
RSA-Based Auto-recoverable Cryptosystems

Adam Young� and Moti Yung��

Abstract. The deployment of a “public-key infrastructure” (PKI) has
recently started. Another recent concern in business and on the national
level is the issue of escrowed encryption, key recovery, and emergency
access to information (e.g., in the medical record area). Independent de-
velopment of a PKI and an escrowed PKI (whenever required or desired)
will pose a lot of constraints, duplication efforts and increased costs of
the deployment. It will introduce inter-operability issues which will be
hard to overcome. Thus, what we advocate here is a joint design of an
escrowed PKI and a regular PKI.
In this work we develop an approach to such an integrated design. We
give the first auto-recoverable systems based on RSA (or factoring),
whereas the original auto-recoverable auto-certifiable schemes were based
on Discrete Logarithm based keys. The security proof of our system as-
sumes only that RSA is hard, while the original schemes required new
specific discrete log based assumptions. We also put forth the notion
of “generic” auto-recoverable systems where one can start with an une-
scrowed user key and then by simply doing “re-registration”, change the
key into an escrowed one. In contrast, in the original systems the user
keys were tightly connected with the escrow authorities’ key. Besides this
novel (re)-registration procedure there are no changes or differences for
users between a PKI and a generic auto-recoverable PKI.

1 Introduction

In this paper we develop an escrowed public key infrastructure that is as close
as possible to infrastructures without escrow, and that can be used to escrow
a subset of users. This is useful for numerous reasons. First, showing that an
auto-recoverable escrowed PKI (i.e., one that is compatible with a regular PKI)
can be based solely on the same functions that are used to implement a PKI
(e.g., the RSA function [RSA78]), while at the same time not introducing new
mathematical assumptions, makes the system more trustworthy. Second, due
to the similarity of the escrowed system with unescrowed ones, much of the
same software and practices for the former can simultaneously be applied to the
later, making the composed solution more economical. Lastly, the coexistence of
escrowed keys with unescrowed ones within the same infrastructure will minimize
the use of escrow to that of the “required keys”, and will enable operators of
the PKI to comply with regulations and needs while allowing as much privacy
as possible.

Enabling after the fact escrow where an unescrowed key can be used on-
line and then can later be transitioned into “escrowed mode” is a facility which
� Currently: Computer Science, Columbia University. ayoung@cs.columbia.edu.

�� Currently: CertCo NY, USA. moti@certco.com, moti@cs.columbia.edu

H. Im ai , Y. Zh e n g (E d s.): P KC 2000, LNCS 1751, p p . 326– 341, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

RSA-Based Auto-recoverable Cryptosystems 327

seems useful. It combines on-line privacy with the ability to archive data for
“future historical purposes” with controlled access. In this context information
and keys can be securely deposited into a national archive. It gives maximal on-
line privacy which is a must (for secrecy of operations on the national level). Yet,
it should not prevent future access when the accessibility of the data becomes
more important than outdated information secrecy. This separability of keys and
escrow authorities also implies that the same key can be deposited with different
escrow authorities.

The development of a system under the constraint of being “auto-recoverable”
[YY98] enables the system to be software-based (i.e., user’s programs can be dis-
tributed and operated in software without the need for tamper-proof hardware).
Another inherited property due to these constraints is having a key escrow sys-
tem with minimal overhead (i.e., in the PKI context, making it as close as pos-
sible to a regular PKI) while retaining flexibility (e.g., separating users from the
inner workings of and access to, escrow agents). This enables the escrowed PKI
to be used with the same ease as a typical unescrowed PKI. A list of privacy,
abuse-freeness (no leakage), flexibility, and operational properties desired was
given in [YY98].

The main challenge in implementing generic systems with a “drop-in replace-
ment” property is basing it on general public-key (trapdoor) functions in a way
which achieves certain verification, compliance, and security requirements, and
having it such that the security totally relies on the hardness assumptions of
the basic cryptographic functions. Along the way we also define the notion of
a “zero-knowledge proof of knowledge in the random oracle mode” (we need it
for our proofs and we did not find it in the literature). Additional properties we
achieve for the system constructed here are:

1. Employing RSA Keys: The systems can be based on the most widely
deployed system, i.e., RSA/factoring-based systems.

2. Minimal User Overhead: The only change for the user is additional in-
formation sent during key registration (or re-registration). Users need not
re-key to escrow existing public keys.

3. No Cascading Changes: The users do not change their applications and
systems software which employ cryptography (besides the registration pro-
cedure). Not even the cryptographic engine (e.g., an RSA based engine) need
be changed.

4. Separation of Users and Escrow Agents: The escrow authorities are
managed and constructed independently of the users (only their public key(s)
need be known for (re)-registration, but not for the user’s key generation).

5. Independent User Keys: The user’s key is independent of any other key
and is produced in much the same way as in an unescrowed PKI. The users
employ the same basic crypto algorithms (key generation, encryption, etc.).

6. Multiple Escrow Authorities Users can register for escrow with multiple
escrow authorities or with one of their own choosing, among other options.

7. Granularity of Escrow: When the escrow agents are activated, they may
either open keys or open information encrypted under the keys. This enables

328 Adam Young and Moti Yung

escrow within a specific context while keeping users’ privacy otherwise. For
national law enforcement applications, this feature is very important to allow
minimization of escrow by avoiding revealing the private keys of receivers
when senders are the ones under suspicion.

8. Escrow/non-Escrow coexistence: The same PKI can handle escrowed
and unesrowed keys (which minimizes escrow to the keys needed to undergo
the escrow process).

9. Escrow Hierarchy: A multi-level security system can be implemented
where the escrow authorities at each level can access all of the information
below in the hierarchy, and none of the rest of the information.

