
A Structured ElGamal-Type Multisignature

Scheme

Mike Burmester1, Yvo Desmedt2, Hiroshi Doi3, Masahiro Mambo4,
Eiji Okamoto5, Mitsuru Tada6, and Yuko Yoshifuji6,∗

1 Information Security Group, Royal Holloway, University of London
m.burmester@rhbnc.ac.uk

2 Department of Computer Science, Florida State University
desmedt@cs.fsu.edu

3 Department of Mathematics, Faculty of Science, Okayama University
hdoi@math.okayama-u.ac.jp

4 Education Center for Information Processing & Graduate School of Information
Sciences, Tohoku University, mambo@ecip.tohoku.ac.jp

5 Center for Cryptography, Computer and Network Security
University of Wisconsin, Milwaukee, okamoto@cs.uwm.edu

6 School of Information Science, Japan Advanced Institute of Science and Technology,
{mt,yosifuji}@jaist.ac.jp

Abstract. We propose a structured multisignature scheme which is
based on a modified ElGamal signature scheme and analyze its security.
The structure takes into account the order of the signers. With serial
structures, different signing orders produce different multisignatures. In
contrast, with parallel structures the multisignatures are independent of
the signing order. Our structured multisignatures can deal with struc-
tures which are composed of serial and parallel signing orders. We give
reductions for the security of the proposed scheme, and for the specified
order of the signers in the serial and mixed cases.

Keywords: Multisignature, Structured multisignature, Group structure,
Series-parallel graph, ElGamal signature.

1 Introduction

When multiple entities sign a document, the signing order often reflects the
role of each signer and signatures with different signing orders are regarded as
multisignatures with different meanings. A typical example is a multisignature
in a company. Usually, the head of a section should sign a document after the
other members of the section have signed it. Other examples involve banks and
command structures.

Of course the signing order is of little relevance to authentication. However
there are other aspects one should take into account, such as the liability of the

∗Present affiliation of the last author: NTT Service Integration Laboratories

H. Imai, Y. Zheng (Eds.): PKC 2000, LNCS 1751, pp. 466–483, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Structured ElGamal-Type Multisignature Scheme 467

signers. This could be related to their ranking and determined by the signing
order. Depending on the application, a different signing order may be required.
Moreover, each signer may only wish to sign after the previous signers have done
so, and the verifier may require that the correct order has been adhered to.

We can consider two cases for the signing order: 1) serial signing, in which
the signing order can be detected by a verifier from a signature, 2) parallel sign-
ing, in which the signing order cannot be detected by a verifier from a signature.
A multisignature scheme is said to be structured if the group of signers is struc-
tured. The structure takes into account the signing order of the entities of the
signing groups, if this is serial. In this case different signing orders yield differ-
ent multisignatures. In contrast, the multisignature for parallel signing orders is
group independent. Our structured multisignature scheme can deal with group
structures which are composed of serial and parallel signing orders.

In this paper we propose a structured multisignature scheme based on a mod-
ified ElGamal signature scheme and give reductions for its security, including the
security for the specified order of the signers. This paper is organized as follows.
After this introduction we discuss related work in Section 2. In Section 3 we rep-
resent signer groups by series-parallel graphs and in Section 4 we give definitions
and specify our setting. In Section 5 we define our model, and the reductions
and functions which we shall use for the security proof. After describing the
basic modified ElGamal signature scheme in Section 6, we present a serial multi-
signature scheme in Section 7, a parallel multisignature scheme in Section 8,
and a mixed multisignature scheme in Section 9. In Section 10 we modify our
scheme to get a more efficient scheme by exploiting the decomposition tree of
series-parallel graphs. Finally, conclusions are given in Section 11.

2 Related Work

So far there are several proposals for multisignature schemes, as for example
in [Oka88,OO91,HZ92,Shim94,DOMU94,HMP95,DOM98,OO99]. Multisigna-
ture schemes have advantages over multiple iterations of a single signature
scheme either in the length of the signature or in the computational cost of
generating and verifying the signature. Another property one should pay atten-
tion to is the signing order. Some multisignature schemes are independent of
the order of the signers [OO91,HZ92,Shim94,HMP95], while other schemes are
order specified [Oka88,DOMU94,DOM98,OO99].

