the servers that are not controlled by the

my i, Ay)

adversary, and choosing the last server’s output as m/((m;) - ([T;c 4 m;A) .

(Hj:l..t717|A| R;)) mod n.

Now if the adversary, given the simulation, can break the system, then either:
the simulation is indistinguishable from a real attack (the functions are pseudo-
random), and breaking the distributed system implies breaking RSA. Otherwise,
if the probability of breaking during the simulation is different from the proba-
bility of breaking in the actual attack differs by more than a negligible amount,
this can be turned into a distinguisher for the “assumed pseudorandom function”
which contradicts its pseudorandomness.

We note that if corruption is monotonic (rather than static where all corrup-
tion are at the start) we have to restart the simulation after each corruption.
The above assumed the simulation stage after all corruptions are known.

Another nice property of the above modification is that there is no change in
the interaction or messages used in the protocol. This is very important in cases
where an old heuristic protocol has been implemented and the new secure one
can be easily retrofitted .

314 Yair Frankel et al.

4.2 Intermixing Assures Efficiency of Secure Threshold RSA

Next we describe the secure threshold protocol in [FGMY2]. This protocol has
a setup phase (as in Figure 2, but without Step 3) where each server j obtains
share s; from a trusted dealer or via a distributed key generation protocol.

Now, to sign a message m in the secure threshold RSA protocol with group
A = {i1,...,i}, each server j first generates s;z; 4 (where z; 4 is a constant
used for polynomial interpolation and is computable given j and A). Now it
holds that d = P + ZjeA(szj,A + Rjm,a) where Rj,, 4 is a random string
jointly generated (as discussed below) by the servers in A for server j. Server
J outputs Sy, j a4 = m2i%atfima The Combiner can now compute signature
m? =m? [T Sm.j,a mod n.

The generation of the R;,, 4 values is a communication intensive protocol.
Each party j € A first commits to |A| random values via an information theo-
retically secure commitment scheme. This requires at least 2|A| exponentiations.
Even more, a zero-knowledge proof is used to demonstrate that each commit-
ment was performed correctly. Finally, there is a private transmission of the
random values from each shareholder to the other shareholders in A. The idea
is to change the polynomial sharing into a additive t-out-of-t sharing inside the
group (changing the secret representation method is crucial in the work). Fortu-
nately, the R; ,, 4 values can be cached, and thus they only need to be computed
once for each A. However, this may require the shareholder to store significant
amount of sensitive data.

Setup: The following one time setup is performed.

1. The (centralized/distributed) dealer generates an RSA with a public key
(e,n) and a private key d.

2. Using the extended Euclidean algorithm, the dealer computes P, s’ such
1=eP+ fl—is’ where L = 1! and H = ged(e, L). Note that d = P + L? -
E’ mod ¢(n) where k' = ds’H 2 mod ¢(n). The dealer chooses a random
polynomial A(xz) = Ao + A1z +--- + A; 12"~ such that A(0) = Ao =
L? K and A; €r {0, L,...,2L3n* ™t} for 1 < j <t — 1. (All operations
are performed over the integers.) All servers receive public point P, and
each server ¢ with public interpolation point x; = 4 receives secretly
shadow s; = A(z;) € Z.

3. (Pseudorandom intermixing setup) Each pair of servers (i,j) ob-
tains a shared secret intermixing key o ; = o;,; for the pseudorandom
generator. (In a distributed key generation protocol this can be per-
formed via Diffie-Hellman key exchange [DH] with added authentication
or some other shared randomness generation technique, but for now one
may simply assume the keys are generated by the dealer.)

Notation: z; 4 = HveA\{j}(mj —)70 — zy)

Fig. 2. Setup for a secure threshold RSA protocol with pseudorandom intermixing

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 315

Using pseudorandom intermizing, we may replace this interactive process of
“generating randomness” with a non-interactive process. Moreover, the new pro-
cess will require significantly less local computation.

