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Abstract. Elliptic curve cryptosystems have attracted much attention
in recent years and one of major interests in ECC is to develop fast algo-
rithms for field /elliptic curve arithmetic. In this paper we present various
improvement techniques for field arithmetic in GF(p™)(p a prime), in par-
ticular, fast field multiplication and inversion algorithms, and provide our
implementation results on Pentium II and Alpha 21164 microprocessors.

1 Introduction

Elliptic curve cryptosystems, first introduced by Koblitz [10] and Miller [19], have
been investigated by many other researchers in recent years. In particular, much
research has been conducted on fast algorithms and implementation techniques
of elliptic curve arithmetic over various finite fields [12,22,24,23,8,7,2,9].

Since elliptic curve groups can provide a higher level of security with smaller
key sizes, there is increasing interest also in the industry and thus a lot of active
standardization processes are going on, for example, IEEE P1363 [26], ISO/TEC
CD 14883-3 and DIS 11770-3, ANSI X.9.62/9.63 [27,28], etc. Thus we can expect
that elliptic curve cryptosystems will be widely used for many security applica-
tions in the near future. In this regard, it is also expected that there will be a
strong demand on efficient algorithms for fast implementation of elliptic curve
cryptosystems.

An elliptic curve over GF(2") is best suited for hardware implementations,
but in software an elliptic curve over GF(p™) is more attractive since better
performances can be achieved with a suitable choice of parameters [2]. This paper
is devoted to devising and implementing efficient methods for speeding up field
arithmetic in GF(p™). In particular, we present a fast field inversion algorithm
in GF(p™), which only requires one subfield inversion and thus runs significantly
(more than 2 to 4 times) faster than the extended Euclidean algorithm for most
sizes of p interested to us (i.e., |p| &~ 32 or 64). Using the speedup techniques
presented in this paper, we have implemented elliptic curve arithmetic with
various choices of field parameters for GF(p™). Our implementation shows that
scalar multiplication can be performed more than 5 times faster than modular
exponentiation for parameters of a comparable security level.

This paper is organized as follows. Section 2 briefly summarizes elliptic curve
arithmetic in GF(p™) and Section 3 describes various algorithms and speed-up
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techniques for field multiplication and inversion. We then present our implemen-
tation results in Section 5 and conclude in Section 6.

2 Elliptic Curve Arithmetic in GF(p™)

2.1 Elliptic Addition/Doubling in Affine Coordinates

A non-supersingular elliptic curve defined over a finite field GF(p™) is a set of
points (z,y) given by the cubic equation

y? =23 +ar +b (a,b € GF(p"), 4a® +27b° £ 0),

together with ‘point at infinity’ as an identity element. Addition formulas in this
affine coordinate system are defined as:

— Addition: (72,2) = (zo0,0) + (¥1,%1),

—\2 _ -
T2 = A (o + 1) , Where)\:u
Y2 = Mzo — 22) — %o T — o
— Doubling: (z2,y2) = 2(x0, yo)
7y = A\ — 2 . where \ = 2%t @
y2 = Mxo — x2) — Yo 2yo

2.2 Elliptic Addition/Doubling in Projective Coordinates

A big disadvantage of using affine representation of elliptic curve points is that
addition/doubling requires a very expensive field inversion. There is another way
to represent elliptic curve points, the so-called (weighted) projective represen-
tation, which eliminates the expensive field inversion at the cost of more field
multiplications. The addition/doubling formulas described here are similar to
the ones in the IEEE P1363 Draft [26].

We will use the following transformation for coordinate conversions:

X Y

=g VS o

So, the affine coordinates (x,y) should be transformed into the correspond-
ing projective coordinates (X,Y,Z) = (x,2y, 1). The factor 2 in y is included
here to eliminate the modular division by 2 appearing in the addition formula
when using y = % (see A.10.5 in [20]). This also reduces the number of field
additions/subtractions required in the doubling formula. Note that the addi-
tion/subtraction time in GF(p™) is not negligible (about 15% of field multipli-
cation on P6 and Alpha; see Sect.4).
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— Addition: (Xa,Y2, Zs) = (Xo, Yo, Zo) + (X1, Y1, Z1)

A=XZ}+ X172, B = XoZ} — X1\ 72,
C=YoZ34+1Z3, D = YoZ} —V1Z3, E = 2B,
Zy=EZyZ, X9 = D*— AE? Y, = D(AE?-2X,) - E*BC.

Special case of Z; = 1:

A=Xo+ X172, B = Xo— X173,
C=Yy+VZ3, D =Yy-YiZ}, E = 2B,
Zy=EZy, Xy = D?—AFE? Y, = D(AE? —-2X,) - E*BC.

- Doubling: (XQ,}/27Z2) = 2(X0,}/0,Zo)

A=3X3+aZ;, B = 2XoYy, C = Yy,
Zy=YyZy, Xo = A2 =B, Yy = A(B—-2X,)—C.

