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Abstract. We improve Knudsen-Preneel’s constructions for crypto-
graphic hash functions based on block ciphers with error correcting
codes. We first modify to extend original constructions, which are
effective only for non-binary codes, to the case with binary codes
(e.g. BCH codes). We also revise the original method by introducing
convolutional codes, whereas the previous adapts only block codes. This
reduces the circuit complexity of the hardware-implementation 1/N
times in terms of the number of (Davies-Meyer’s) module functions than
that based block error correcting codes.
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1 Introduction

Hash function. Hash functions are important cryptographical techniques for
making signature, or building public key crypto-systems. Currently used hash
functions include SHA, SHA-1, MD-4, MD-5, etc. Although methods which use
particular algorithms for these hash functions are reasonably speedy, some of the
methods are known to vulnerable to certain types of attacks[Dob96a,Dob96b].
Meanwhile, a Davies-Meyer method is known as a method of obtaining a hash
function through a repeated use of a block cipher as a compression function.
An advantage of using a block cipher to a hash function is that if the security
of the block cipher is guaranteed, the hash function using the block cipher is
secure[KP96,KP97]. In addition, the security will not be lost even by an expan-
sion of a single hash mode into a multiple hash mode[KP97]. In this paper, we
assume to use a block cipher whose security is guaranteed. Moreover an error cor-
rection coding for data protection is easily adopted using same error correction
encoders while encrypting data. We also assume the following hypotheses:
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1. Hash round function is secure.
2. A short cut which breaks the single hash mode does not exist.
3. If the security of the block cipher is guaranteed, the security

of the hash function using the block cipher is also guaranteed.
4. A document is sufficiently long.

Despite this, if we use an ordinary 64-bit block cipher as it is, a collision (or a
birthday attack) occurs for every 232 trials on the average, which is not highly
secure anymore in the present situation regarding ciphers.

Knudsen-Preneel’s approach and the challenging problems. The constuction pro-
posed by Knudsen and Preneel is known as a method which uses error correct-
ing codes with the multiple Davies-Meyer functions for enhancing a collision
resistance[KP96,KP97]. Their method requires to use quarternary (n, k, d) lin-
ear codes, where the symbol n denotes a code length, the symbol k denotes an
information symbol number, and the symbol d denotes a minimum distance, and
improves a collision resistance from 2m/2 to 2(d−1)m/2. However, Knudsen and
Preneel’s method requires to use only non-binary codes in the construction. For
design flexibility we want to use binary codes, too. Another problem is when
we use block codes, as a tendency, the code length becomes longer to increase
the number of error correcting capability, the computation accordingly becomes
more complex. In addition, many Davies-Meyer modules are required because
of a long code length, then it is necessary to prepare a number of apparatuses
for realizing Davies-Meyer functions. Thus, there is a room for improvement
of Knudsen-Preneel’s approach with respect to the efficiency for hardware con-
structions.

Our Contribution

Using binary codes. We first try a similar construction as Knudsen-Preneel by
using binary codes, such as BCH codes. The direct method by Knudsen-Preneel
fails in the case of binary codes. Then, we revise Knudsen-Preneel’s construc-
tion for adapting the use of binary codes. However, this revision with binary
codes are not so efficient as the Knudsen-Preneel’s original with non-binary MDS
codes: our hash rate becomes very low. Next, we devise efficiency by error cor-
rection encoding only message vectors, while our previous method encodes not
only message vectors but also key vectors. Though it requires stronger (but still
reasonable) assumption than that of Knudsen-Preneel, our second construction
achieve good hash rate.

Using convolutional codes. We try to resolve the second problem by using con-
volutional codes. Our proposed method requires to select the number of multiple
Davies-Meyer functions, to the same as the sub-block length n0 of a convolu-
tional code and to enter inputs in N time units where N is a constraint length, to
thereby reduce the size of a Davies-Meyer function down to the sub-block length
n0 of a convolutional code from a code length n which is a code length in a case
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where a block code is used. This method using convolutional codes reduces hard-
ware 1/N in terms of the number of Davies-Meyer functions than where block
error correcting codes are used under the same functional conditions. For exam-
ple, the construction using (15,7,5)BCH codes require 15 Davies-Meyer functions.
However, the construction using convolutional codes such as(3, 2, 5; N = 14)
CSOC, requires only three Davies-Meyer functions, namely, convolutional codes
reduce the number of Davies-Meyer functions by the factor of 1/5.