Among the schemes which are sensitive to the signing order, the scheme
in [Oka88] is constructed using bijective functions such as the RSA signing
function [RSA78]. The scheme in [DOMU94] is also based on the RSA signature
scheme, but this scheme has been shown to be insecure. A modified version of this
scheme is proposed in [DOM98], however its security analysis is not complete.
Another scheme [DOM98] uses an ElGamal-type signature [ElG85,HMP94], but
as with the RSA based scheme, its security analysis is not complete.

The Ohta-Okamoto schemes in [OO91] are converted from corresponding
identification schemes such as the Schnorr scheme [Schn91] and the Fiat-Shamir

468 Mike Burmester et al.

scheme [FS86]. For single signatures, the security proof for the Schnorr signature
scheme and a modified ElGamal signature scheme are given in [PS96] using
the Random Oracle model [BR93] (however there are some problems with this
model [CGH98]). Ohta-Okamoto prove the security of their schemes using an ID
reduction to an identification scheme [OO91]. For single signatures their proof
gives a tighter reduction than [PS96]. However the Ohta-Okamoto schemes do
not consider mixed structures composed of serial and parallel signing orders. In
particular, the security of multisignature schemes for such a composite group
structure has not been proven.

A structured multisignature scheme based on an ElGamal-type signature is
also proposed in [DOM98] but its security for the signing order is not complete.

3 Series-Parallel Graph

We represent the group of signers by a graph. We consider directed graphs which
satisfy the following conditions:

(G-1) Each signer corresponding to an edge appears only once in the graph.
(G-2) The graphs are restricted to series-parallel type graphs.

A series-parallel graph is a graph which is generated by series and parallel com-
positions of series-parallel graphs. The simplest series-parallel graph is a base
graph of two vertices and an edge. We refer the reader to [Len90] for more
details. The set of all graphs satisfying the above conditions is denoted by SPG.

In Figure 1 we illustrate a typical series-parallel graph. A series-parallel graph
can be decomposed into a unique tree called the decomposition tree of the graph.
In Figure 2 we show the decomposition tree of the graph in Figure 1. The labels
of the vertices show the type of composition of the subordinate edges. Vertices
labeled SC show series compositions whereas vertices labeled PC show parallel
compositions. Series-parallel graphs can be recognized in linear time and the
decomposition tree of a series-parallel graph can be found in linear time [Len90].

4 Notation and Definition

We will use a discrete logarithm setting. Let p and q be appropriate primes such
that q|(p − 1), and let g ∈ Z∗

p be a q-th root of 1 modulo p. Pi is a signer with
secret key ai ∈ Z∗

q , and ki is a random number in Z∗
q selected by Pi. M ∈ {0, 1}∗

is the message to be signed. a ∈R A indicates that the element a is selected from
the set A uniformly at random.

Constructible groups. Let G ⊂ SPG be a collection of signer groups, Gk ∈ G
a signer group represented by a series-parallel graph, Pi a signer in Gk,
ai ∈ Z∗

q the secret key of Pi, and y
(k)
i ∈ Z∗

p\{1} the partial public key of
Pi corresponding to ai. We say that G is an available group of a signature

A Structured ElGamal-Type Multisignature Scheme 469

s
1

t

2

3

4

5 6

7

8 9P

P

P

P P

P

P

P

P

Fig. 1. A series-parallel graph G

1

2 3 4 5 6

7

8 9

SC

SC

PCPC

SC SC

P

P

P

PP P P P P

Fig. 2. The decomposition tree of G

scheme if there is a set of secret keys {ai|Pi ∈ Gk, Gk ∈ G} of this scheme
such that,

y
(k)
i �= y

(l)
j for ∀Gk, Gl ∈ G, ∀ (Pi, Pj) ∈ (Gk, Gl), i �= j. (1)

We allow k = l in (1). The set of keys {ai|Pi ∈ Gk, Gk ∈ G} of an available
group is called an appropriate secret-key set for G or simply, appropriate for
G. If it is feasible to generate an appropriate secret-key set from an available
group G, then G is called a constructible group.