The above formulas show that elliptic addition requires 12 multiplications,
4 squarings and 9 additions in GF(p™) (8 multiplications, 3 squarings and 9 ad-
ditions if Z; = 1), while elliptic doubling requires 4 multiplications, 6 squarings
and 7 additions. Note however that k repeated doublings can save 2 squarings
in k& — 1 doublings by using one more chaining variable for aZ§ (i.e., compute
W = aZ§ at the first doubling and then update W by W « CW in each itera-
tion except for the final doubling) [7]. Also note that if a = —3, we can compute
A in doubling as A = 3(Xo + 23)(Xo — Z3).

2.3 Performance Comparison

Table 1 summarizes the number of field operations required for elliptic addi-
tion and doubling in each coordinate system, where D, and A, respectively
denote elliptic doubling and addition, and I, M,S and A respectively denote
field operations of inversion, multiplication, squaring and addition. The number
of squarings in elliptic addition can be reduced by 2 with the special choice of
a = —3. So, for better performances we used a = —3 in all our implementations.
Note that the fixed value for a does not much restrict the choice of elliptic curves,
since the proportion of elliptic curves that can be rescaled to have a = —3 is
approximately 1/2 or 1/4, depending on the residue of p mod 4, for GF(p™) (see
Appendix A in [26]).

Which representation of elliptic curve points gives rise to a better perfor-
mance can be determined by the speed ratio of field inversion to field mul-
tiplication (I/M). Obviously, arithmetic in projective coordinates with affine
representation of precomputed points (i.e., Z; = 1) almost always outperforms
arithmetic using pure projective representation (i.e., Z; # 1). The ratio I /M at
the break-even point between performances with affine and projective (Z; = 1)
representations can be shown to lie between 3.6 and 7.6, assuming that a = —3
and 1S = 0.8M [15]. For example, we have I/M = 4.4 for the signed window
algorithm for scalar multiplication (window size=4), so it is always preferable to
use projective coordinates with 7y = 1if I > 4.4M.
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| a [EC oper.] Affine [Projective (Z1 # 1)[Projective (Z1 = 1)

random D. 11 +2M +2S +T7A| 4M +4S +7A 4M + 45 +T7A
Ae 1I+2M +S+6A| 12M +4S +9A 8M + 55 +9A

a=-3| D. 11 +2M +2S +6A| 4M +4S +9A AM + 4S5 4+ 9A
Ae 11 +2M + S+6A| 12M 4+ 45 +9A 8M +3S +9A

Table 1. The number of field operations for elliptic curve doubling and addition

2.4 Elliptic Scalar Multiplication

Elliptic scalar multiplication is to compute kP for a given point P on an el-
liptic curve and a random integer k (let |k| = I). The best known method for
general elliptic scalar multiplication is the sliding window algorithm using addi-
tion/subtraction chains [12,6,23]. For this, we need to precompute and store odd
multiples of P, P; = iP for odd i’s less than 2%, which requires 2%~ — 1 elliptic
additions and one elliptic doubling. Note that the precomputation should be done
in affine coordinates for better performances, so we may use Montgomery’s simul-
taneous inversion technique [5, Algorithm 10.3.4] to reduce the number of field
inversions at the cost of more field multiplications (see also [7]). In this case, the
cost for precomputation is given by wl+(5-2% 1 4+2w—10)M + (2¥~1+2w—3)S.
Since the average interval between two consecutive windows is equal to 2 for an
optimal signed encoding (e.g., see [0]), the total computational cost on average
for computing kP using the signed window algorithm with window size w is
approximately given by

Tw = (wl+(5-2""" 4+ 2w — 10)M + (2“7" + 2w — 3)S)

+ ((z — w4 1)D. + (w+r2 - 1)A5)

:w[+(i+4l+5-2w*1—2w—14)M
w + 2
+(3—l+4l+2w_172w—2)5 (1)
w+ 2 ’

where we assumed to use projective representation with Z; = 1.

A different approach for computing kP was introduced by Montgomery, based
on the observation that the z-coordinate of the sum of two points can be com-
puted only using the z-coordinates of the two points if their difference is known
[20] (see also [1,17]). Let k = Zi;é k2" be the binary representation of the
multiplier k& (assume that k;_; = 1). Montgomery’s method successively up-
dates a pair of points (z-coordinates only) S;,T; (So = P,To = 2P), while
maintaining the invariant relationship 7; — S; = P, by computing, for each k;,
(SZ'+1 = 2S¢,Ti+1 = Sl + Ti) if ki =0 and (Si+1 = Sz + Ti,Ti+1 = QTZ‘) if ki =1
(i=1-2,---,1,0). Thus, we need one elliptic addition and one elliptic doubling
for each bit of k, regardless of the Hamming weight of k. Each of elliptic addi-
tion and doubling can be done in 3 multiplications and 2 squarings in projective
coordinates using Montgomery’s alternative parameterization of elliptic curves
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(By? = 2® + Az? + x for some A and B). So, the total cost for computing the
z-coordinate of kP is given by