2 Background and Related Work

The definitions of the notions we employ are given in appendix A. In the ap-
pendix we also present the new definition of a zero-knowledge proof of knowledge
in the random oracle model (which we need in our proofs and which was not
available in the literature).

Micali used VSS to design public key cryptosystems with escrowed capabil-
ities when he proposed the notion of Fair Public Key Cryptosystems [Mi92].
His system employs a “verifiable secret sharing protocol” to distribute users’
keys to the escrow agents [CGMA,Fe85]. The problem with Fair PKC’s is that
first, every user must split his private key and interact with the escrow agents
who then need to interact among themselves to approve a key and be convinced
that it is escrowed properly. This is not a “minimal change” to a PKI (the en-
tire initialization of the system is changed). Second and even more importantly,
there are information leakage attacks on such systems. In fact, if used where
each user’s public key is publicly verifiable, the system requires the publication
of an excessive amount of information; this can be abused to permit ‘shadow
public keys’ to be published (which are unescrowed), a notion due to Kilian
and Leighton [KL95]. The notion of having an escrow system be ‘shadow public
key resistant’ is a very recent and important new problem to consider (naive
attempts to associate auto-escrow with merely publicly verifiable encryptions or
shared encryptions may result in similar information leakage flaws). It is hard to
prove shadow public key freeness, but we can require that the public information
in an escrowed system be the same as the public information in a regular PKI.
Kilian and Leighton [KL95] suggested a correction to Fair PKC’s which they call
Fail-Safe Key Escrow to avoid shadow public key abuse, but their impractical
solution requires even more protocol interaction than Micali’s solution.

A more recent solution which attempts to minimize the impact on users
when adding escrow and which limits information leakage is the notion of “auto-
recoverable auto-certifiable” systems of [YY98], where users interact with CA’s
only to set up their keys and thereafter use the escrowed PKI as if it were a
regular PKI. The system employed double decker exponentiation ([St96] and
also [CS97,YY98,YY99]). The starting point model of the solution we present is
also that of an auto-recoverable system. We present extended advantages of the
notion.

RSA-Based Auto-recoverable Cryptosystems 329

Publicly Verifiable Secret Sharing (PVSS) is related (but not sufficient) for
the above notion. A PVSS for sharing a composite of two primes was given
in [FO98]. The solution encrypts the user’s shares using RSA, and are thus
not semantically secure encryptions. The scheme relies on a new modified RSA
assumption. Also, when the shares are recovered, a factor of n is obtained, thus
no mechanism for decrypting individual messages is given.

A number of recent suggestions have appeared after the initiation of this
area in [YY98] and after the initial announcements of our results (e.g. [Man97]).
Naturally, we welcome other works in this area. One work is another PVSS
for composites which was given in [BT99]. This solution utilizes numerous SZK
proofs and requires the use of a composite whose factorization is unknown to
all of the parties involved. The solution has the property that it requires O(221)
modular exponentiations to recover the shared secret (a factor) of the user,
and requires O(280) tries to forge the PVSS proof. Shanks algorithm must be
used to recover the shared secret. Like [FO98], the recovery algorithm reveals
one of the factors of n, and no algorithm for decrypting individual messages is
given; in addition, the encryption is not semantically secure. In [FPS99] an auto-
recoverable solution for composites is promised. A cryptographic primitive called
Diophantine Commitment (related to bounded range SZK proofs, see [CFT98]) is
discussed. The solution is also based on [PS00]. From what is currently available
[PS-L], we believe (but may be wrong) that the scheme proposed may not have
all the properties we discuss herein, yet it provides very short certificates of
recoverability which is a very elegant and useful property. Other schemes related
to the original work [YY98] have appeared in [YY99,Ve00] where a scalable
security for the recovery agent was provided, and in [Sch99] which simplified the
original scheme’s proofs.

It is worth while noting that numerous independent works have recently
recognized the role of an off-line independent third party. The work on group
signatures and ID-escrow [CS97,KP98], escrowed e-cash [CMS96,FTY96], reg-
istered mail [Mi92], and fair exchange regarding signatures [ASW98,Ch98], all
employed mechanisms for verifying and transferring information to an off-line
third party.

3 Basics of a Generic Auto-recoverable PKI

3.1 Defining an Auto-recoverable PKI

Assume that we have a public key function. This function has a key generation
procedure GEN, which generates a public key K1 and its associated private key
portion K2. Given the pair (K1,K2), when K1 is registered in the public file,
the user can run EMP where they employ the public key for encryption.

Our definition adds components that will be added to a PKI.

Definition 1. A Generic Auto-Recoverable Cryptosystem contains the following
algorithms (CER,VER,REC) such that:

330 Adam Young and Moti Yung

1. CER is a publicly known poly-time probabilistic algorithm that takes the out-
put of GEN, which is (K1,K2), and the keys of the escrow authority and
generates the triple (K1,K2,P) which is left on the tape as output. Here
K2 is the randomly generated private key and K1 is the corresponding pub-
lic key. P is the transcript of the zero-knowledge proof of knowledge (its
non-interactive version may be a poly-sized certificate that proves that K2 is
recoverable by the escrow authorities using P).

2. VER is a publicly known poly-time deterministic algorithm that takes (K1,P)
on its input tape and returns a boolean value. With very high probability, VER
returns true iff P can be used to recover the private key K2.

3. REC is a private poly-time deterministic algorithm that takes (K1, P) as
input and returns K2 on its tape as output with overwhelming probability
provided VER(K1,P) is true (REC may be a distributed protocol among
distributed entities).

4. It is intractable to recover K2 given K1 and P without REC.

We say that CER is a valid certification protocol if:

– the protocol: (CER,VER) is a computational zero-knowledge proof of knowl-
edge of K2 on input K1 (of size h) (we will describe the non-interactive
random oracle based system, but an interactive procedure is also possible).