Signature structure. When signers sign a document sequentially, the signing
order has a special meaning. We call such a signature structure, serial . On
the other hand, when all or a part of the signers create a partial signature
for a document in arbitrary order and a complete signature is created from
these partial signatures, the signing order of the signers has no meaning. We
call such a signature structure, parallel .
The signer group of a serial structure is denoted by (P1, P2, . . . , Pn).
This means that P1 signs first, P2 second and so on. After all P1, P2, . . . , Pn−1

have signed, Pn signs. For simplicity, we write

Gi,...,j = (. . . , Pi−1, Pi, . . . , Pj−1, Pj , . . .),
Gj,...,i = (. . . , Pi−1, Pj , . . . , Pj−1, Pi, . . .),

where 1 ≤ i < j ≤ n.
The signer group of a parallel structure is denoted by ∧(P1, P2, . . . , Pn).

In the scheme we propose the partial signature created by signer Pi is a triple
(si, ri, r) ∈ Zq × Z∗

p × Z∗
p. The partial signature created by the last signer Pn is

the multisignature of the entire group. For (sn, rn, r) we have rn = r, so that
the final form of the multisignature is (sn, rn).

470 Mike Burmester et al.

Let i, j ∈ {1, 2, . . . , n}, i < j, and K ⊂ {1, 2, . . . , n}. For a variable v, let
v[i,j,K] denote the sequence vi, vi+1, . . . , vj in which all vl, l ∈ K, are excluded.
v[1,n,φ] is simply denoted by v[i,j].

For simplicity, (modp) is sometimes omitted in this paper.

Hash function. In this paper we shall use a target-collision intractable hash
function, hash, which takes values of arbitrary length as input and outputs
a value in Z∗

q . (A hash function is target-collision intractable if for a given x
it is infeasible to compute a y such that hash(x) = hash(y).)

5 Attacks and Reductions

Attack model. For our security analysis, we consider a model in which all
insiders (signers) except an honest signer may collude in the attack. The
attackers give a partial signature of a message M to the honest signer Pi

and obtain a valid partial signature by Pi of M . With this information, the
attackers try to obtain forged signatures or to derive Pi’s secret key.

Reductions.We use the following reductions in our security proof (cf. [Woll87]):
◦ f ≤p

m g denotes that f reduces to g with respect to the polynomial-time
many-one (≤p

m-) reducibility. (That is, there exists a polynomial-time
computable function h such that f(x) = g(h(x)).)

◦ f ≤p
k−tt g denotes that f reduces to g with respect to the polynomial-

time truth-table (≤p
k−tt-) reducibility. In a ≤p

k−tt-reducibility only k non-
adaptive queries to an oracle are allowed. If we do not wish to stress the
number of queries, we simply write f ≤p

tt g.
◦ f ≤p

T g denotes that f reduces to g with respect to the polynomial-
time Turing (≤p

T -) reducibility. In a ≤p
T -reducibility, a polynomial-time

bounded oracle Turing machine can access an oracle adaptively.
For type ∈ {m, k − tt, T }, if f ≤p

type g and g ≤p
type f , then f ≡p

type g .

We use the following functions for the proof of security.

• DLPq(X, g, p, q) is a function that on input two primes p, q with q|(p − 1),
X ∈ Z∗

p, g ∈ Z∗
p of order q, outputs x ∈ Zq such that X ≡ gx(modp), if

such an x exists. This function solves the discrete logarithm problem in a
subgroup of prime order q.

• Forge(y, r, M, g, p, q) is a function that on input two primes p, q with
q|(p − 1), y ∈ Z∗

p, r ∈ Z∗
p satisfying gcd(r, q) = 1, M ∈ {0, 1}∗, g ∈ Z∗

p of
order q, outputs s′ ∈ Zq with gs′ ≡ yrr·hash(r,M)(modp) for a given hash
function hash(), if such an s′ exists.
This function forges a valid signature s′ using the pair (M, r) of a message
M and a number r and available public information, but does not use the
signer’s secret key.

• Secret1(y, r, s, M, g, p, q) is a function that on input two primes p, q with
q|(p − 1), y ∈ Z∗

p, r ∈ Z∗
p with gcd(r, q) = 1, s ∈ Zq, M ∈ {0, 1}∗, g ∈ Z∗

p of
order q, outputs (a, k) ∈ (Z∗

q , Z
∗
q) such that

A Structured ElGamal-Type Multisignature Scheme 471

y ≡ ga, r ≡ gk, s ≡ a + kr · hash(r, M) (modq)
for a given hash function hash(), if such a pair of (a, k) exists.
This function computes the secret key a of P and the random number k
using a valid signature (r, s) by P and available public information.