Tar = (1 — 1)(Ae + D.) = (I — 1)(6M + 45). (2)

Let us compare the performance of the signed window algorithm and Mont-
gomery’s method. With optimal window size w = 4 for most interesting values
of I, we have Ty = 41+ (5.331 4+ 18) M + (4.5 —2)S = 41 4+ (8.931 4+ 16.4) M from
equation (1), assuming that 1.5 = 0.8M. Since Thy = 9.2(I — 1) M from equation
(2), we can see that the signed window algorithm is asymptotically faster than
Montgomery’s method. For a typical value of [ = 160, we have Ty, = 41+ 1445M
and Thy = 1463M , so Montgomery’s method may be a little bit faster. However,
Montgomery’s method is not a general algorithm for elliptic scalar multiplication
in GF(p™), since it can’t compute the y-coordinate of kP (note however that this
is not the case in GF(2"); see [17]). Of course, this may not be a problem in
many applications, since most elliptic curve variants of key exchange and digital
signature schemes only make use of  coordinates (e.g., see [26,27,28]). We thus
use the signed window algorithm for scalar multiplication in this paper. Finally,
it is worth noting that there are several advantages in Montgomery’s method:
it does not require precomputation, which may be desired for implementations
in a limited computing environment (e.g., an implementation on low-cost smart
cards), addition and doubling can be performed in parallel on multi-processor
architectures or in hardware implementation, and the execution time does not
depend on the Hamming weight of multipliers, which helps to prevent timing
attacks.

On the other hand, we may use an elliptic curve defined over GF(p) as an
elliptic curve over GF(p™) (let us call such a curve as a subfield curve). A big
advantage of using such a subfield curve is that elliptic scalar multiplication on a
subfield curve can be substantially speeded up using Frobenius expansion [9,15]
(see also [11,18,23,21,4]). Though subfield curves allow much faster implementa-
tions and easy parameter generation, we should be careful for security concerns
related to the special structure (e.g., see [14,25]). We do not consider such a
special curve in this paper, but for comparison we provide the implementation
result from [15] in Sect.4.

3 Speeding up Field Arithmetic

Optimization of field arithmetic is much more critical to the overall performance
of elliptic scalar multiplication than optimization in group operations. This sec-
tion describes various algorithms and techniques for speeding up field multipli-
cation and inversion in GF(p™).

3.1 Field Construction

The performance of field arithmetic in GF(p™) (n > 1) heavily depends on the
choice of parameters for field extension (a prime p and an irreducible polynomial
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f(z)). For fast field arithmetic in GF(p™), Bailey and Paar [2] proposed to choose
the parameters p, n and f(x) such that p = 2™ — ¢ with small ¢ and m around a
target computer word size and f(z) = 2" — w with small w (called an Optimal
Extension Field (OEF)).

For further optimization of field arithmetic, we placed another restriction
on the size of p: choose p, whenever possible, so that multiplication results of
two |p|-bit numbers can be accumulated as many as possible without overflow
in computer’s word boundary. Then, with such a p one can reduce the number
of reductions mod p required for field multiplication from n? to n. This will
result in a substantial improvement in the overall performance, since modular
reduction is still quite expensive even with the special choice of p in typical
microprocessors, such as P6 and Alpha.

The field parameters selected for use in our implementations are summarized
in Table 2. Of course, there are other possible choices worth considering, such
as (p =23 — 1, f(x) =25 -5), (p =20 — 1, f(x) = 23 - 37), (p = 284 - 35
or 28 — 19, f(z) = 22 — 2) and p = 266 — 5. The three field parameters with
degree of n* (n = 7,11, 13) were included for use in building subfield curves. The
figures of the ‘order’ column in Table 2 denote the largest possible prime orders
in E/GF(p").

| n [[order (bits) [p=2"—c| f(z) |

13* 168 21 _3 P —2
12 168 2 _3 =2
11* 160 216 437 |2t —2
10 160 210 165 |20 —2
7 168 2% _ 57 x’ —2
6 168 228 165 | 2% —2
5 160 252 _5 x° —2
3 171 25T — 13 x5 —2
2 178 289 1 x2 —3
1 160 p =210 2933

Table 2. Selected parameters for extension field GF(p™)

3.2 Field Multiplication and Squaring
Let A(x) and B(x) be polynomials of degree n — 1 over GF(p), i.e.,

n—1 n—1
Az) = Z Aix', B(z) = Z B!,
=0 1=0

where A;, B; € GF(p). Field multiplication in GF(p™) is to compute C(x) =
A(z)B(z) mod f(z).
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First, consider methods for speeding up polynomial multiplication. There
exists a well-known divide-and-conquer technique, called the Karatsuba-Ofman
algorithm, to reduce the number of subfield multiplications required for poly-
nomial multiplication [13, Sect.4.3.3]. We can use Karatsuba-Ofman’s algorithm
in two directions. For example, for n = 6, let A(z) = Ap(z)2® + A)(z), B(z) =
By(z)2® + Bi(x), where

Ah(l') :A5(E2+A4(E+A3, Al((E) = A2$2+A11’+A0,
Bp(z) = Bsz® + Byx + B3, Bj(z) = Byx? + Bz + By.