For the new process we need a new setup protocol, shown in Figure 2. Observe
that step 3 is the setup for the pseudorandom intermixing; the rest is the same
as in [FGMY2].* The new signing protocol is shown in Figure 3. Observe that
step 1 uses pseudorandom intermixing to create the “random-looking values”
that were previously created through an interactive protocol.

Signing (operational) Phase: Let A where |A| = ¢ be the servers designated
to participate in the signing The Combiner sends a description of the set A
to all members of A.
1. Each server j computes s, ; , = sj-2z;4 + | ZUGA\{” sign(j —
v) - PRF,, ,(m) }
2. Each server j transmits partial signature Sp, j 4 = m®™74 mod n and
transmits the result to the Combiner.
3. The Combiner computes the signature for m from the partial signatures,
S =m?’ - [1,c Smow,a mod n.

4. (Validate implicit hand-shake) The Combiner verifies: (Sm)° <
m mod n.

Fig. 3. Secure non-interactive threshold RSA signature generation with pseudo-
random intermixing

Theorem 2. The non-interactive randomized signing protocol in this subsection
produces a correct RSA signature corresponding to public key (e,n).

Proof. Note for any j where 1 < j <, L is divisible by [- Hie{l,m,jfl,j+1,...,l}
(z; —x;). Let H = ged(e, L) and observe that H ! exists modulo ¢(n) because
e ! exists. Let 1 = eP + IL{—ZQS’. Note d = P + L? - k' mod ¢(n) where k' =
ds'H=? mod ¢(n). Hence, over the rationals d — P = L*k' = >._, s; - z;,4 by
the property of Lagrange interpolation [Sh]. Moreover, it is computable over the
integers since s; - 2; 4 is an integer because L divides s;. Hence,

d_P:ZSi’Zi,A

icA
= Z Si - ZiA+ Z(Z sign(i — v) - PRF,, , (m))
icA icA veA\{i}

4 Throughout our discussions we assume a trusted dealer in order to simplify our
discussion. However, we should note that using [BF97,F'MY] one can employ a dis-
tributed dealer procedure among the shareholders to initiate the current protocol,
hence not relying on any single entity (dealer).

316 Yair Frankel et al.

= Z Si - ZiA+ Z sign(i —v) - PRF,, , (m)
€A veA\{i}
= Z 8;,m,/17
€A
since (sign(i — v)-PRF,, , (m))+ (sign(v — i)-PRF,, ,(m)) = 0. Therefore, m® =
mPHLK = P [Tica m*im.a mod n.

We now discuss the security of the protocol described in Figures 2 and 3 in the
stationary adversary model, in which an adversary corrupts servers statically (we
may also allow corruption in a non-adaptive monotonic fashion and restart the
simulation from scratch after each corruption (monotonic means that once the
adversary corrupts a server the server remains corrupted throughout). Moreover,
we assume the adversary is (¢ — 1)-restricted. The proof is similar to that of the
previous section.

Theorem 3. The protocol of this subsection is a secure threshold RSA protocol,
i.e., if a (t — 1)-restricted adversary can break the protocol, then RSA can be
broken or PRF is not a pseudorandom function family.

Proof. (Sketch) First we prove security assuming each PRF,, ; is a truly random
function. We use a standard argument that the system can be simulated with
input (n,e, (my,mé), ..., (ms,m?)) where s = poly(h) with security parameter
h = log(n). Let A; = {ji1,...,Ji} be the set of servers working together to
sign message m;. Say the adversary controls the Combiner as well as servers
indexed by A where |A| < t — 1. The simulatability of the up to ¢ — 1 shares
the adversary sees was shown in [FGMY?2]. Moreover, it is trivial to simulate
the distribution of the (random) keys {o; ;}. When |4, N A] = t — 1 then the