• Secret2 [(P1, P2, . . . , Pn)] (yi, ri, r̃, si, k̃, a[1,n,{i}], k[1,n,{i}], M, g, p, q) is a
function that on input two primes p, q with q|(p − 1), yi, ri,∈ Z∗

p, r̃ ∈ Z∗
p

satisfying gcd(r̃, q) = 1, si, k̃ ∈ Zq, a[1,n,{i}], k[1,n,{i}] ∈ Z∗
q × · · · × Z∗

q ,
M ∈ {0, 1}∗, g ∈ Z∗

p of order q, outputs (ai, ki) ∈ (Z∗
q , Z

∗
q) such that a[1,n] is

appropriate for (P1, P2, . . . , Pn), and
α = (· · · ((a1 + 1)a2 + 1) · · ·)ai−1 (modq),
yi ≡ g(α+1)ai , ri ≡ (gk̃)ai · gki ,
si ≡ ((α + k̃r̃ · hash(r̃, M)) + 1)ai + kir̃ · hash(r̃, M) (modq),

for a given hash function hash(), if such a pair of (ai, ki) exists, and otherwise
outputs ⊥.
This function computes the pair (ai, ki) consisting of the secret key ai and
the random number ki of an honest signer Pi in the following situation.
All signers except Pi collude to compute (ai, ki), using any available public
information and a valid partial signature (ri, si, r) created by Pi in a serial
structure for a message M . The colluding entities do not need to follow the
signature creation procedure for computing these values. A partial signature
(r̃i−1, s̃i−1, r̃) given to Pi satisfies yi−1r̃

r̃hash(r̃,M)
i−1 ≡ gα ·gk̃r̃·hash(r̃,M) ≡ gs̃i−1 ,

where r̃i−1 ≡ gk̃, s̃i−1 ≡ α + k̃r̃ · hash(r̃, M) modq.
• Flip[Gi,...,j , Gj,...,i](yi−1, yi, y

′, r̃i−1, ri, r̃, s̃i−1, si, k̃, a[1,n,{i}], k[1,n,{i}], M, g,
p, q) is a function that on input two primes p, q with q|(p − 1), yi−1, yi, y′,
r̃i−1, ri ∈ Z∗

p, r̃ ∈ Z∗
p satisfying gcd(r̃, q) = 1, s̃i−1, si, k̃ ∈ Zq, a[1,n,{i}],

k[1,n,{i}] ∈ Z∗
q × · · · × Z∗

q , M ∈ {0, 1}∗, g ∈ Z∗
p of order q, outputs

(s′, r′) ∈ (Zq, Z∗
p) such that s′ ∈ Zq, r′ ∈ Z∗

p with gcd(r′, q) = 1, α′ ∈ Z∗
q ,

ai, ki ∈ Z∗
q , a[1,n,{i}] is appropriate for [Gi,...,j , Gj,...,i], and

α = (· · · ((a1 + 1)a2 + 1) · · ·)ai−1 (modq),
β = αajai+1 · · · aj−1aj+1 · · · an + ajai+1 · · ·aj−1aj+1 · · · an

+ ai+1 · · ·aj−1aj+1 · · · an + · · ·
+ aj−1aj+1 · · · an + aj+1 · · ·an (modq),

γ = aj+1 · · · an + · · · + an (modq),
yi−1 ≡ gα, yi ≡ (yi−1 · g)ai , y′ ≡ gβai+γ ,
r̃i−1 ≡ gk̃, ri ≡ r̃ai

i−1 · gki , r′ ≡ gα′
,

s̃i−1 ≡ α + k̃r̃ · hash(r̃, M) (modq),
si ≡ (s̃i−1 + 1)ai + kir̃ · hash(r̃, M) (modq),
s′ ≡ (βai + γ) + α′r′ · hash(r′, M) (modq)

for a given hash function hash(), if such a pair of (s′, r′) exists.
This function forges a signature of a signer structure Gj,...,i from the signa-
ture of a signer structure Gi,...,j in the following situation. All signers except
the honest signer Pi collude in the forgery, using public information and a
valid partial signature (ri, si, r) created by Pi for the message M . The col-
luding entities do not need to follow the signature creation procedure for