Then we can compute C(z) = A(x)B(z) as C(z) = Dp(x)25 + Dy, (z)2® + Dy(z),
where

Dh(x) = Ah(l‘)Bh(Z‘), Dl(l‘) = Al(l‘)Bl(Z‘),
D (z) = (An(z) + A1(2))(Bh () + Bi(x)) — (Dn(x) + Di(x)).

This high-level application of Karatsuba-Ofman’s algorithm reduces the number
of subfield multiplications from n? = 36 to %nz = 27 at the cost of more subfield
additions. Our implementation shows that this technique is only effective on
Alpha 21164 for n up to 7.

We may apply Karatsuba-Ofman’s algorithm once again to polynomial mul-
tiplication of degree 3. However, for small n, it is better to use Karatsuba-
Ofman’s algorithm at the lowest word level. For example, for n = 3, C(x) =
(Ag + A2 + A22?)(Bo + Bix + Bax?) can be computed as

C(z) = Do+ (D3—Do—D1)x+(Dy+Dy —Dy—Dg)z* 4 (D5 — Do — D1 )a® + Doz?,
where

Do =AoBy, D1 = A1Bi, Dy = A3Bs, D3 = (Ao + A1)(Bo + B),
Dy = (Ag+ A2)(Bo + B2), Ds = (A1 + A3)(B1 + Ba).

We can thus reduce the number of subfield multiplications from 9 to 6 (reduction
rate of 2/3). Of course, this low-level Karatsuba-Ofman’s algorithm can be ap-
plied to polynomial multiplication of any degree n. In this case, it is easy to see
that the number of subfield multiplications required can be reduced to %
However, as n becomes larger, the increase in the addition (and memory access)
complexity may be larger than the reduction in the multiplication complexity.
So, the effectiveness of this method varies from architecture to architecture, de-
pending on the relative speed of basic operations involved and on the number
of general-purpose registers available. For example, our implementation shows
that this technique is only useful for n = 2 or 3 on Pentium II and for n up to
7 on Alpha 21164.

On the other hand, we can reduce the number of reductions mod p by ac-
cumulating individual product terms, A;B;’s, as many as possible, and then
reducing the accumulated sum mod p only once. To see this, let us express
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C(z) = A(z)B(x) mod f(z), using the identity 2™ = w mod f(z), as

ZAx Zijmodf()
Z A;BjzF +w Z A;Bjzk"

C(z)

i+j=k<n i+j=k>n
—Z(ZABk it w Z AiBn - ) :
i=k+1

so the coefficient C can be computed by

n—1
Cr = <ZA Bi_;+w Z AiBpik— Z) mod p. (3)

i=0 i=k+1

Therefore, with this accumulation-and-then-reduction technique, we can re-
duce the number of reductions mod p from n? to n. We still need n? multipli-
cations of |p|-bit integers, assuming w is very small (typically 2 or 3), so that
multiplication by w can be done by a few additions (this is possible in all our
field constructions, as can be seen in Table 2). However, our experiments on
P6 and Alpha show that modular reduction is more expensive than multipli-
cation in most interesting fields (of course, except for large p). So, the above
accumulation-and-then-reduction technique actually contributes to the overall
performance more than any other optimization technique.

Since CY, is at most 2m + [logy(w(n — 1) + 1)] bits long, we can do modular
reduction using at most 2 multiplications by ¢, as long as [logy(w(n—1)+1)] +
2|e¢| < m, which is the case for most choices of p and f(z). Equation (3) suggests
that it is preferable to choose p such that the largest partial product sum, Cp,
do not produce an additional carry in word boundary of a target computer, as
in the parameters given in Table 2. For example, we chose p = 228 — 165 and
f(x) = 25 — 2 for GF(p®), instead of p = 23! — 1 and f(z) = 2% — 5.

Finally, note that field squaring in GF(p™) only requires w multiplica-
tions of |p|-bit numbers, while the number of modular reductions remains the
same. Thus, though all optimization techniques described above can be applied
equally well to field squaring, depending on p field squaring may not be improved
as much as expected, compared to field multiplication.

3.3 Field Inversion

Field inversion in GF(p™) (n > 1) corresponds to computing a multiplicative
inverse of a polynomial modulo an irreducible polynomial f(z) of degree n.
Inversion in GF(2™) can be best performed by the almost inverse algorithm
(AIA) [22]. However, the ATA is not effective at all for polynomial inversion in
GF(p™). Rather, the extended Euclidean algorithm runs a little bit faster. In
this section we present fast algorithms for polynomial inversion in GF(p™) and
compare their computational complexity with other known methods in [9,3].
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Variant of Extended Euclidean Algorithm We start with a polynomial
version of Extended Euclidean algorithm shown in Table 3 and improves it in
step-by-step. Let deg(A) be the degree of A(x).