– In addition the following property holds:
Transferability with error k: For any CER’ if p(h) is the probability that the
CA accepts in VER on input K1, P from CER’, then REC is successful on
the same input with probability at least max{p(h)−k(h), 0}, for some k < p
(we are interested in negligible k).

Let us next explain in what sense the above is generic. In a regular PKI the
following is done: (1) the CA publishes its parameters, (2) using GEN a user
generates a key pair, accesses the CA, and registers the public key, (3) using
EMP the users employ the system to send encrypted messages. In the generic
escrowed PKI system, the CA parameters will include the Escrow Authority
(EA)’s shared public key. In registration the user will execute GEN and will
execute CER to add to the key the transcript P (or by interaction), the CA
verifies it using VER. Otherwise, everything else is as in a regular PKI. Users
send messages using EMP as before. When keys are taken out of escrow, the
CA needs to cooperate and it supplies P to the EA which can then recover the
private information using REC.

3.2 The Basic Structure of the System

To implement the system we will employ the following ingredients:

– General semantically-secure public key cryptosystem of the EA’s.
– Public commitment schemes which are homomorphic, so that multiplications
of commitment values result in a commitment of the sum of the plaintexts.

– The fact that in the number-theoretic public-key systems there exist homo-
morphic structure which enables homomorphic commitments.

RSA-Based Auto-recoverable Cryptosystems 331

3.3 System Initialization

The following are the cryptographic primitives that are used in our system by
the escrow authorities. ENC is a semantically secure probabilistic public key
encryption algorithm that takes three arguments, r, s, and E. Here r is a mes-
sage to be encrypted, s is a randomly chosen string to make the encryption
probabilistic, and E is a public key. Thus, C = ENC(r, s, E) is the ciphertext
of the message r. Let DEC be the corresponding decryption function. Thus,
r = DEC(C,D), where D is the private key corresponding to E. It could be
that D is shared distributively, in which case r = DEC(C,D1, D2, ..., Dm).

Semantic security is sufficient in our case (and there is no need for cho-
sen ciphertext security), since the decryption will be performed to recover keys
whose “ciphertext transcript” includes a proof of knowledge of the key by the
encrypting party. Note that P proves message awareness.

The system is independent of the organization of the escrow agents as a
distributed entity. In the case of m escrow authorities, they generate the shares
D1, D2, ..., Dm of their shared private key D, and they collaboratively compute
their corresponding public key E. To this end, the notion of function sharing to
enable threshold decoding can be employed [DDFY,FGY,GJKR,FGMY].
E is published as the key of the EA’s. We may also allow a number of keys to

be published where users choose the escrow authority key or keys to work with.

4 Generic Auto-recoverable Systems

4.1 Constructing the Certification and Recovery Mechanisms

We combine the notions of encryption and zero-knowledge proofs and add them
on top of the key generation procedure. For efficiency of communication (which
assures that the new scheme is embeddable in an old protocol), we employ the
methodology of employing random oracles. This methodology was put forth by
Bellare and Rogaway [BR94] to model the use of a cryptographic hash function.
This notion was used originally by Fiat and Shamir in [FS86] and also Schnorr
[Sc91], and was proved rigorously by Pointcheval and Stern [PS96]. The proof
in the random oracle model validates the design and does not constitute a rig-
orous complexity-theoretic proof, however it typically gives efficient solutions.
In our case it reduces interaction. Some weaknesses (not in the current use) are
known, and validation via a random oracle is not universal, especially if the
cryptographic functions themselves rely on the oracle [CGH98] – but here as
well as in many other uses, separation exists. In any case, interactive registra-
tion variants of our constructions (which use only two full rounds) exist, and
the penalty is only extra interaction. Rather than self-challenging by an oracle
as in the descriptions below, a traditional challenge-response interaction takes
place. Zero-knowledge proofs in the random oracle model were carefully defined
in [BR94].

We will employ “split encryption” where a value is put in a number of
places. Such a primitive and its demonstrated power have been used and shown

332 Adam Young and Moti Yung

in various contexts: zero-knowledge proofs, e-cash and secret sharings., e.g., in
[IY86,KMO89,CFN,FY93,Fe85,BG96], to give just a partial list.

4.2 RSA Based Systems

CER: Key Certification The user generates a product of two primes n = pq.
Let d be the inverse of e mod φ(n) (this is necessary, since we need Zφ(n) to
be indistinguishable from Zn for ZK). Here e and d are the public and private
RSA exponents, respectively. We assume that before this protocol is engaged, P
proves that n is the product of two primes. A protocol that proves that n is of
the form n = prqs, where p and q primes (congruent to 3 mod 4 where r and
s are both odd) is given in [GHY] (resp. [GP87]). A protocol by Boyar et al.
can be used to prove that n is square free [BFL91]. Taken together they assure
that n is the product of two primes. There are non-interactive versions of such
compliance proofs which we employ. In addition, care must be taken not to allow
the exploitation of the “Desmedt subliminal channel” [De88] (as in [YY96]) to
leak information. So, the upper half of the bits of n should be generated by a
call to a random-oracle hash function and the preimage of this call should be
given to the CA for verification.

4.3 Non-interactive Solution

In the protocol that follows, the prover uses an ideal hash function (assumed
to be indistinguishable from a random oracle) to generate the values for t′i−1.
Thus, the underlying atomic protocol can be viewed as a protocol with a success
probability of τ(n)/2n, where τ(n) denotes the number of elements modulo n
with order λ(n). Let k(m) = ω(log m) be given. We will increase the size of the
transcript by a factor of δ to achieve an error of at most 2−k(m). In [LS] it was
shown that if n is the product of two primes, then τ(n) > n/(3 lnln n). Since
we insist that P proves to V that n is the product of two primes, we can take
δ = 12(lnln n)ln 2 to insure that d is transfered in CER with overwhelming
probability.