2 Hash Function

In a telecommunication system in which messages, data and the like are encoded
and transmitted as cryptograms to protect the confidentiality, a hash function,
i.e., a compression function for compressing and signing a message, is used. To
compress a document of an optional length into a certain predetermined length,
cryptographic hash function is used. For example, in order to sign using the
DSS (Digital Signature Standard), a document of an optional length is converted
using a hash function into a hashed value of a 160-bit block once, and a signature
of 320 bits, for instance, is added to the 160-bit block hashed value. The hash
function needs be devised so as to obviate a collision. A collision is an event
that h(x) = h(x′) holds when x �= x′. According to the definition of a resistance
of a hash function against a collision, there are a weak resistance and a strong
resistance. A weak collision resistance is called a preimage resistance or a 2nd-
preimage resistance.

A preimage resistance expresses to what extent it is difficult to find x′ which
converts into h(x′) in relation to an inputted hashed value H = h(x). A 2nd-
preimage resistance expresses to what extent it is difficult to find a second input
x′ which satisfies hashed value H = h(x) = h(x′) in relation to the input x. That
is, when we have a document x and a corresponding hashed value h(x), if it is
difficult to find a document x′which is converted into the same hashed value h(x)
whatever the document x is, and further, if it requires W trials on the average
to find such a document x′, a 2nd-preimage resistance of the hash function h is
W . In this paper, a preimage and a 2nd-preimage will not be distinguished from
each other, but instead, treated equally.

A strong collision resistance is called a collision resistance or a resistance
against a birthday attack. In short, a strong collision resistance expresses to
what extent it is difficult to find any input pair (x, x′; x �= x′) which converts
into h(x) = h(x′). More precisely, if W trials on the average are necessary to find
a pair of different documents having the same hashed value, a resistance against a
birthday attack of the hash function is W . A collision resistance normally means
a strong resistance. A hash rate of a hash function based on an m−bit block
cipher is defined by the number of m-bit message blocks which are processed
during one encryption or decryption. The method using block cipher is called a
Davies-Meyer method [MMO85,DP84]. An encryption algorithm for an m−bit
block cipher is denoted at the symbol EK(x), and its m−bit key is denoted
at the symbol K. The compression function is called a Davies-Meyer function.
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We consider iterated hash function based on an easily computable compression
function h(·, ·) originated from two binary sequences of lengths m and l to a
binary sequence of length m. The message M is split into blocks Mi of l bits,
M = (M1, M2, . . . , Mn). If the length of M is not a multiple of l, M is padded by
using an deterministic padding rule. The hash value Hn of length m is obtained
by computing iteratively,

Hi = h(Hi−1, Mi) i = 1, 2, . . . , t (1)

where H0 is an initial value, denoted by IV , namely H0 = IV . The function
h(·, ·) is called hash round function. Hash result

Hash(IV, M) = Ht (2)

is obtained by repeating calculation (1). To relate the security of Hash(·) to
that of h(·, ·), we needs to append an additional block at the end of the input
string concerning its length, as MD-strengthening leading to the following
result [Dam89,Me89].

Theorem-MD: Let Hash(·) be an iterated hash function appended MD-
strengthening. Then preimage and collision attacks on Hash(·, ·) have roughly
the same complexity as the corresponding attack on h(·, ·) [KP97]. In practical
applications, the IV of a hash function is fixed in the specifications. This leads
to a higher security level, so Theorem-MD gives a lower bound on the security
of Hash(IV, ·) [KP97].

ASSUMPTION 1 [KP96,KP97]: Encrypting (of the m−bit block) about 2m/2

times is necessary to find a collision to h as far as a secure block cipher is used,
and encrypting about 2m times is necessary to find a preimage to h.

The message Mi, the hashed value Hi and the immediately previous hashed
value Hi−1hold:

Hi = h(Mi, Hi−1) = EMi(Hi−1) ⊕ Hi−1

where the symbol ⊕ denotes modulo-2 addition and the symbol Hi is an accu-
mulated sum of hashed values and a message at a time i from the beginning of
the document to a time i − 1.