Algorithm IE

Input: A(z) and f(z) such that deg(A) < n and deg(f) = n.
Output: B(z) such that A(zx)B(z) =1 mod f(x).
1.set B« 0, C 1, F «— f(z) and G «— A(z).
2. repeat the following steps while deg(F') # 0:

2-1. if deg(F') < deg(G), then exchange F, B with G, C, respectively.

2-2. update F' and B as follows (let j = deg(F") — deg(G)):

a — Faeg(r) Gdelg(c), F—F—oai’G, B—B-—az’C.

3. return B « F;, 'B

Table 3. Polynomial version of Extended Euclidean algorithm

Algorithm IE reduces the degree of the larger out of F(x) and G(x) by at
least one in each iteration of step 2. Thus, we need at most 2n — 2 iterations of
step 2 in total. The most time-consuming operation in Algorithm IE is subfield
inversion for most preferable choices of p, which is much slower than even a field
multiplication on Pentium II. So we first try to reduce the number of subfield
inversions required by using some parallelism in step 2 of Algorithm TE. The
idea is to reduce the degree of F(x) or G(z) by two or more at a time as shown
in Table 4.

Algorithm IP
Input: A(z) and f(z) such that deg(A) < n and deg(f) = n.
Output: B(x) such that A(z)B(z) =1 mod f(x).
l.set B0, C«— 1, F — f(z) and G «— A(z).
2. repeat the following steps while deg(F') # 0:
2-1. if deg(F') < deg(G), then exchange F, B with G, C, respectively.
2-2. update F' and B as follows (j = deg(F) — deg(Q)):
@ Faog(r) Gaegay B — (Facg(r)-1 — 0Gaeg(6)- 1)G£elg(c):
F«— F— (a2’ + B2 "HG, B « B—(az? 4+ B2z 1)C
2-3. if deg(F) = deg(G) then execute the following:
ou—Fdeg(F)G F—F—-aG, B+« B-aC.
3. return B «— F; 'B.

deg(G)?

Table 4. Parallel version of Algorithm IE

In Algorithm IP, each iteration of step 2 reduces the degree of F(z) by
at least two by subtracting a suitable multiple of G(x). Thus, the numbers of
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subfield inversions and modular reductions are now reduced by half, compared to
Algorithm IE, though we need the same number of |p|-bit multiplications. This
improvement is crucial to the overall performance in actual implementations,
since both subfield inversion and modular reduction are more expensive than
multiplication for most sizes of p interested to us (i.e., |p| around 32 or 64). Note
that we don’t have to compute the first two highest coefficients of F'(x) in step
2-2, since they must be zero. Also note that if | deg(F) — deg(G)| is equal to 1
at the begining of step 2, this difference is maintained throughout the iteration
with probability of 1/p. Thus, step 2-3 will not be executed in most cases.

Field Inversion Using Multiplication Since subfield inversion becomes more
and more expensive as the size of p increases, a natural question to ask is how
to minimize the number of subfield inversions in a field inversion algorithm. For-
tunately, we are able to modify Algorithm IE/IP into algorithms requiring only
one subfield inversion at the final stage. First note that Algorithm IE maintains
the following relationships throughout its internal processing:

A(z)B(z) + U(z) f(z) = F(z), A(x)C(z)+ V(z)f(x) = G(x),

for some polynomials U(z) and V(z) (not interested to us). Therefore, we can
see that these relations still hold even if we multiply both F(z) and B(x) (both
G(z) and C(z), respectively) by the same constant. This observation shows that
the following field inversion algorithm actually works, where we only describe
the variant of Algorithm IP (A referee kindly pointed out that Algorithm IM
can be constructed from algorithms in [13, Sect.4.6.1]):

Algorithm ITM
Input: A(z) and f(z) such that deg(A) < n and deg(f) = n.
Output: B(z) such that A(z)B(z) =1 mod f(x).
l.set B+ 0, C«— 1, F«— f(z) and G «— A(z).
2. repeat the following steps while deg(F') # 0:
2-1. if deg(F') < deg(G), then exchange F, B with G, C, respectively.
2-2. update F and B as follows (let j = deg(F) — deg(Q)):
@ — Gieg@y B — Facg(r)Gaca(c),
v ¢ Gaeg(a) Faeg(r)—1 — Faeg(F)Gdeg(a)—1,
F— oF — (B2 +v2"™ "G, B «— aB — (Bz? + 27~ HC.
2-3. if deg(F') = deg(G), then execute the following:
F— Gacg(m) I — Facg(r)G; B — Gaeg(r) B — Faeg(r)C.
3. return B «— Fole.