472 Mike Burmester et al.

computing these values. A partial signature (r̃i−1, s̃i−1, r̃) given to Pi sat-
isfies yi−1r̃

r̃hash(r̃,M)
i−1 ≡ gα · gk̃r̃·hash(r̃,M) ≡ gs̃i−1 , where r̃i−1 ≡ gk̃, s̃i−1 ≡

α + k̃r̃ · hash(r̃, M) (modq).
• Forge[Go, Gf](yi−1, yi, y

′, r̃i−1, ri, r̃, s̃i−1, si, β̃, a[1,n,{i}], k[1,n,{i}], M, g, p, q)
is a function that on input two primes p, q with q|(p − 1), yi−1, yi, y

′ ∈ Z∗
p,

r̃i−1 ∈ Z∗
p satisfying gcd(r̃i−1, q) = 1, ri ∈ Z∗

p satisfying gcd(ri, q) = 1,
s̃i−1, si ∈ Zq, β̃ ∈ Z∗

q , a[1,n,{i}], k[1,n,{i}] ∈ Z∗
q × · · · × Z∗

q , M ∈ {0, 1}∗, g ∈ Z∗
p

of order q, outputs (s′, r′) ∈ (Zq, Z∗
p) such that s′ ∈ Zq, r′ ∈ Z∗

p satisfying
gcd(r′, q) = 1, β′ ∈ Zq, ai, ki ∈ Z∗

q, a[1,n] is appropriate for G ⊂ SPG,
function fα is determined from Go ∈ G, fα′

1
and fα′

2
are determined from

Gf ∈ G, Pi ∈ Go, Pi ∈ Gf , and
yi−1 ≡ gα, yi ≡ (yi−1 · g)ai , y′ ≡ gα′

1ai+α′
2 ,

α = fα(a[1,n,{i}]), α′
1 = fα′

1
(a[1,n,{i}]), α′

2 = fα′
2
(a[1,n,{i}]),

r̃i−1 ≡ gβ̃, ri ≡ r̃ai

i−1 · gki , r′ ≡ gβ′
,

s̃i−1 ≡ α + β̃r̃hash(r̃, M) (modq),
si ≡ (s̃i−1 + 1)ai + kir̃hash(r̃, M) (modq),
s′ ≡ α′

1ai + α′
2 + β′r′ · hash(r′, M) (modq),

for a given hash function hash(), if such a pair of (s′, r′) exists.
This function forges the signature of a signer structure Gf from the signa-
ture of a signer structure Go in the following situation. All signers except
the honest signer Pi collude in the forgery using public information and a
valid partial signature (ri, si, r) created by Pi for the message M . The col-
luding entities do not need to follow the signature creation procedure for
computing these values. A partial signature (r̃i−1, s̃i−1, r̃) given to Pi sat-
isfies yi−1r̃

r̃hash(r̃,M)
i−1 ≡ gα · gβ̃r̃·hash(r̃,M) ≡ gs̃i−1 , where r̃i−1 ≡ gβ̃, s̃i−1 ≡

α + β̃r̃ · hash(r̃, M) (modq).
• FC(v, w) is a function which on input v, w, outputs the first component v.

6 Modified ElGamal Signature

We use a modified version [YL93] of the ElGamal signature scheme [ElG85]. To
explain this scheme we consider a single entity signer group consisting of only P .
The message is M . Let a ∈ Z∗

q be the secret key and y = ga(modp) the public
key of P .

Basic signature protocol

1. P selects k ∈R Z∗
q and computes r = gk mod p. P repeats this process until

r satisfies gcd(r, q) = 1.
2. P computes s = a + kr · hash(r, M) (modq). The signature of M is (s, r).

3. The signature (s, r) is verified by checking that gs ?≡ yrr·hash(r,M) (modp).

A valid signature passes the verification check because

gs ≡ ga · gkr·hash(r,M) ≡ yrr·hash(r,M) (modp).

A Structured ElGamal-Type Multisignature Scheme 473

6.1 Security Considerations

Generation of a forged signature (r, s): To show the difficulty of forging a
signature we first consider the case when r is given.