Definition 1 (Multiple Davies-Meyer function). An m−bit block cipher
which uses an am−bit key K which satisfies a > 0. Keys have different values
from each other, so that h1, h2, . . . , hn are Davies-Meyer functions which are dif-
ferent from each other. A multiple Davies-Meyer function affine transforms an
m−bit message input and maps the affine transformed input to n pairs (Xi, Yi)
which will be used as inputs. Outputs are concatenation of h1, h2, . . . , hn. At the
time of a collision or a preimage, if a pair (Xi, Yi) which forms an input block
is different from the original pair, h(Xi, Yi) is active. Conversely, two functions
h(Xi, Yi) and h(Xj , Yj) are independently attackable, if a variable parameter
(Xj , Yj) of the function hj does not change despite a change in a variable pa-
rameter (Xi, Yi) of the function hi.
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ASSUMPTION 2 [KP96,KP97]: Assume we found a collision or preimage to
multiple Davies-Meyer compression functions. Consider P expresses the number
of active functions and P − v expresses the maximum number of independently
attackable functions. At least 2vm/2 or 2vmencryptions are respectively necessary
for a collision or preimage to occur.

3 Construction Method Using Error Correcting Codes

3.1 Construction Method of Knudsen L. and Preneel B.

We will now describe a construction method proposed by Knudsen L. and Preneel
B. which uses error correcting codes.

Theorem 1. Assume input blocks are encoded using(n, k, d) codes on GF (2a+1)
satisfying (a + 1)k > n but a ≥ 1 and m >> log2n. In this condition, as far
as the Assumption 2 holds, at least 2(d−1)m/2encryptions are necessary to find a
collision to a compression function and at least 2(d−1)m encryptions are neces-
sary to find a preimage to the compression function[KP97]. This hash function
requires an internal memory of nm bits, and a hash rate is (a + 1)(k/n) − 1.

That is, if we use error correcting codes having a distance of 3, we can improve
the security level for collision attacks from 2m/2 to 2m or the security level for
preimage attacks from 2m to 22m and easily construct a secure hash function.

3.2 Construction Method Using BCH Codes

Let us apply Theorem 1 to binary BCH codes. Although a ≥ 1 is assumed, we
consider binary BCH codes inserting a = 0. This constructs (n, k, d) codes over
GF (2), which leads k > n. This is impossible because k < n is required in order
to construct error correction codes. To construct error correction codes if we
take two BCH codewords, then a = 0 has no significance, and thus we obtain
the construction of 2k > n. Therefore, modification allotting the each bit of
input block, to the k elements of BCH codeword, enables the new construction.
Instead of assigning symbol elements of Galois fields from two m−bit inputs
which are basic structures of the Davies-Meyer method, the method requires to
assign two codewords of a binary code to the inputs so as to allow use of binary
codes. These are one for previous hashed values, and the other for message block,
then we obtain an n×2 input array. We allot one element of one binary codeword
to one bit of one m−bit block, respectively, not allotting symbols of the Galois
field element.

Theorem 2 (Theorem 1 extended). Assume input blocks are encoded using
(n, k, d)codes on GF (2)satisfying k < n and 2k > n, and m >> log2n. In
this condition, as far as the Assumption 2 holds, at least 2(d−1)m/2 encryptions
are necessary to find a collision to a compression function and at least 2(d−1)m

encryptions are necessary to find a preimage to the compression function[KP97].
This hash function requires an internal memory of nm bits, and a hash rate is
(a + 1)(k/n) − 1.
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(Proof): At least d Davies-Meyer functions are active and also at least first k
bits among n bits of functions hi are independent each other. At least d− 1 bits
among the last n − k bits are dependent on the first k input. The condition of
n − k ≥ d − 1 gives Theorem 2 naturally. (QED).

However, binary codes are not so efficient than non-binary codes are, because
there is no non-trivial MDS codes for binary codes, therefore the hash rate
becomes very low. We can construct using two (7,4,3) Hamming codes in order
to improve collision resistance, for example, from 2m/2 to 2m, although hash rate
is down to 1/7. We devise efficiency by error correction encoding only message
vectors.

4 Our Proposed Methods

A BCH codeword in the first column which consists of n pieces of m−blocks
which are constructed only by hashed values of one unit time ago, encodes only
a hashed value of a previous time point, which prohibits to enter information
of a new message. Hence, this column will not be attacked nor have to be en-
coded against attacks. Only n pieces of m−blocks in the second column must
be encoded and protected against attacks. We propose, in this paper again, not
to encode the first column which consists of blocks of one unit time ago alone
which are fed back but to encode only the second column. This realizes an effi-
cient construction which allows to input more new messages instead.

4.1 Construction Method Using Block Codes

Now, let’s assume a collision or preimage has occurred to n concatenated m−bit
hashed values.