CER: Key Certification The following is how the non-interactive proof of
knowledge transfer P is constructed:

1. P = (n), t0 = H(n) (H is a random hash function with range Z∗
n)

2. for i = 1 to δk(m):
3. t′i−1 = H(ti−1)
4. ti = t′ei−1 mod n
5. for i = 1 to δk(m) do
6. ai ∈R Zφ(n), choose si,1, si,2 randomly for use in ENC
7. vi = tiai mod n
8. Ci,1 = ENC(ai, si,1, E), Ci,2 = ENC(d − ai mod φ(n), si,2, E)
9. add (vi, Ci,1, Ci,2) to the end of P

RSA-Based Auto-recoverable Cryptosystems 333

10. val = H ′′(P) (H ′′ is a random oracle hash)
11. set b1, b2, ..., bδk(m) to be the δk(m) least significant bits of val, where bi∈ {0,1}
12. for i = 1 to δk(m) do
13. let ai,1 = ai and let ai,2 = d− ai mod φ(n)
14. add zi = (ai,j , si,j) where j = 1 + bi to the end of P

Thus, P = (n, (v1, C1,1, C1,2), ..., (vδk(m), Cδk(m),1, Cδk(m),2), z1, ..., zδk(m)).
Note that since t0 = H(n), the prover must commit to the composite before the
oracle gives the prover the randomly chosen bases t1, t2, ..., tδk(m). Thus, a user is
able to pick from a polynomial number of (δk(m)+1)-tuples (n, t1, t2, ..., tδk(m))
with randomly chosen values for t when deciding on the public key to give to
the CA. Note that a prover conditioning the transcript for a favorable tuple is
the same situation as a prover conditioning a transcript for favorable challenge
bits.

VER: Public Escrow Verification The verifier computes t1, t2, ..., tδk(m) him-
self based on n, and the verifier computes b1, b2, ..., bδk(m) in the same way as in
the certificate generation process. The verifier checks that all of the values in P
lie in the correct sets. For example, the verifier checks that the ti ∈ Z∗

n, and
that ai,1+bi < n for 1 ≤ i ≤ δk(m). If any of these verifications fails, then the
verifier concludes that the private key is not properly escrowed. For i ranging
from 1 to δk(m), the verifier verifies the following things:

1. Ci,1+bi = ENC(ai,1+bi , si,1+bi , E)
2. tiai,1+bi = (t′i−1/vi)

bivi
1−bi mod n

The verifier concludes that the private key is escrowed as long as all the
verifications pass and as long as both criterion are satisfied for 1 ≤ i ≤ δk(m).

REC: Key Recovery The escrow authorities recover the user’s private key as
follows. For i ranging from 1 to δk(m), the authorities compute d′i to be the sum
of the plaintexts corresponding to Ci,1 and Ci,2. Let Ki = ed′i − 1. The escrow
authorities then utilize the well known Las Vegas algorithm that factors n given
a multiple of λ(n). This algorithm is run on Ki for each i.

4.4 Security

To prove the security, we will present the atomic version of the proof in the
interactive case. We will then argue its security, and apply the Bellare-Rogaway
reduction to prove the security of CER. Let t′ ∈R Z∗

n be an element chosen
jointly by P and V. P and V compute t = t′e mod n.

1. P chooses a ∈R Zφ(n) and s1,s2 randomly for use in ENC
2. P computes v = ta mod n
3. P computes C1 = ENC(a, s1, E), C2 = ENC(d− a mod φ(n), s2, E)
4. P sends (v, C1, C2) to V

334 Adam Young and Moti Yung

5. V sends b ∈R {0, 1} to P
6. P sends z = (w, s1+b) = (a1−b(d− a)b mod φ(n), s1+b) to V
7. V verifies that C1+b = ENC(w, s1+b, E) and tw = (t′/v)bv1−b mod n

Lemma 1. The atomic 3-round interactive protocol is computational zero-
knowledge.

Proof. To prove that it is ZK, we will give a description of a poly-time simula-
tor S∗ that is capable of producing transcripts for the interactive version that
are polynomially indistinguishable from a transcript derived from a prover and
verifier in an interactive session. Let V ∗ be any polynomial-time probabilistic
algorithm that a (possibly cheating) verifier uses to generate his challenges. S∗

is defined as follows:

1. t = t′e mod n
2. b′ ∈R {0, 1}, w,w′ ∈R Zn, choose s1,s2 randomly for use in ENC
3. v = tw(1−b′)(t′/tw)b

′
mod n

4. C1+b′ = ENC(w, s1+b′ , E), C2−b′ = ENC(w′, s2−b′ , E)
5. call V ∗ with input (v, C1, C2) obtaining challenge b
6. if (b′ = b) then return (v, C1, C2, b, w, s1+b) else goto 2

Note that w,w′ ∈R Zn in the simulation, since the simulator does not know
φ(n). However Zφ(n) and Zn are statistically indistinguishable. Note that in-
distinguishability won’t hold if there exists a line tapper TN that when given
{n, vT , CT

j , v
F , C′F

j } (in no particular order) can distinguish CT
j as containing,

for example, the plaintext (d−w)T from CF
j containing (d−w)T with probability

> 1/2+N−c. Here aT indicates a value a that is in a transcript formed between
a prover and a verifier, and bF indicates a value b that is in a transcript forged
by the simulator. The ciphertexts correspond to the unopened ciphertexts, and
j ∈ {1, 2}. Recall that semantic security implies that anything that can be
learned about the plaintexts from these two ciphertexts can be learned without
the ciphertexts, so the line tapper is unable to distinguish based on these values
(even if TN were given both plaintexts). Hence, semantic security is a sufficient
condition. QED.