simulator can trivially compute the output me/((m?!)- (ITjea mf’A)) mod n
of the server the adversary doesn’t control. When |4;NA| < t—1 then the output
of Server j (j ¢ A) is random by the definition of Sy, j 4, (except that the sum
of all ¢t of them adds up to m?~F mod n). Hence, we can simulate by choosing
random elements Rj,..., R, , |, €r Z, as the outputs for t — 1 — [A] of the

servers that are not controlled by the adversary, and m¢/((m{)-(IT;c 4 meA)-

(ITj=1. 4114 B})) mod n as the output of the last server not controlled by the
adversary. Now if one can break this system then they can use the simulation to
break RSA using well established proof techniques.

Thus we may assume that the probability of breaking the system, assuming
each PRF,, ; is a truly random function, is negligible. Then it is easy to conclude
that if one can break the system, then PRF is not a pseudorandom function
family, since the simulation can be made into a polynomial time distinguisher
between a function from PRF and a truly random function.

Additional Properties It is often desirable to have additional security prop-
erties incorporated into the design of cryptographic protocols. We briefly list

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 317

here some additional properties that pseudorandom intermixing provides in the
protocol above.

Handshake The intermixing of the results from the pseudorandom functions into
the signature computations generates a “t-wise hand-shake.” This creates a self-
awareness property where the absence of a server is detected as long as a single
original server is present— it is particularly useful when the servers want to be
sure who is participating in the computation. (The protocol in [FGMY?2] does
provide the handshake but only when the interactive protocol is performed on
a per message basis.) Thus the handshake effectively provides “access control”
for a distributed computation, where the correctness of the final result implies
the correct “working set” performed the computation.

Isolation The pseudorandom intermixing used in generating the partial re-
sults provides some protection against timing, power and other side channel
attacks [I<,l<JJ]. Recently in [DKLMQW], an actual implementation of the tim-
ing attack was performed and publicly reported. Due to the pseudorandomness
in our system, an adversary which looks at the timing (or other side informa-
tion) of the partial result computation and tries to use the timing channel to
deduce the permanent share will fail, since exponentiation is performed using a
pseudorandom exponent which differs for each message. (This essentially creates
a “random key schedule” for each message.)

5 Application to Fault Tolerant Protocols

Next we investigate applications to robust and proactive protocols.

5.1 Efficiency of Robust Threshold RSA

In the secure threshold RSA protocol above, if a server misbehaves, it may be
difficult for the combiner to ascertain which server has misbehaved. Trying all
subsets of servers until a correct signature is computed may be very expensive
(e.g., iteratively attempting to find a subset of ¢ = [/2 + 1 honest servers out
of [would be exponential in [). Thus we need to make the protocol “robust,”
meaning that the protocol should allow the correct signature to be computed
efficiently even when up to t—1 parties misbehave. This generally involves adding
a method to verify the partial computations of the servers.

Robust RSA protocols were first introduced in [FGY] and then [GJIKRIG).
However, we will continue to work with the protocol from [FGMY2], but using
pseudorandom intermixing to improve the efficiency.

As in [FGMY?2], robustness can be added to the protocol from Section 4.2 by
including verification information for the partial results in Step 2 in Figure 3.
However, we use pseudorandom intermixing to decrease communication by about
half compared to [FGMY?2]. The protocol is shown in Figure 4. The idea here is to
commit to the pseudorandom intermixing keys. When there is an active dispute

318 Yair Frankel et al.

(but not when a server is simply unavailable) the commitment is opened to
resolve the dispute. Note that it is the key for the pseudorandom function that is
opened, and not an RSA key share. This is precisely what we meant in Section 3
by these shared keys being “disposable.” Revealing them does not reveal any
RSA shares, and thus does not reduce the security of the RSA signature function.
Note also that we do not degrade the size of the quorum needed to sign due to
unavailability of servers.