Table 5. Field inversion using multiplication

Algorithm IM requires just one subfield inversion at the final step. Compar-
ing steps 2-2 in Algorithm IM and Algorithm IP, one can see that one subfield
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inversion in Algorithm IP was replaced with one multiplication by constant in
both F(x) and B(z) in Algorithm IM (or equivalently about n |p|-bit multipli-
cations). Consequently, Algorithm IM will be more efficient than Algorithm IP
if subfield inversion is more expensive than n |p|-bit multiplications.

To see how F(x) is updated in step 2, let us suppose that the degrees of the
current F'(z) and G(z) are d and d — 1, respectively. Then, the coefficient update
in F(z) and B(z) in step 2 can be described by

aF; — ’)/Gi mod D for 1 = 0,
F; —
aF; — (BGi—1 +~vG;) mod p for 1 <i<d-—2,

B aB; — (BCi—1 +~vC;) mod p for 0 <i<n-—d-—1,
! aB; —vC; mod p fori=n—d.

If the degree of f(x) is 2 or 3, then we can derive simple inversion formu-
las from Algorithm IM, which will be more efficient than direct execution of
Algorithm IM since we can do more intelligent manual optimization.

— GF(p?): Let A(x) = Az + Ay (A; € GF(p)) and f(x) = 2% — w. Then,
B(x) = A(z)~! mod f(x) can be computed by

B(z) = Fy '(Ajx — Ag), where Fy = wA? — A3.

— GF(p?): Let A(z) = Asx® + A1z + Ag (A; € GF(p)) and f(z) = 2° — w.
Then, B(z) = A(z)~! mod f(z) can be computed by

B(z) = A2Fo_1(T2$2 + Tz +Tp), where

T() = Ag —wAlAQ, T1 = wA% —1401417 TQ = A% —A()AQ, F() = T12 —T()TQ.

Comparison of Inversion Algorithms To see the relative performance of
the three inversion algorithms describe above, we calculated the number of basic
operations required in each algorithm. The result is summarized in Table 6. Our
experiments on P6 and Alpha microprocessors show that subfield inversion (not
using table lookups) is the most expensive in general, and reduction mod p is
more expensive than multiplication of |p|-bit numbers. So, we separately counted
the number of |p|-bit multiplications, reductions mod p and inversions mod p.
Note that if we do not differentiate modular reduction from multiplication, the
number of multiplications in the table corresponds to the number of subfield
multiplications.

In Table 6, we also included the computational complexity of Bailey and
Paar’s inversion algorithm in GF(p"). This algorithm computes A(z)~! mod

f(z) as

Alz) ™' = (A(2)") "A(z)" ! mod f(x), where r = ];:11 =1+p+p°+-+p

n
n—1

Since A(z)" = A(z)A(z)"~! is always an element in GF(p), this algorithm
also requires only one subfield inversion. Furthermore, due to the special form of
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| algorithm | | #multiplications | #reductions | #inversions
1E m? +n—4 m? +n—4 2n —1
1P m? +n—4 n? —n—2 n+1
IM 3n® —5 n® +4n—6 1
(f(z) =2" —w) (3n% —n —7) (n? 4 4n — 8) (1)
BP [3] t(n)(n® 4 2n — 2) + 3n — 1[t(n)(3n — 2) 4 2n] 1
fx)y=2"—-w t(n) = [logo(n —1)| + Hy(n —1) — 1

Table 6. Complexity for computing A(x)™! mod f(z) (deg(f(z)) = n,
deg(A(z) = n — 1)

r—1, A(z)"~! can be efficiently computed using 2" = w mod f(z) and some basic

properties of finite fields (for details, see [3]). The complexity of this algorithm
is given by

(|loga(n —1)| + Hy(n — 1) — 1)(n? + 2n — 2) + 3n — 1,

where H,,(z) denotes the Hamming weight of 2. In Table 6, we assumed that gen-
eral polynomial multiplication of degree n can be done in n? multiplications and
n modular reductions using the accumulation-then-reduction technique. Note
that this algorithm is only useful for a binomial f(z) (thus not general) and that
its complexity is higher than Algorithm IM for any n.

There is another field inversion method using matrix inversion proposed in [9].
The explicit formula for n = 3 given in [9] is almost identical to that of Algorithm
IM. However, this algorithm has a computational complexity of O(n?) and is not
general either. Algorithm IM seems to be the best algorithm for field inversion
in GF(p™). It is also general (works equally well with any f(z)), systematic and
easy to implement (independent of a specific form of f(z)).

4 Implementation and Discussion

We have implemented various field and elliptic curve arithmetic using the al-
gorithms and techniques presented in Section 3 on two typical microprocessors:
Pentium II/266MHz (32-bit uP; Windows 98, MSVC 5.0 with in-line assembly)
and Alpha 21164/533MHz (64-bit uP; Linux, gce 2.95 with in-line assembly).