Note that adaptive chosen ciphertext security of ciphertexts is not needed in
our system since users never see the decryptions of the values in the certificates
(yet their proof achieves the notion via the formalism of a proof of knowledge).
The interactive version of the CER protocol is a typical 3-round computational
zero-knowledge proof. Completeness and soundness are straightforward. It differs
from standard zero-knowledge proofs in that, in addition to a commitment value
being sent in the first round (i.e., using v to commit to the base t logarithm of
v mod n), the prover sends two semantically secure encryptions (which must be
consistent with the commitment in v, and d). The first of these encryptions can
be thought of as yet another commitment of the base t logarithm of v. The second
encryption is a commitment to the base t logarithm of t′/v. Since these are both

RSA-Based Auto-recoverable Cryptosystems 335

semantically secure encryptions, they give as much information to a poly-time
adversary as the adversary can compute himself without the encryptions. They
are, in some sense, redundant commitments of v and t′/v (they are useful since
they provide third party recoverability). In the second round, the verifier sends
a randomly chosen bit to the prover, as in standard zero-knowledge proofs. In
the third round, the verifier has to open either a (for v) or d− a mod ord(t) (for
t′/v), as in standard zero-knowledge proofs. The only difference is that exactly
one of the two semantically secure encryptions (commitments) is also opened,
and verified for consistency (to insure third party recoverability).

In section 5.2 of [BR94], a reduction is given that shows how to transform any
three move atomic zero-knowledge proof with error probability 1/2 for L ∈ NP
into a non-interactive ZK proof in the random oracle model. The only significant
differences here are that two semantically secure encryptions are sent in each
round (this is secure for the same reason as in the DL version) and that the
error probability of the non-interactive RSA atomic protocol is not 1/2. The
fundamentals of the reduction and the proofs of soundness and zero-knowledge
are unchanged. So, we have the following.

Lemma 2. The non-interactive CER protocol for factoring based keys is sound
and zero-knowledge in the random oracle model.

Completeness of the non-interactive protocol for factoring based keys is
straightforward. We will now prove that the non-interactive CER protocol for
factoring based keys is a proof of knowledge in random oracle model. This will
shed some light on the differences in the proof of soundness as compared to the
soundness discussed in section 5.2 of [BR94]. See the appendix for a formaliza-
tion of what it means for a non-interactive proof to be a proof of knowledge in
the random oracle model. Note that this proof assumes that b1, b2, ..., bδk(m) are
included in the transcript. This is a minor modification to the protocol, which
clearly can be made since the verifier can verify this information.

Lemma 3. The non-interactive CER protocol for factoring based keys consti-
tutes a proof of knowledge with knowledge error at most 2−k(m).

Proof. It is easy to see that the non-triviality condition holds. We will now
consider the validity condition. The common input is α = n. We have that
xi = (vi, Ci,1, Ci,2), yi = zi, t = δk(m), and the bi’s in CER are the same as
the bi’s in the definition. Suppose that P makes no extra oracle queries. In this
case P fools V in round i with probability (1 − τ(n)/2n) and the probability
that P fools V in all δk(m) rounds is (1 − τ(n)/2n)δk(m). The knowledge error
κ(α) in this case equals (1 − τ(n)/2n)δk(m). Note that n being the product of
two different primes implies that τ(n)/n > 1/(3lnln n), and this implies that
(1 − τ(n)/2n)δk(m) ≤ (1 − 1/(6lnln n))δk(m). This can be shown to be at most
2−2k(m) from the following fact:

For all real numbers t and θ, s.t. θ ≥ 1 and |t| ≤ θ, (1 + t/θ)θ ≤ et
Now, suppose that P makes T (m) oracle queries (e.g., to try to fix the first

several challenge bits to 0). It can be shown that the knowledge error is at most

336 Adam Young and Moti Yung

T (m)2−2k(m), which for sufficiently long m is at most 2−k(m). It follows that
p(α) is at least 1− 2−k(m).

Let T = Pα,β,r(H) and T ′ = Pα,β,r(H ′) Consider the following knowledge
extractor K. Suppose that in round i, bi in T is 0 and bi in T ′ is 1. K then adds
the wi in T to the wi in T ′ to get dc, a candidate decryption exponent. The
operation of K when the bits are inverted is similar.

We will now give a lower bound on K’s probability of extracting a witness
from T and T ′1. Assuming no extra oracle queries are made, with probability
1/2 we have that bi in T equals bi in T ′, since the bi’s are chosen randomly for
both T and T ′ (H and H ′ serve as honest verifiers). So, with probability 1/2,
the bi’s in each transcript differ. Also, both transcripts will use the same ti’s
and with probability τ(n)/n, ti has maximal order. To see this recall that P for
both transcripts is using: the same common-input α, the same auxiliary input
β, and the same random tape r. Thus, with probability 1−τ(n)/2n a decryption
exponent is not extracted in round i. So, the probability that a decryption expo-
nent isn’t extracted in any of the δk(m) rounds is (1 − τ(n)/2n)δk(m), which is
at most 2−2k(m). Now consider the case where P makes T (m) additional oracle
queries. It can be shown that the probability that a decryption exponent isn’t
extracted is at most T (m)2−2k(m). For sufficiently long m this probability is at
most 2−k(m). Thus, the probability that a valid decryption exponent is extracted
byK is at least 1−2−k(m). Using this worst case value, and the worst case values
for p(α) and the knowledge error, it follows that the inequality in the validity
condition evaluates to 0 ≥ −2−k(m). Thus, the validity condition is satisfied. It
follows that the non-interactive CER protocol is a proof of knowledge. QED.