– Forge ≤p
m DLPq : Forge(y, r, M, g, p, q) = DLPq(yrr·hash(r,M), g, p, q)

– DLPq ≤p
m Forge : DLPq(gs, g, p, q) = Forge(y, r, M, g, p, q),

where r ∈R Z∗
p, gcd(r, q) = 1, M ∈R {0, 1}∗, y = gs · r−r·hash(r,M).

Observe that

y · rr·hash(r,M) ≡ (gs · r−r·hash(r,M)) · rr·hash(r,M) ≡ gs.

Thus DLPq ≡p
m Forge.

This proof shows only one aspect of the difficulty of signature forgery.

Security of secret values

– Secret1 ≤p
2−tt DLPq :

Secret1(y, r, s, M, g, p, q) = (DLPq(y, g, p, q),DLPq(r, g, p, q))
– DLPq ≤p

1−tt Secret1 : DLPq(ga, g, p, q) = (r · hash(r, M))−1 ·
· (−s(1 − r · hash(r, M)) + FC(Secret1(y, r, s, M, g, p, q))) (modq),

where s ∈R Z∗
q , M ∈R {0, 1}∗, r = (ga)−1 · gs, gcd(r · hash(r, M), q) = 1, and

y = gs · r−r·hash(r,M).
Observe that

y · rr·hash(r,M) = gs,

and that

y ≡ gs · r−r·hash(r,M) ≡ gs · g(−a+s)(−rhash(r,M))

≡ gs(1−rhash(r,M))+ar·hash(r,M) .

Thus DLPq ≡p
tt Secret1.

7 Serial Multisignature Scheme

A partial public key yi of Pi of a multisignature scheme must belong to Z∗
p\{1}

and must also satisfy the condition (1). This is achieved by selecting appropriate
secret-key groups.

For example, an appropriate secret-key group (a1, . . . , an) for (P1, . . . , Pn) is
obtained by choosing (αi−1 + 1)ai �= aj for i = 2, . . . , n, j = 1, . . . , i − 1, where
αi−1 = (. . . ((a1 + 1)a2 + 1) . . .)ai−1 (modq) (See Section 7.2).

Suppose n signers Pi sign a message M sequentially. Let ai ∈ Z∗
q be the secret

key of Pi. Then the partial public key yi of Pi in (P1, . . . , Pn), i = 1, 2, . . . , n, is
computed as follows:

y1 = ga1 , yi = (yi−1 · g)ai .

The public key of the group (P1, . . . , Pn) is y = yn(mod p). The secret and public
keys are generated either by a trusted center or by each signer using distributed

474 Mike Burmester et al.

protocols. In the latter case, each signer repeatedly selects his secret key until
the keys form an appropriate set. Furthermore, each signer needs to prove that
they know the secret key which corresponds to the partial public key computed.
For this purpose they may use the protocol in [Schn91], which does not reveal
any secret information.

Serial multisignature protocol

1. Generation of r. P1, . . . , Pn generate r together as follows.
(a) P1 selects k1 ∈R Z∗

q and computes r1 = gk1 mod p. P1 repeats this process
until r1 satisfies gcd(r1, q) = 1.

(b) For i ∈ {2, . . . , n}:
Pi−1 gives ri−1 to Pi.
Pi selects ki ∈R Z∗

q and computes ri = ri−1
aigki mod p; Pi repeats this

process until ri satisfies gcd(ri, q) = 1.
(c) r = rn.

2. Generation of s. P1, . . . , Pn generate s together as follows.
(a) P1 computes s1 = a1 + k1r · hash(r, M) (modq).
(b) For i ∈ {2, . . . , n}:

Pi−1 gives si−1 to Pi.
Pi verifies that gsi−1 ≡ yi−1r

r·hash(r,M)
i−1 (modp) and if so computes

si = (si−1 + 1)ai + kir · hash(r, M) (modq).

(c) s = sn.

Multisignature. (r, s) is the multisignature on M by (P1, . . . , Pn).
Verification. A multisignature (r, s) is verified by checking the congruence

gs ?≡ yrr·hash(r,M) (modp).

7.1 Security Considerations

Security of ai and ki. We consider the case when all the signers Pj except an
honest signer Pi, i > 1, collude to derive ai and ki from any information they
can obtain.