Theorem 3. Assume error correction encoders to encode k message blocks into
n m−bit blocks, then input n previous hashed values and error correction code-
word making n×2 m−bit blocks to n multiple Davies-Mayer functions. Assume a
collision or preimage among n consecutive blocks occur, and if P Davies-Meyer
functions are active, then P − (d − 1) message inputs Yis are independent, but
d−1 message Yis are depend. In this condition, as far as the Assumption 2 holds,
at least 2(d−1)m/2 encryptions are necessary to find a collision to a compression
function and at least 2(d−1)m encryptions are necessary to find a preimage to the
compression function.

(Proof): At least d Davies-Meyer functions are active and also at least first k
bits among n bits of vector Yis are independent each other. At least d − 1 bits
among the last n− k bits are dependent from the first k input. The condition of
n − k ≥ d − 1 gives Theorem 3 naturally. (QED).

The discussion mentioned above, holds as long as the state is continuous and
the input vectors Xis are regarded as random oracles. However, the initial state
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gives arbitrary values for key and message too. Therefore the initial values must
be treated based on Knudsen and Preneel.

EXTENED ASSUMPTION 2

Initial state Suppose a collision or preimage is found for multiple Davies-Meyer
compression functions. Let P be the number of active functions, and P − v
be the number of attackable functions, and h1, h2, . . . , hn be Davies-Meyer
functions which collide, simultaneously. Among these functions, the relation-
ship hi(Xi, Yi) = EXi(Yi) ⊕ Yi holds. These are obtained by fixing �log2 n�
key bits to different values. The compression functions of a multiple Davies-
Meyer scheme takes 2km−bit input blocks, which are expanded by an affine
mapping to the n pairs (Xi, Yi). The output of the compression functions
depend on all 2k input blocks, thus, the matrix of the affine mapping has
the rank 2k.

Steady state In the steady state, except initial state the compression func-
tion of multiple Davies- Meyer scheme take km−bit input blocks, which are
expanded by an affine mapping to the pairs (Xi, Yi) . The output of the
compression functions depend on all k input blocks, therefore the matrix of
the affine mapping has the rank k. Suppose a collision or preimage for the
compression function of a multiple Davies-Meyer scheme is found, simulta-
neously for h1, h2, . . . , hn . Assume the two different inputs of {Zi} and {Z ′

i}
give all the same outputs of n blocks. Let P functions group be {hi} which
Zi �= Z ′

i holds under the condition of P ≤ n. The matrix of functions hj has
the rank P − v.

The simultaneous collision requires 2mv/2 encryptions and the simultaneous
preimage requires 2mv encryptions concerning to P functions hj. Consequently,
the error-correction encoding of the each k bits within nm−bit blocks, gives n
bits of initial value X0, and the remaining n − k bits are alloted in initial input
vector Y0.
Namely, the initial message bits are r = 2k − n bits. Except initial condition,
message bits are given by r = k. As a result, d − 1 vectors Yj at the last n − k
vectors are required to depend on the first k vectors Yjs, so in the steady state,
only the vector Yjs are required error correction encoding.

Corollary 1. Let us consider (n, k, d) binary code. The previous hashed values
Hi−1s at a time i− 1 are fed back to nm−bit blocks of the first column at a time
i. The number of message blocks becomes k. The hash rate is given by k/n.

This rate is the same rate as a code rate that an error correction code origi-
nally has. Therefore hash rate is greatly improved. As operational notice nm bit
initial key values are required. In the new construction method, one codewords
of binary codes allows to input to m−bit blocks which are one parts of n input
pairs. The construction will be now described using (7, 4, 3) Hamming codes for
the simplicity of description. A parity matrix is as follows:

H = (α6, α5, α4, α3, α2, α1, α0)
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1 1 1 0 1 0 0
= 0 1 1 1 0 1 0

1 1 0 1 0 0 1

A primitive polynominal is X3 + X + 1.

H1 = h1(G1, M1)

H2 = h2(G2, M2)

H3 = h3(G3, M3)

H4 = h4(G4, M4)

H5 = h5(G5, r3)

H6 = h6(G6, r2)

H7 = h7(G7, r1),

where the Hi’s are hash values denoted by eq. (1) and the symbols r3, r2 and r1

are blocks of check bits of Hamming codes. The blocks r3, r2 and r1 are expressed
as:

r3 = M1 ⊕ M2 ⊕ M3

r2 = M2 ⊕ M3 ⊕ M4

r1 = M1 ⊕ M2 ⊕ M4

where the symbols Gi, Mi and ri denote m−bit blocks. The m−bit block
Gi expresses a hashed value at a previous time point. The m−bit block
Mi is a message block. The m−bit block ri expresses the check bits of the
Hamming codes. Although we have used Hamming codes for the convenience
of description, let’s now consider double error correcting BCH codes for the
sake of the larger distance. Use of double error correcting BCH codes makes it
possible to construct the more secure hash function. Assume (31, 21, 5) BCH
codes are shortened to (30, 20, 5) BCH codes. Since r = 20, a hash rate is
20/30 = 2/3. For comparison, Table 1 shows results of an example where bi-
nary codes are used and also an example according to Knudsen L. and Preneel B.