— (Recall System setup) The (centralized/distributed) dealer chooses genera-
tors g, g1 from Z; of maximal order, and where the discrete log of g1 base
g is unknown. Then for each i the dealer publishes gs""l‘z mod n. Finally
intermixing keys o;; and o ; are generated for 1 <1i,j <.

— (Server ¢ setup) Each Server i publishes commitments g7 g{,g”;)i g{/ to its
intermixing keys.

— For a failed attempt in signing a message m by A:

e Server ¢ publishes S}, = ngS;W'»A modn and Upia =
PRF / (m)-n'(i,) Veeos T
HjeA\{i}(gl) i where 7'(i,7) = —sign(i — 7).
PRF,,

(2%

PRF_, (m)
J .

. _ S (m)-L?
e For i # j, Server i or j publishes Ry, i; =g (g1)

(In each pair, only one of Server i or Server j needs to publish, and the
other needs to verify.)

e Dispute resolution: if there is a dispute between Server i and Server j,
then they open up their commitments to o;,; and a{v,j, and a correct one
is used to complete the protocol.

e Each server j verifies that for all i € A\ {j}:

(Si)‘/i>1 é (;n,i,A(Um,i,A)fl 1_[”6/1(Rm,i,v)7rl<%"v))Vi*2 where V;1 =
[loca (0 —@o) and Via =TT,y 5y (@i — @0)-

e If the verification does not pass then Server i is removed and a new A is
chosen to perform the signature.

e FEach Server i performs proofs of knowledge with all other servers of the
discrete logs of S, ; 4 base ng and Up, ;4 base g1 (This may be a non-
interactive version of a Fiat-Shamir/Schnorr style proof [I'S,Sch], with
security based on the “ideal hash” assumption [BR93]).

e BEach Server ¢ proves his partial signature is correct using the robustness
algorithm of [FGY] or [GJKRI6] (for safe primes), with witness S, ; 4.

e If a server is unable to perform any of the ZK proofs, or if it has simply
stopped, it is removed and a new A is chosen to perform the signature.

Fig. 4. Verification of partial signatures in a secure threshold RSA protocol with
pseudorandom intermixing

The protocol in Figure 4 is performed for locating misbehaving servers if
signing with the sum-shares produced an invalid signature.

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 319

Theorem 4. The protocol as described in this subsection is a robust threshold
RSA protocol, i.e., if a (t — 1)-restricted adversary can break the protocol or
prevent a valid message from being signed, then RSA can be broken or PRF is
not a pseudorandom function famaily.

Proof. (Sketch)

Security We start by assuming that each PRF,, ; is a truly random function.
As in the proof of Theorem 3, we use a standard argument that the system
can be simulated with input (n,e, (mi,m$),..., (ms,m%)) where s = poly(h)
with security parameter h = log(n). (We also assume all corruption are known
due to rewinding of the simulation to start). Let A; = {ji1,...,Jit} be the set
of servers working together to sign message m;. Say the adversary controls the
Combiner as well as servers indexed by A where |A| <t — 1. The simulation of
shares, intermixing keys, and partial signatures is done just as in the proof of
Theorem 3. The simulation of the S; values is done as in [FGMY2], and actually

it is shown that the simulator knows S]1 /L,

When |4; N A] = t — 1, the simulator can trivially simulate the S}, , 4,
value of the server v the adversary doesn’t control by computing g¢/((g%) -
(ITjea gLZS;”wMi)) mod n. When [4; N A| < ¢ — 1 then the S], ., values for
j € A are random (except that the product of all ¢ of them is g9~ F mod n).
Hence, we can simulate by choosing random elements R}, ..., RQ—l—\A\ €r 2}

as the S;, . ;. values for t — 1 — [A] of the servers that are not controlled by

the adversary, and g¢/((g") - (ITjea gsi’%‘v%“i) “(ILj=1.i—1-14 B})) mod n as the
Sin.w.a, Value of the last server not controlled by the adversary.