Note that all the above steps are efficient (small polynomial overhead, which
is reasonable for a one-time operation such as key (re)-registration). So, what
we achieve is:

Theorem 1. There exists a generic and efficient auto-recoverable auto-certifi-
able system, where the users’ keys are based on the RSA/factoring system as-
suming only the security of RSA/factoring.

5 Decrypting Individual Messages

In some settings, particularly in law-enforcement settings, it is important to
provide the escrow authorities with the ability to decrypt individual messages
of users without revealing the users escrowed private key. This is important,
since the sender’s private key should not be opened if the receiver is under
suspicion; this issue is not dealt in systems like the Fair cryptosystems. This
mode of operation is possible in our solution by making only minor changes in
the system (to the organization of the escrow authorities).

Suppose for example that there are three escrow authorities with three sep-
arate semantically secure public encryption functions. The user in this system
1 We won’t derive an exact probability, since using T (m) oracle queries, P may always
try to make the first several ti’s not have order λ(n) to trick the prover, for example.

RSA-Based Auto-recoverable Cryptosystems 337

generates three separate public keys, and then escrows each of them using the
auto-recoverable auto-certifiable cryptosystem corresponding to each of the pub-
lic encryption functions of the escrow authorities. The three public keys are ver-
ified and published. Suppose that the users use a hybrid cryptosystem to send
confidential messages. The sender simply encrypts the session key using all three
public keys. The escrow authorities can recover the message without any of them
knowing all three of the corresponding private keys.

Alternate methods also exist for composite public keys. One idea is as follows.
Now, suppose that there are three escrow authorities. The user can secret split
d additively to get d1, d2, and d3 in conjuction with the auto-recoverable auto-
certifiable cryptosystem. It follows that with such additive values for d escrowed,
the escrow authorities can perform shared decryption of a message encrypted
with n without revealing the user’s private key. What we then get is:

Theorem 2. The generic RSA-based auto-recoverable cryptosystem presented
here can be used to decode messages securely by the escrow agents, without re-
vealing the private key of the receiver.

6 Arbitrary Depth Escrow Hierarchy

Consider a three level key escrow system. The hierarchical tree consists of the
escrow authorities at the top, subordinate escrow authorities at the middle level,
and users at the bottom. The authorities at the top publish an escrowing public
key E. Then each of the subordinate escrow authorities auto-certifies a unique
public key using E. Finally, the users assigned to a given subordinate escrow
authority generate public keys and auto-certify them using the escrowed public
key of their corresponding subordinate escrow authority.

In the special case of the composite based auto-recoverable solution, it is
necessary that the modulus at each level fit within the message space of ENC at
the level above. We can therefore easily implement a depth 3, 4, or 5 hierarchy
in a straightforward fashion.

Theorem 3. The generic auto-recoverable cryptosystems for factoring/RSA
based keys presented here can be used to efficiently implement an arbitrary depth
hierarchical key escrow system.

7 Smaller Certificate of Recoverability

Recall that a safe prime p is a prime of the form p = 2p1 + 1 where p1 is prime.
The CA storage can be reduced as follows. We insist that the user prove that n is
the product of two safe primes. This can be done using [CM99]. We remark that
this proof can be made non-interactive. Also, in each iteration ti is computed
such that J(ti/n) = −1 by making successive oracle queries. This fact is verified
for each ti by the verifier.

Having done this it then follows that each round in the certificate will transfer
d with knowledge error negligibly larger than 1/2. To see this note that the only

338 Adam Young and Moti Yung

possible orders for ti are (2, 2p1, 2q1, 2p1q1) where q = 2q1 + 1. This follows
from the fact that ti is checked by the verifier to be a quadratic non-residue
mod n. If the order is 2p1 then [ML98] can be used to factor n (the same holds
for 2q1). This can be seen from the fact that gcd((t2i mod n) − 1, n) is a non-
trivial factor of n for such a ti. If ti has order 2p1q1 then round i transfers
a+(d−a) mod λ(n). Thus, for all possible orders of ti, d is transferable in round
i (except if ordn(ti) = 2 which is an event having negligible probability). This
combined with the knowledge error due to the challenge bit, achieves the stated
knowledge error of 1/2. This implies that the number of iterations can be the
same as in the NIZK proof in [BR94].

References

[ASW98] N. Asokan, V. Shoup, M. Waidner. Optimistic Fair Exchange of Digital
Signatures. In Advances in Cryptology—Eurocrypt ’98, pages 134–148. 329

[BFL91] J. Boyar, K. Friedl, C. Lund. Practical zero-knowledge proofs: Giving hints
and using Deficiencies. In Journal of Cryptology, 4(3), pages 185–206, 1991.
332

[BG96] M. Bellare, S. Goldwasser. Encapsulated Key Escrow. manuscript, 1996. 332
[BR94] M. Bellare, P. Rogaway. Random Oracles are Practical In ACM CCCS ’94.

331, 335, 338, 340, 341
[BT99] F. Boudot, J. Traore. Efficient publicly verifiable secret sharing schemes with

fast or delayed recovery In ICICS ’99. 329
[Ch98] L. Chen. Efficient Fair Exchange of Verifiable Confirmation of Signatures. In

Advances in Cryptology—Asiacrypt ’98. 329
[CFN] D. Chaum, A. Fiat, M. Naor. Untraceable Electronic Cash. In Advances in

Cryptology—Crypto ’88, pages 319–327. 332
[CFT98] A. Chan, Y. Frankel, Y. Tsiounis. Easy Come - Easy Go Divisible Cash. In

Advances in Cryptology—Eurocrypt ’98, pages 561–575. 329
[CGH98] R. Canetti, O. Goldreich, S. Halevi. The Random Oracle Methodology, Re-

visited. In ACM STOC ’98. 331
[CGMA] B. Chor, S. Goldwasser, S. Micali, B. Awerbuch. Verifiable Secret Sharing

and Achieving Simultaneity in the Presence of Faults. In FOCS ’85. 328
[CM99] J. Camenish, M. Michels. Proving in Zero-Knowledge that a Number is the