Let α be the exponent of yi−1 to the base g modulo p, i.e. yi−1 = gα, α =
(. . . ((a1 + 1)a2 + 1) . . .)ai−1 (modq). Likewise, let k̃ be the exponent of r̃i−1 to
the base g modulo p, i.e. r̃i−1 = gk̃ .

– Secret2[(P1, . . . , Pi, . . . , Pn)] ≤p
T DLPq :

Secret2[(P1, . . . , Pi, . . . , Pn)](yi, ri, r̃, si, k̃, a[1,n,{i}]k[1,n,{i}], M, g, p, q) =
(A,DLPq(ri · (g−Ak̃), g, p, q)), where A = DLPq(yi, g

α+1, p, q).

A Structured ElGamal-Type Multisignature Scheme 475

– DLPq ≤p
m Secret2[(P1, . . . , Pi, . . . , Pn)]:

At first a[1,i−1] ∈ Z∗
q × · · · × Z∗

q is selected so that it is appropriate for
(P1, . . . , Pi, . . . , Pi−1). Then a[i+1,n] ∈R Z∗

q × · · · × Z∗
q is randomly selected.

This procedure is repeated until the set of keys a[1,n,{i}] and ai becomes
appropriate for (P1 , . . . ,Pi , . . . ,Pn). We can recognize that a[1,n] is not
appropriate from the output of Secret2[(P1, . . . , Pi, . . . , Pn)]. In Section 7.2
we shall see that this procedure is feasible (with probability almost one)
if n is bounded by a polynomial in |p|. When a[1,n] becomes appropriate,
DLPq(gai , g, p, q) is computed in the following way:
DLPq(gai , g, p, q) = FC(Secret2[(P1, . . . , Pi, . . . , Pn)]((gai)α+1, (gai)k̃ · gki ,

r̃, kir̃ · hash(r̃, M) (modq), k̃, a[1,n,{i}], k[1,n,{i}], M, g, p, q)),
where r̃ ∈R Z∗

p, gcd(r̃, q) = 1, ki ∈R Z∗
q ,M ∈R {0, 1}∗, a[1,n] is appropriate

for (P1, . . . , Pi, . . . , Pn), a[1,n,{i}] ∈ Z∗
q × · · · × Z∗

q , k[1,n,{i}] ∈R Z∗
q × · · · × Z∗

q ,
α ∈ Z∗

q\{q − 1}, k̃ ∈ Z∗
q\{1},

α = (. . . ((a1 + 1)a2 + 1) . . .)ai−1 (modq),
k̃ = −(α + 1)(r̃ · hash(r̃, M))−1 (modq).

Therefore DLPq ≡p
T Secret2[(P1, . . . , Pi, . . . , Pn)].

Security of Signing Order. We study the order of signature creation. Namely
we assess the difficulty of forgery when all attackers Pk ∈ Gi,...,j excluding Pi try
to collude to change the signing order from Gi,...,j to Gj,...,i, where 1 ≤ i < j ≤ n,
after Pi, who is given a possibly forged partial signature from the previous signer,
has signed M . Attackers can use any information except ai and ki.

Let y′ be a public key of signature structure (. . . , Pi−1, Pj , . . . , Pi, . . .) and
(r′, s′) be a forged signature. k̃ and r̃ are freely selected by attackers.

– Flip[Gi,...,j , Gj,...,i] ≤p
1−tt DLPq :

Flip[Gi,...,j , Gj,...,i](yi−1, yi, y
′, r̃i−1, ri, r̃, s̃i−1, si, k̃, a[1,n,{i}], k[1,n,{i}],

M, g, p, q) = (DLPq(y′, g, p, q) + α′r′ · hash(r′, M) (modq), r′),
where α′ ∈R Z∗

q , r
′ = gα′

, gcd(r′, q) = 1.