To simulate the Ry, ;. and Uy, j 4, values, we simply choose the R,, ;. values
randomly, and compute the Uy, j 1, values that fit the verification equations. We
can do this using

—1 o
veAi\{j}

since Vo divides L. We also simulate the zero-knowledge proofs using their
respective simulators.

Now if one can break this system then they can use the simulation to break
RSA using well established proof techniques.

Thus we may assume that the probability of breaking the system, assuming
each PRF,, ; is a truly random function, is negligible. Then it is easy to conclude
that if one can break the system, then PRF is not a pseudorandom function
family, since the simulation can be made into a polynomial time distinguisher
between the a function from PRF and a truly random function.

Robustness We start by assuming that each PRF,, ; is a truly random function.
Then we have to show that if an adversary causes the signing procedure to
fail, we can break RSA. Given an RSA instance, we run the simulator from the

320 Yair Frankel et al.

security proof above, except that we use the extractors for the ZK proofs of
knowledge.

For signing of a message m to completely fail, it must be that the adversary
is able to make sure the signature protocol on m fails without any server being
detected as corrupted. (If a server is detected as corrupted, it will be replaced
and the signature protocol will continue on a different subset of servers.) By the
last ZK proof in the protocol, the exponent on the partial signature m?® Sm.ja of
server j, matches the exponent of Sm’ ;4 base gL Also, for the signature to be
incorrect, it must be that 3, 4 7, ; 4 # d—P. Recall that we have extracted the
exponents on S, 4 and Up 2 A for all j € AN A from the proofs of knowledge.
(For convenience, call them s, and u;.) We also know the exponents on each Sj
for j € AN A, (smce those are the simulated shares), and we know the values
of ryj = PRFU”(m) and 7; ; = PRF,, ()fori e A\ Aand j € AN A, since

server i fori € A\ A knows 01 ; and 0 . Then we have

IT s =TI "=

1€EANA i€EANA
Vi
— 4 —1 7!
= H m,i,AUm,i,A (Rm,i,v) b
icANA veA\{i}
Vi2
_ L2%s" / wiy—1 i T;,v L L
= H g " (91") H (g™ g™) " H (Rio)™v
i€ANA vEA\A veEANA\{i}
Vi,2
_ L?s) 1 ui\—1 Fiw Thov!
= [(¢" @)™] @)™ | modn,
i€ANA vEA\A
and thus

LY Via/Viz)si—L* Y si=> > 70T
iGAﬁA(i1/ Vi2)si ieAnA i i€ANA Luvea\a Vi
’ ’
— Uj T, T
ZiEAﬁA ”+ZieAmA ZveA\A iv e,

=g mod n.

9

However, if L? ZieAﬂA(%JV;,?)Si - L? ZieAﬂA s; — ZieAﬂA ZUEA\A ri,v”é,u
were zero, then the signature would be correct, since the product of the par-
tial signatures of servers j € A\ A is equal to

mdfP

L2s; _ZjeA\{i} PRF,, ; (m)sign(i—v)

U
HieAﬁA m

— mi—F

H L25i72j€A\A 7 (m)sign(i—v)
iEANA

mod n

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 321

and thus the product of all partial signatures would equal
U- H mE*s
i€ANA
. H mL2(V1(i)/Vz(i))s,;-i—ZjeA\A ri,;(m)sign(i—wv)

i€EANA
md—P

= mod n.

Thus, we can compute exponents a, b such that ¢* = g¥ mod n, which implies
that we can factor (and thus break RSA).

Similar to the proof of security, we can conclude that if the probability of
breaking RSA is negligible and one can break the system, then PRF is not a
pseudorandom function family, since the simulation can be made into a polyno-
mial time distinguisher between the a function from PRF and a truly random
function.

Implementation consideration: Because of the added inefficiency burden we
recommend that the system is run without robustness testing until misbehavior
is detected (i.e., an invalid signature is produced). At that point, the robustness
enhancements can be incorporated to determine misbehaving servers.