As described above, according to this paper, use of binary codes omits com-
putation of Galois fields and allows to obtain a hashed value which is highly
secure.

4.2 Construction Method Using Convolutional Codes

When we use block codes, as a tendency, a code length becomes longer to increase
the number of error correcting capability and computation accordingly becomes
complex. In addition, since many Davies-Meyer units are necessary because of a
long code length, it is necessary to prepare a number of apparatuses for realiz-
ing Davies-Meyer scheme. We will now introduce a construction method which
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Table 1. A method using binary codes vs. a conventional method

field t code rate collision memory

ours GF (2) 1 (7,4,3) 4/7=0.571 2m 7m
GF (2) 1 (15,11,4) 11/15=0.733 2m 15m
GF (2) 2 (15,7,5) 7/15=0.467 22m 15m
GF (2) 2 (25,15,5) 15/25=0.60 22m 25m
GF (2) 2 (30,20,5) 20/30=0.666 22m 30m
GF (2) 2 (62,54,5) 54/62=0.871 22m 62m

Knudsen GF (22) 1 (5,3,3) 1/5=0.20 2m 5m
& Preneel GF (24) 1 (6,4,3) 1/4=0.25 2m 6m

GF (22) 1 (8,5,3) 1/4=0.25 2m 8m

requires to select the number of multiple Davies-Meyer functions, to the same
as the sub-block length n0 of a convolutional code and thereby reduce the size
of a Davies-Meyer function down to the sub-block length n0 of a convolutional
code from a code length n which is a code length in a case where a block code
is used. In short, the number of units of the basic structure of the Davies-Meyer
function is reduced to 1/N .

Theorem 4. Encode k0 message blocks each into n0 convolutional subcode words
and construct n0 × 2 inputs for Multiple Davies-Meyer scheme with n0 previous
hashed value and n0 convolutional subcode words. Let the constraint length of
the convolutional codes be N . A collision or a preimage happens on N × n0

consecutive m−bit blocks, and P Davies-Meyer functions are active, then P −
(d − 1) input vectors Yjs are independent and remaining d − 1 inputs depend
on the first k inputs. In this condition, as far as the Assumption 2 holds, at
least 2(d−1)m/2 encryptions are necessary to find a collision to a compression
function and at least 2(d−1)m encryptions are necessary to find a preimage to the
compression function.

As an operational notice, the initial key value of n0m bits are required. Our
construction is characterized by a Convolutional encoder, a multiple Davies-
Meyer function, and an FIFO memory which accumulates hashed values which
are concatenated to N time units. Roughly speaking, there are two types of
Convolutional encoders for Convolutional codes. That is, type 1 encoders and
type 2 encoders introduced by Massey J.L.[Mas63]. This will be described with
reference to an example. Convolutional codes with sub-block length n0 bits, sub-
information symbol bits k0, distance d and constraint length N which is a span
of N time units, are called (n0, k0, d; N) Convolutional codes. Consider a type 1
encoder for (3, 2, 3; 3) Convolutional codes. Two sub-generators are expressed
as follows: [Lin70]

g(1, 1) = 101, g(2, 1) = 110

The respective sub-generator elements are:

g0(1, 1) = 1, g1(1, 1) = 0, g2(1, 1) = 1
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g0(2, 1) = 1, g1(2, 1) = 1, g2(2, 1) = 0.

Constructed with these, an encoder is obtained[Mas63]. A type 2 construction of
an encoder according to Massey J.L. is also available using this method [Mas63].
Let us consider an example of operations of a construction which uses the type
1 construction of Massey J.L. and the encoder for (3, 2, 3; 3) Convolutional
codes. The symbols M1i and M2i denote messages which are m−bit blocks, the
symbol Hi denotes n0m−bit block, and the symbol Ci denotes an m−bit block
of a check of a Convolutional code. Hj holds the relation Hj = Hi, in which case
a delay circuit of one unit time ago is not necessary if a multiple Davies-Meyer
function is of a D-latch input type. If the multiple Davies-Meyer function is
constructed with wired logic, Hj = Hi−1 holds. On the other hand, Ci−2 and Mi