4.1 Timings for Field Arithmetic

To see the relative speed of three inversion algorithms described in Sect.3 in ac-
tual implementations, we measured their speed on Pentium IT and Alpha 21164,
as shown in Tables 7 and 8. The tables show that Algorithm IP runs about
25 ~ 45% faster than Algorithm IE and that Algorithm IM runs about 30 ~ 60%
faster than Algorithm IP for 3 < n < 7. We used a table lookup method for sub-
field inversion in GF(p™) for n > 7, so the advantage of Algorithm IM disappears
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[ Alg. [ IE [ IP [ IM [IP/IE]IM/IE [ IM/IP |
)] 28.71 [ 15.82 ] 15.54 [ 0.55 | 0.54 | 0.98

(p™) || 24.96 | 14.28 [ 13.79 || 0.57 | 0.55 | 0.97
GF(p™) || 32.44 [20.25] 22.44 || 0.62 | 0.69 1.12
(™) || 27.64 | 16.79] 19.18 || 0.61 | 0.69 | 1.14

(p) [[35.90 [ 21.79 [ 12.13 | 0.61 | 0.34 | 0.56
(°) [[29.16 | 1754 | 9.48 || 0.60 | 0.33 | 0.54
(p°) [[25.10 | 15.02 | 7.20 || 0.60 | 029 | 0.48
(?°) || 3864 [ 26.14 | 9.69 || 0.68 | 025 | 0.37

Table 7. Speed of three field inversion algorithms on Pentium I1/266MHz (in
psec)

[ Alg. [ IE [ 1P [ IM [IP/IE [IM/IE [ IM/IP]

GF(p™) [[ 20.05 [ 12.92 [ 12.95 [ 0.64 | 0.65 | 1.00
(™) || 17.28 | 11.29 [11.13]| 0.65 | 0.64 | 0.99

GF(p'") || 21.05 | 14.04 [13.10]] 0.67 | 0.62 | 0.93
(")

GF(p 14.47 | 10.76 [10.06]| 0.74 | 0.70 | 0.93
GF(p") || 15.98 | 9.78 | 6.18 | 0.61 | 0.39 | 0.63
GF(p°) || 13.14] 830 | 5.16] 0.63 | 0.39 | 0.62
GF(p°) || 11.08 ] 7.28 | 5.12] 0.66 | 046 | 0.70
GF(p®) || 10.23] 7.29 | 2.82] 0.71 | 0.28 | 0.39

Table 8. Speed of three field inversion algorithms on Alpha 21164/533MHz (in
psec)

in these cases. For inversion in GF(p), we used a combination of the binary and
integer extended Euclidean algorithms for a better performance.

Tables 9 and 10 show the speed of field arithmetic for various fields defined in
Table 2. For comparison, we also included the timings for GF(2"). The ratio A/M
ranges from 0.1 to 0.2 in GF(p™), so the addition time in GF(p™) is not negligible.
The column S/M shows that 1S ~ 0.8M on Pentium II. But on Alpha 21164
we have 15 =~ 0.9M for n < 7, which would be due to better optimization in
field multiplication by the Karatsuba-Ofman algorithm. The same argument also
explains the lower ratio of S/M (1S = 0.6M) for n > 10, since in this case the
number of subfield multiplications required for squaring is n(n+1)/2, compared
to n? for multiplication (note that the Karatsuba-Ofman algorithm was applied
(effective) only up to n = 7 on Alpha). The I/M ratio ranges from 7 to 9 for
n > 3 on both microprocessors (we used best field inversion algorithms for each
n; see Tables 7 and 8). Note that for small n (e.g., n < 7), subfield inversion takes
much more time than field multiplication (compare SF_Inv column with F_Mul
column), which explains why Algorithm IM runs much faster than Algorithm
IE or IP in these cases (in particular, as p increases). Field inversion in GF(p)
is extremely expensive compared to multiplication (e.g., about 30 to 40 times
slower than modular multiplication).
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[ Field [ SFInv [ F-Add [FSqr [F-Mul [FlInv[[A/M]S/MJ[I/M]
| GF(2™) | [ 0.119 [0.558 | 3.917 | 54.92 ]| 0.03 [ 0.14 [ 14.0 |
Y | 0.072 ][ 0.343 [ 1.517 [ 2.042 [ 15.79 || 0.17 | 0.74 [ 7.73
) || 0.071 || 0.326 | 1.364 | 1.816 | 13.94 || 0.18 | 0.75 | 7.68
GF(p™) || 0.072 || 0.310 | 1.966 | 2.530 | 20.54 || 0.12 | 0.78 | 8.12
Y || 0.073 ][ 0.290 | 1.647 | 2.100 | 17.14 || 0.14 | 0.78 | 8.16

(") || 1718 ] 0.158 | 1.131 | 1.426 | 12.25 || 0.11 | 0.79 | 8.59
(°) || 1.700 || 0.142 | 0.917 | 1.119 | 9.595 || 0.13 | 0.82 | 8.57
(p°) || 2.075 || 0.174 | 0.787 | 0.956 | 7.311 || 0.18 | 0.82 | 7.65
()
()