Product of Two Safe Primes. In Advances in Cryptology—Eurocrypt ’99. 337
[CMS96] J. Camenish, U. Maurer, M. Stadler. Digital Payments Systems with Passive

Anonymity Revocation Trustees. In Esorics ’96. 329
[CS97] J. Camenish, M. Stadler. Efficient Group Signatures. In Advances in

Cryptology—Crypto ’97, pages 410–424. 328, 329
[De88] Yvo Desmedt. Abuses in Cryptography and How to Fight Them. In Advances

in Cryptology—CRYPTO ’88. 332
[DDFY] A. De Santis, Y. Desmedt, Y. Frankel, M. Yung. How to Share a Function

Securely. In ACM STOC ’94, pages 522–533. 331
[Fe85] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing.

In FOCS ’87. 328, 332
[FGMY] Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung. Optimal Resilience Proac-

tive Public Key Systems. In FOCS ’97. 331
[FGY] Y. Frankel, P. Gemmell, M. Yung. Witness based Cryptographic Program

Checking and Robust Function Sharing. In ACM STOC ’96. 331

RSA-Based Auto-recoverable Cryptosystems 339

[FO98] E. Fujisaki, T. Okamoto. A Practical and Provably Secure Scheme for Publicly
Verifiable Secret Sharing and Its Applications. In Advances in Cryptology—
Eurocrypt ’98, pages 32–46. 329

[FPS99] P. Fouque, G. Poupard, J. Stern. Recovering Keys in Open Networks. In
IEEE ITW, 1999. 329

[FS86] A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology—Crypto ’86, pages 186–
194. 331

[FTY96] Y. Frankel, Y. Tsiounis, M. Yung. Indirect Discourse Proofs: Achieving Ef-
ficient Fair Off-Line Cash. In Advances in Cryptology—Asiacrypt ’96. 329

[FY93] M. Franklin, M. Yung. Towards Provably Secure Efficient Electronic Cash. In
ICALP ’93. 332

[GHY] Z. Galil, S. Haber, M. Yung. Minimum-knowledge Interactive Proofs for De-
cision Problems. In SIAM J. of Computing, (4), pages 711–739, 1989. 332

[GJKR] R. Gennaro, S. Jarecki, H, Krawczyk, T. Rabin. Robust and Efficient Sharing
of RSA. In Advances in Cryptology—Crypto ’96. 331

[GP87] J. van de Graaf, R. Peralta. A simple and secure way to show the validity of
your public key. In Advances in Cryptology—Crypto ’87, pages 128–134. 332

[IY86] R. Impagliazzo, M. Yung. Direct Minimum-Knowledge Computations. In
Advances in Cryptology—Crypto ’86. 332

[KL95] J. Kilian, F.T. Leighton. Fair Cryptosystems Revisited. In Advances in
Cryptology—Crypto ’95, pages 208–221. 328

[KMO89] J. Kilian, S. Micali, R. Ostrovsky. Minimum-Resources Zero-Knowledge
Proofs. In FOCS ’89. 332

[KP98] J. Kilian, E. Petrank. Identity Escrow. In Advances in Cryptology—Crypto
’98, pages 169–185. 329

[LS] M. Liskov, R. D. Silverman. A Statistical Limited-Knowledge Proof for Se-
cure RSA Keys. Submited to the IEEE P1363 Working Group. Available at
http://grouper.ieee.org/groups/1363/contrib.htm. 332

[Man97] A. Young, M. Yung. Manuscript related to the current work dated Sept. ’97
available from the authors (preliminary version also submitted to Eurocrypt
’99.) 329

[Mi92] S. Micali. Fair Public-Key Cryptosystems. In Advances in Cryptology—Crypto
’92, pages 113–138. 328, 329

[ML98] W. Mao, C. H. Lim. Cryptanalysis of Prime Order Subgroups of Z∗
n. In

Advances in Cryptology—Asiacrypt ’98, pages 214–226. 338
[PY] P. Paillier and M. Yung. Self-Escrowed Public-Key Infrastructures.

(Manuscript).
[PS96] D. Pointcheval, J. Stern. Security Proofs for Signature Schemes. In Advances

in Cryptology—Eurocrypt ’96. 331, 340, 341
[PS00] G. Poupard, J. Stern. Short Proofs of Knowledge of Factoring In These

proceedings. 329
[PS-L] G. Poupard, J. Stern. Talks at Luminy, Oct. ’99. 329
[RSA78] R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures

and Public-Key Cryptosystems. In Communications of the CACM, 21(2), pp.
120–126, 1978. 326

[Sch99] B. Schoenmakers. A simple Publicly Verifiable Secret Sharing Scheme and
its Application to Electronic Voting. In Advances in Cryptology—Crypto ’99,
LNCS 1666, 148-164. 329

[Sc91] C. P. Schnorr. Efficient Signature Generation for Smart Cards. In Journal of
Cryptology, 4 (3), pages 161–174, 1991. 331

340 Adam Young and Moti Yung

[St96] M. Stadler. Publicly Verifiable Secret Sharing. In Advances in Cryptology—
Eurocrypt ’96,pages 190–199. 328

[Ve00] E. Verheul, Certificates of Recoverability with Scalable Recovery Agent Secu-
rity. In These Proceedings. 329

[YY96] A. Young, M. Yung. The Dark Side of Black-Box Cryptography, In Advances
in Cryptology—Crypto ’96. 332

[YY98] A. Young, M. Yung. Auto-Recoverable and Auto-Certifiable Cryptosystems.
In Advances in Cryptology—Eurocrypt ’98. 327, 328, 329

[YY99] A. Young, M. Yung. Auto-Recoverable Cryptosystems with Faster Initializa-
tion and The Escrow Hierarchy. In PKC ’99. 328, 329

A Appendix: Definitions

We employ the RSA function and the notion of semantic security in our pro-
posed system. In public-key systems, the security of the encryptions of preimages
of public one-way function values is equivalent to the notion of polynomial-
security where a challenge of two messages is given, only one of which is the
“real message”, and where no one can tell which one is the actual message. In
our applications however, we will encrypt a value for which there is a “public
commitment” which is related to a public key. In such cases we could not with-
stand a challenge, since the public commitment is done via a one-way function
of the message. However, semantic security still holds. Intuitively, this means
that the added encryption does not help beyond what is known from the public
commitment.