are inputted at the same time, since the input side of the multiple Davies-Meyer
function is Ci. This applies to the following as well. H0 (i = 0 for Hi) is supplied
as an initial value to the input side of the multiple Davies-Meyer function, and
initial values C10 and C20 are supplied respectively to check symbol registers C1

and C2. (Suppose C1 is closer to multiple Davies-Meyer and C1, C2 are cascade
connected). First messages M1i and M2i are added to each other by modulo-2
addition and input as a check symbol Ci. A hashed value Hi of 3×64 = 192 bits
is obtained as a result of one operation of the multiple Davies-Meyer function
and supplied to the FIFO memory while at the same time fed back to the input
side. The next set of a message, a check symbol and a hashed values is then
input and a hashed value H2 is obtained as a result of the next operation. Hi

are generated one after another in this manner, so that the FIFO memory always
stores a hashed value Hi−2 ‖ Hi−1 ‖ Hi which is equivalent to 3 × 3 = 9 pieces
of m−bit blocks in total. Since Convolutional encoding is encoded after data are
all input, N − 1, i.e., 2 × 2 = 4 pieces of m−bit blocks with a data value 0 are
input and computation of a hashed value completes.

Although the size of a multiple Davies-Meyer function is reduced down to
1/N if Convolutional codes are used, in order to obtain a hashed value having a
constraint length N and N×m bits, it is necessary to input 0 of (N −1)m bits at
the end of data so that the output data will be taken completely from an encoder.
This causes a delay which is (N − 1)times as large as a unit time of encoding.
In the construction according to this method, n0 × 2 pieces of two-dimensional
arrangements are constructed on the input side of the multiple Davies-Meyer
function, n0 hashed values of one unit time ago are fed back to n0 pieces of
m−bit blocks in the first column, k0 pieces of m−bit blocks of a new message
are encoded into n0 pieces of m−bit blocks and thereafter input. Table 2 shows
the number of dummy data which are needed at initialization and termination
of the construction according to this paper. Table 3 shows an example where
Wyner-Ash codes are used and Table 4 shows an example where CSOC codes
(Convolutional Self-Orthogonal Codes) are used, respectively [Lin70].
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Table 2. Dummy data for the proposed construction

initial final

hash dummy n0

(any character) (m−bit block)

hash dummy(0) (N − 1)k0

(m−bit block)

check dummy N − 1
(0) (m−bit block)

Table 3. A construction from Wyner-Ash codes

Code hash rate collision memory(hash)
(W-A)
(n0, k0, d; N)

(4,3,3;2) 3/4 2m 8m

(8,7,3;2) 7/8 2m 16m

5 Summary

We developed the method which uses binary codes and the method which uses
convolutional codes from the Knudsen and Preneel’s method which requires to
construct a hash function using error correcting codes, and described in this
paper constructions according to our methods. In recent years, we have seen
serious discussions on the security of key length of block ciphers, and ciphers
with 128 bits or more are becoming a main stream these days. To respond to
such current demands, researches for combining conventional methods to obtain
secure hash functions should be more and more actively conducted.

In relation to the selection process which is ongoing for AES (Advanced En-
cryption Standard) in U.S., it is necessary to establish a method of constructing
a hash function using a block cipher which has a longer key length. At the
same time, continued researches on specific algorithms for hash functions are
necessary.

A challenge from now is a block cipher, such as MISTY [Mat96] and
IDEA [LM90], whose encryption/decryption key is 128 bits, i.e.,a = 2 despite
an input satisfying a ≥ 2, that is, m = 64 and an output of 64 bits. Mean-
while, according to tandem D-M (Tandem Davies-Meyer)[Sch96] and abreast
D-M (Tandem Davies-Meyer)[Sch96], 2m−bit hashed value is obtained in re-
sponse to an m−bit key. Inputs to a hash function are the 2m−bit hashed value
at a time i− 1 and the m−bit key input. Further, generally considering a cipher
which uses a key having a key length of am bits satisfying a ≥ 2 and for which a
hashed value of bm bits is obtained, the direction of rows is a+b. A technique for
synthesizing a hash function which is applicable to such a cryptographic method
should be researched. Those researches are expected to considerably improve
security.
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Table 4. A construction from SCOC codes

code hash rate collision memory

(CSOC)
(n0, k0, d; N)

(3,2,3;3) 2/3 2m 9m

(3,2,5;14) 2/3 22m 42m
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