6.255 0.235 | 1.042 | 1.264 | 9.723 || 0.19 | 0.82 | 7.69
17.62 0.157 | 0.857 | 1.004 | 19.83 || 0.16 | 0.85 | 19.8
GF(p) 0.151 | 0.885 | 1.012 | 43.25 || 0.15 | 0.87 | 42.7

Table 9. Timings (in psec) for field operations on Pentium IT 266 MHz

| Field [[SFInv[|F-Add |[FSqr|F-Mul [FlInv||A/M|S/M][I/M]
| GF(2") || | 0.058 ]0.198 | 1.093 [ 11.73 || 0.05 | 0.18 | 10.7 ]

) 0.081 0.217 | 0.956 | 1.710 | 12.96 || 0.13 | 0.56 | 7.58

(p°) 0.089 0.220 | 0.854 | 1.460 | 11.18 || 0.15 | 0.59 | 7.66

GF(p') 0.097 0.185 | 0.967 | 1.483 | 13.05 || 0.12 | 0.65 | 8.80
)

0.104 0.166 | 0.837 | 1.272 | 10.01 || 0.13 | 0.66 | 7.87

GF(p") 0.706 0.111 | 0.673 | 0.719 | 6.177 || 0.15 | 0.94 | 8.59
GF(p°) 0.704 0.073 | 0.462 | 0.608 | 5.170 || 0.12 | 0.76 | 8.50
GF(p°) 0.794 0.081 | 0.650 | 0.731 | 5.142 || 0.11 | 0.89 | 7.03
GF(p°) 1.591 0.064 | 0.383 | 0.423 | 2.822 || 0.15 | 0.91 | 6.67
GF(p?) 5.354 0.063 | 0.541 | 0.582 | 6.173 || 0.11 | 0.93 | 10.6

GF(p) 0.072 | 0.512 | 0.597 | 18.97 || 0.12 | 0.86 | 31.8

Table 10. Timings (in usec) for field operations on Alpha 533MHz

4.2 Timings for Elliptic Curve Arithmetic

Tables 11 and 12 show the speed of elliptic curve operations on Pentium II and
Alpha 21164 microprocessors, respectively. The tables show that it is always
preferable to use projective coordinates with affine precomputation as expected
from the I /M ratios in Tables 9 and 10. Obviously, we have the best performance
on Pentium II with an elliptic curve over GF(p®) and on Alpha 21164 with an
elliptic curve over GF(p®). It is also worth noting that an elliptic curve in GF(p)
gives an almost comparable speed to the best in both microprocessors. This is
due to the special choice of p such that p = 2160 —2933. Also note that the speed
ratio of elliptic doubling to addition is around 0.5 in GF(2") and around 0.75 in
GF(p").

For comparison, we summarized the timings for elliptic scalar multiplication
using Frobenius expansion in Table 13 (from [15]). The table shows that we can
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coordinates Affine Proj.(Z1 = 1)
Field [ k| [P+P|P+Q] kP |[P+P|P+Q]J kP
[GF(2™) J162] 638 | 642 [12147[ 168 | 349 |3978

GF(p™) [ 178 | 25.8 | 22.9 | 5034 [ 16.7 | 23.2 |3528
GF(p™) [ 178 || 22.9 | 204 | 4530 15.0 | 20.9 | 3206
GF(p™) [ 160 || 32.1 29.1 5991 || 20.2 27.8 | 4104
GF(™) [160 | 27.0 | 24.3 | 5075 || 17.0 | 22.0 | 3446
GF(p") | 1681 192 | 174 | 3780 11.6 | 16.0 | 2457
GF(p°) | 168 153 | 13.8 | 3016 9.52 | 13.0 | 1997
GF(p°) | 160 | 12,5 | 10.9 | 2341 853 | 11.6 | 1693
GF(p®) | 171 ] 16.6 | 147 [ 3316 11.2 | 15.0 |2397
GF(p?) | 178 ]| 253 | 23.7 | 5285 9.15 | 12.3 | 2070

GF(p) 160 49.2 474 9137 9.04 12.1 | 1983

Table 11. Timings (in usec) for elliptic curve operations on Pentium IT 266MHz

achieve about 2 to 3 times speed-up with subfield curves. However, when using
such a special curve, we should be careful for the security consequence related
to the special structure (e.g., see [25]).

5 Conclusion

We presented various speed-up techniques for field arithmetic in GF(p™). The
main improvements presented in this paper consist of various optimizations in
field multiplication and inversion and careful choices of field parameters to speed
up field arithmetic. Since the presented optimization techniques are focused on
more primitive field arithmetic, the performance improvement in practical im-
plementations will be more substantial than with optimizations in elliptic curve
arithmetic. We also presented implementation results on two popular micropro-
cessors, Pentium IT and Alpha 21164.

Acknowledgement: The authors would like to thank an anonymous ref-
eree for his constructive comments, which were very helpful in improving the
presentation of this paper.
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