5.2 Proactiveness: Intermixing for Efficiency, No-interaction and
Added-Control

There are a number of ways intermixing can help in proactive RSA systems.

1. We may engage in a full proactive update as in [FGMY?2] but use pseudoran-
dom intermixing to reduce communication. In addition to share resharing,
the pseudorandom functions should be replaced by new ones during updates.

2. We can also employ some dynamic updates which are less costly. One such
change is updating the pseudorandom functions only. This can be done in-
teractively (authenticated Diffie Hellman key exchange) between the parties.

3. Proactivization can be used to dynamically add and remove parties (via
an update). If we stick to adding and removing from the recently updated
group of parties, we can do it also by deciding to employ/not-employ the
intermixings shared with them. This is an access-control function which com-
putes on keys (analogous to “control vectors” acting on DES keys [M]).
It assures that limitations on the cooperation can be easily achieved with
intermixings (using them as credentials).

4. Whereas full proactive refreshment of cryptographic tools is needed to assure
that past corruptions (memories learned in the past) are forgotten (namely
erased and become irrelevant), we can take “simpler” mechanisms to as-
sure that future corruptions cannot learn the past. This is done by “forward
refreshment” of the keys for intermixing. This will ease the simulation argu-
ments as the “pseudorandom past” becomes random. This can be achieved
by updating the pseudorandomness based on “current round information”

322

Yair Frankel et al.

and in a non-interactive fashion. A tag (i.e., date, counter which can be
agreed upon) and previous randomness is used to generate a new pseudo-
randomness for intermixing followed by an update. This can sometimes be
extended to a full proactive update and implies, for example:

Theorem 5. Using the above technique of forward refreshment with [FGMY]
we are able to achieve fault-free non-interactive (e.g., all parties are honest
and active in a round) full proactivization.

This is the first time that such non-interactive maintenance is possible. It can
be derived from [FGMY] (the first proactive RSA solution based on families
of committees) by sharing pairwise intermixing where in each committee in
a family one adds and the other subtracts using their new locally refreshed
pseudorandomness (which is derived from the old key applied to a global tag
which can be the global public state of this round). The new intermixing keys
generate new shares, which is then followed by a non-interactive verification.
At first glance this looks impossible since the adversary moves around in
the system. But, notice that an adversary moves out of a server after it is
detected in the mobile adversary model (otherwise silent spreading without
limits is possible). Thus, when it is detected it is accounted for as a fault
which, in turn, causes an interactive refresh which disconnects the past (due
to perfect forward secrecy etc.). This amortization of “interaction” against
“faults” enables the proof of the Theorem.

Let us give a simple example based on [F'89], in which the secret key d = s1+
...+ st (it is used as a procedure for a “family” in [FGMY]). It demonstrates
how proactive update can be done where if there are no faults the update is
non-interactive. The new shares now become s; = 5i+2j=1..i—1,i+1,t sign(i—
J)PRF,, ;(tag) (we factor in the available “honest” pseudorandomness ap-
plied to a current “tag”). Before changing the s; a signature for some tag
can be tested with the new shares. For [FGMY] there are many such sets
S1,. .., 8y (held by a family of servers) such that they sum up to d and, more-
over, more than one server can possess s;. Proactive update in this system is
a “sum-to-sum” process which takes the [-out-of-] to a different such system
(within a family). For robustness of the update, a commitment to o; ; is pub-
lished as before. Moreover, the distributor (a single dealer or a distributed
one) had published g*:. Publication of commitment to PRF,, ;(tag) is pro-

vided by ¢ (and j) using say C;; = gPRF"ivﬂ‘ (ta9) (one broadcast, to help
update — but no more interaction is needed). Entities ¢ and j may now have
a dispute in case they disagree and value is opened if necessary (one will be
wrong and removed, we will need to update from a different family if an entire
committee is found corrupt). Each i also publishes gsi (for the next round us-
ing his share) and the following verification is made by each v (within a family

with dispute phase if necessary) g% = g% HjeA\{i} (gPRF”i,J““g))Sign(i*j).
If no dispute s} is now used.