In [BR94], it was stated that a formalization of what it means for a NIZK
proof to be a proof of knowledge was forthcoming. We know of no such formal-
ization to date anywhere in the literature, so we will present a formalization here
to prove security in the random oracle model.

To define a “proof of knowledge” in the random oracle model, one can apply
the probabilistic notions in [PS96]. Informally, we define an extractor which in-
vokes the prover on two transcripts T and T ′, which are initially the same but
which are extended identically using random oracles which are only “polynomi-
ally” different. That is, the oracle entries used in extending T ′ are random and
with high probability distinct from the corresponding entries in the oracle used
to construct T . The forking argument of [PS96] can be cast into an extractor
argument: a proof system is a proof of knowledge if there exists a knowledge
extractor that when given access to a prover which constructs proofs in both
extentions, is able to extract a witness with probability greater than or equal to
the probability of P convincing V that P knows the witness minus the knowledge
error.
Definition 2. Denote by Pα,β,r(H) = (α, x1, x2, ..., xt, b1, b2, ..., bt, y1, y2, ..., yt)
the message sent by machine P with common-input α, auxiliary-input y, and
random input r when given access to random oracle H. H is random with the
restriction that H(x1, x2, ..., xt) = (b1, b2, ..., bt). Here x1, x2, ..., xt, b1, b2, ..., bt,
and y1, y2, ..., yt are strings. The function Pα,β,r is called the transcript specifi-
cation function of machine P with common-input α, auxiliary input β, random
input r, and access to a random oracle.

RSA-Based Auto-recoverable Cryptosystems 341

Definition 3. Define the random oracle randomization operation, ROR, to be
the following. ROR(H,x1, x2, ..., xt) = H ′, where H,H ′ ∈ 2∞ and x1, x2, ..., xt

are strings. H and H ′ are identical random oracles except that H ′(xi) ∈R {0, 1}∞
for 1 ≤ i ≤ t.

We can (w.v.h.p) choose the range values of H ′ randomly without causing
conflicts in the entries which H ′ and H share since the set from which the range
of a an oracle is drawn is uncountable (whereas the tables for H and H ′ are only
countably infinite).

Definition 4. Let R be a binary relation, and let κ be a function from the
natural numbers to [0,1]. Denote by p(α) the probability that the machine V
accepts on input α, when interacting with the prover specified by Pα,β,r. Let the
symbol ⊥ denote failure to find β ∈ R(α). We say that a function V is a
knowledge verifier for the relation R in the random oracle model with knowledge
error κ if the following two conditions hold.

1. Non-triviality: There exists an interactive function P so that for every
(α, β) ∈ R, and for all H ∈ 2∞, all possible messages sent from P to V
on common-input α and auxiliary input β are accepting.

2. Validity (with error κ): We say that the verifier V satisfies validity with
error κ if there exists a probabilistic expected polynomial-time oracle machine
K such that for every interactive function P, every α ∈ LR, for every
H ∈ 2∞, it is the case that when K has access to Pα,β,r(H) and Pα,β,r(H ′)
such that H ′ = ROR(H,x1, x2, ..., xt), K outputs an s ∈ R(α) ∪ {⊥}, and

Pr{K outputs an s ∈ R(α)} ≥ p(α) − κ(|α|).

We call such an oracle machine K a random oracle knowledge extractor.
The reader may be wondering why we insisted on using the ROR operation
in our definition, since no ROR operation was used in the definition of the
forking lemma in [PS96]. In our opinion, this is a minor oversight in the formal
definition of the forking lemma. To see this, note that the forking lemma assumes
that the machine that replays the oracle machine A (A is a no-message attacker
against the signature scheme) replays it with “a different” random oracle. Thus,
it is not clear which signature algorithm should be used in practice, since the
proof of security assumes access to both signature algorithms (i.e., the signature
algorithm with the original oracle and the signature algorithm with the ‘different’
oracle), since clearly both cannot be used to sign a given message.

In the definition of a non-interactive proof being ZK in [BR94], it is made
very clear that a random oracle completion operation, ROC, is used to insure
that the oracles are only polynomially different. As such, we may use one oracle
in practice, and the fact that the oracle may have polynomially many “faults”
is intractable to detect. By faults we mean entries in the infinite table that are
defined to have two values, when only one string from {0, 1}∞ is allowed.

	Introduction
	Background and Related Work
	Basics of a Generic Auto-recoverable PKI
	Defining an Auto-recoverable PKI
	The Basic Structure of the System
	System Initialization

	Generic Auto-recoverable Systems
	Constructing the Certification and Recovery Mechanisms
	RSA Based Systems
	CER: Key Certification

	Non-interactive Solution
	CER: Key Certification
	VER: Public Escrow Verification
	REC: Key Recovery

	Security

	Decrypting Individual Messages
	Arbitrary Depth Escrow Hierarchy
	Smaller Certificate of Recoverability
	Appendix: Definitions