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 323

6 Conclusions

A new technique that entangles algebraic computations with shared pseudo-
randomness and which applies to numerous existing protocols has been de-
scribed. We have shown that it can be a design tool for incrementally achiev-
ing/ retrofitting correctness, efficiency, provability, and extended functionality
in distributed cryptographic protocols. It also allows for better isolation (indi-
vidualization) of computations and added (access)-control. Inclusion of the tool
in various other distributed cryptographic protocols may result in further im-
provements.

References

[B97] D. Beaver, Commodity-based Cryptography, In the 29-th STOC, 446-455,
1997. 309

[BR93] M. Bellare, and R. Rogaway, Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols, ACM Conference on Computer and Communi-
cations Security, 1993. 318

[BR94] M. Bellare, and R. Rogaway, Optimal Asymmetric Encryption, Eurocrypt 94.
92-111.

[B]] R. Blakley, Safequarding Cryptographic Keys, FIPS Con. Proc (v. 48), 1979,
pp. 313-317. 307

[BM] G.R. Blakley and C. Meadows, Security of Ramp Schemes, Crypto 84, LNCS
196, 242-268. 308

[BF97] D. Boneh and M. Franklin, Efficient Generation of Shared RSA Keys, Crypto
97 proceedings. 315

[B88] C. Boyd, Digital Multisignatures, IMA Conference on Cryptography and Cod-
ing, Claredon Press, 241-246, (Eds. H. Baker and F. Piper), 1989. 307

[D92] Y. Desmedt. Threshold cryptosystems. In J. Seberry and Y. Zheng, editors,
Advances in Cryptology—AUSCRYPT ’92, volume 718 of Lecture Notes in
Computer Science, pages 3—14. 1992, Springer-Verlag. 307

[DKLMQW] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestreacute, J.-J. Quisquater
and J.-L. Willems, A Practical Implementation of the Timing Attack, Cardis
'98. 317

[DDFY] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, How to Share a Function
Securely, ACM STOC ‘94, pp. 522-533. 307

[DF91] Y. Desmedt and Y. Frankel, Shared Generation of Authenticators and Signa-
tures Advances in Cryptology-Crypto 91, pp. 457-469. Springer-Verlag. 307,
308, 312, 313

[DH] W. Diffie and M. Hellman, New Directions in Cryptography , IEEE Trans. on
Information Theory 22 (6), 1976, pp. 644-654. 310, 314

[F] P. Feldman, A Practical Scheme for Non-Interactive Verifiable Secret Sharing,
FOCS '87, pp.427-437. 308

[FS] A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identi-
fication and signature problems, Crypto’86, pp. 186-194. 318

[F89] Y. Frankel, A practical protocol for large group oriented networks, In

J. J. Quisquater and J. Vandewalle, editor, Advances in Cryptology, Proc. of
Eurocrypt ’89, (Lecture Notes in Computer Science 773), Springer-Verlarg,
pp. 56-61. 307, 322

324

[FY98]

Yair Frankel et al.

Y. Frankel and M. Yung. Distributed public-key cryptosystems. In H. Imai
and Y. Zheng, editors, Advances in Public Key Cryptography—PKC 98, vol-
ume 1431 of Lecture Notes in Computer Science, pages 1-13. Springer-Verlag,
Feb. 1998. invited talk. 307

[FGMY] Y. Frankel, P. Gemmell, P. MacKenzie and M. Yung. Proactive RSA, crypto

97. 307, 322

[FGMY2] Y. Frankel, P. Gemmell, P. MacKenzie and M. Yung. Optimal Resilient

[FGY]

[FMY]

Proactive Public-Key Systems, FOCS 97. 307, 308, 312, 314, 315, 316, 317,
319, 321

Y. Frankel, P. Gemmell and M. Yung, Witness Based Cryptographic Program
Checking and Robust Function Sharing. STOC96, pp. 499-508. 307, 317, 318
Y. Frankel, P. MacKenzie and M. Yung. Robust Distributed Efficient RSA-key
Generation, manuscript. 315

[GJKR96] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, Robust Threshold RSA,

[GI99)]

[GGM]

Crypto96, pp. 157-172. 307, 308, 317, 318

N. Gilboa and Y. Ishai, Compressing Cryptographic Resources, Crypto99, pp.
591-608. 309

O. Goldreich, S. Goldwasser and S. Micali, How to construct random func-
tions, J. Comm. Sci. 28 (1984), pp. 270-299. 310

[HWKS] C. Hall, D. Wagner, J. Kelsey, and B. Schneier, Building PRF's from PRPs,

Proceedings of Crypto '98, 1998, Springer-Verlag, pp370-389. 310

[HJJKY] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung, Proactive

K]

[KJJ]
[M]

[0Y]

[R]

[RSA]

[Sch]
[Sh]

[Sho]

Public-Key and Signature Schemes Proceedings of the Fourth Annual ACM
Conference on Computer and Communications Security, CCS ’97.

P. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSA
and Other Systems, Crypto96. 317

P. Kocher, J. Jaffe and B. Jun, Differential Power Analysis, Crypto99. 317
S. M. Matyas, Key processing with control vectors, Journal of Cryptology, 3
(2), pp. 113-136, 1991. 321

R. Ostrovsky and M. Yung, How to withstand mobile virus attacks, Proc. of
the 10th ACM Symposium on the Principles of Distributed Computing, 1991,
pp. 51-61. 307

T. Rabin, A simplified approach to Threshold and Proactive RSA, Proceedings
of Crypto 98, Springer-Verlag, 1998, pp. 89-104. 307, 308, 311

R. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signa-
ture and Public Key Cryptosystems, Comm. of ACM, 21 (1978), pp. 120-126.
307

C. P. Schnorr, Efficient identification and signatures for smart cards,
Crypto’89, pp. 239-252. 318

A. Shamir, How to share a secret, Comm. of ACM, 22 (1979), pp. 612-613.
307, 315

V. Shoup, Personal communication. 307

A Brief Description of Desmedt-Frankel

The following one-time setup is performed.

— The dealer generates an RSA public key (e,n) and the associated private
key d. The modulus n is generated such that it is a composite of two safe
primes, p = 2p’ + 1 and ¢ = 2¢’ + 1 where p’, ¢’ are primes. Let R = 2p/'q’.

“Pseudorandom Intermixing”: A Tool for Shared Cryptography 325

— The dealer chooses a random polynomial f(z) = Ao+ Ajx+---+ A2,
such that A(0) =d —1 and A; € Zp.
— Each Server i is assigned interpolation point z; = 2i and receives share

—1
si = f(xi) - H (xj —) mod R
Je{1,., I\ {4}
over a private channel.
A set of servers A can sign a message m by participating in the signing

protocol in Figure 3, with P = 1, PRF,, ;(m) = 0 for all 4,5 € A, and z; 4 =
(Hje{l,...,l}\/l(xi - xj))(HjeA\{i} (0 —=;)).

	Introduction
	The Basic Issues
	Our Results

	Background
	Pseudorandom Intermixing
	Applications to Threshold Cryptography
	Pseudorandom Intermixing as Design Tool: Assuring Provable Security
	Intermixing Assures Efficiency of Secure Threshold RSA
	Additional Properties

	Application to Fault Tolerant Protocols
	Efficiency of Robust Threshold RSA
	Proactiveness: Intermixing for Efficiency, No-interaction and Added-Control

	Conclusions
	Brief Description of Desmedt-Frankel