– DLPq ≤p
1−tt Flip[Gi,...,j, Gj,...,i] :

DLP(gai , g, p, q) = β−1 · {−γ−α′r′ ·hash(r′, M) + FC(Flip[Gi,...,j , Gj,...,i]
(gα, (gai)α+1,(gai)β ·gγ, gk̃, (gsi ·(gai)−(α+1))(r̃·hash(r̃,M))−1

, r̃, α+k̃r̃·hash(r̃, M),
si, k̃, a[1,n,{i}], k[1,n,{i}], M, g, p, q))} (modq),

where k̃ ∈R Z∗
q , si ∈R Zq, r̃ ∈R Z∗

q with gcd(r̃, q) = 1, a[1,n,{i}] ∈ Z∗
q× · · · × Z∗

q

is appropriate for {Gi,...,j , Gj,...,i}, k[1,n,{i}] ∈R Z∗
q × · · · × Z∗

q , M ∈R {0, 1}∗,
α′ ∈R Z∗

q , r
′ = gα′

, gcd(r′q) = 1,

α = (· · · ((a1 + 1)a2 + 1) · · ·)ai−1 (modq),
β = αai+1 · · · an + ai+1 · · ·an + ai+1 · · · aj−1aj+1 · · · an + · · · +

+ aj−1aj+1 · · ·an + aj+1 · · · an (modq), gcd(β, q) = 1,
γ = aj+1 · · · an + · · · + an (modq).

Therefore DLPq ≡p
1−tt Flip[Gi,...,j , Gj,...,i].

476 Mike Burmester et al.

7.2 Appropriate Secret Keys

Given ai ∈ Z∗
q select a[i+1,n] ∈R Z∗

q × · · · × Z∗
q after selecting a[1,i−1] ap-

propriately for (P1 , . . . ,Pi). The probability that a[1,n] is appropriate for
(P1 , . . . ,Pi , . . . ,Pn) can be estimated as follows.

Let αi−1 = (· · · ((a1 + 1)a2 + 1) · · ·)ai−1 (modq). Then ai should satisfy

ai �= αj(αi−1 + 1)−1 (modq) for j = 1, . . . , i − 1

and

ai �= (au −
∑

l=i+1

m∏

t=l

at)(αi−1 + 1)−1(
m∏

k=i+1

ak)−1 (modq)

for u = 1, . . . , m − 1 and m = i + 1, . . . , n. Thus the probability is

1 − (i − 1 +
n−1∑

v=i

v)/2|ai| = 1 − (n(n − 1) − i2 + 3i − 2)/2|ai|−1

for i = 2, . . . , n. If n = O(poly(|ai|)) this probability can be estimated to be
almost 1.

8 Parallel Multisignature Scheme

The public key of a parallel multisignature scheme is y =
∏n

i=1 yi (modp), where
yi = gai are the partial public keys. We must have yi ∈ Z∗

p\{1} and the product
of any partial keys should not be 1.

Parallel multisignature protocol

1. Pi selects ki ∈R Z∗
q and computes ri = gki(modp). Pi repeats this process

until gcd(ri, q) = 1
2. Each Pi broadcasts ri to all the other signers. Then each Pi checks if there

is a combination of ri whose product is equal to 1 modulo p. If there is such
a combination, step 1 is repeated.

3. r =
∏n

i=1 ri (modp).

4. Pi computes si = ai + kir · hash(r, M) (modq), and broadcasts si to all the
other signers.

5. s =
∑n

i=1 si (modq).

The multisignature of M by ∧(P1, . . . , Pn) is (s, r). It is verified by checking that

gs ≡ g
∑

n

i=1
si ≡

n∏

i=1

yi (
n∏

i=1

ri)
r·hash(r,M)

≡ yrr·hash(r,M) (modp).

A Structured ElGamal-Type Multisignature Scheme 477

Observe that,

gs ≡ g
∑

n

i=1
si ≡

n∏

i=1

yi (
n∏

i=1

ri)
r·hash(r,M)

≡ yrr·hash(r,M) (modp).

As noted in [DOMU94,DOM98] parallel multisignatures schemes are essentially
threshold schemes [DF91].

9 Multisignature for a Mixed Structure

The parallel and serial signature structures can be combined in an arbitrary
order. The public keys and signatures are generated and verified by using the
methods of the serial and parallel cases in a straightforward way.

The partial public keys of the signers in a mixed structure are computed as
follows. Let Ginit be the group of signers with no incoming edges in the graph
representation G. The partial public key of signer Pi in Ginit is simply yi = gai .
This is given to every signer in Gnext,init, the group of signers whose edges are
connected to the edges of Ginit. Then for all i such that Pi does not belong to
Ginit, Pi’s partial public key is yi = (g

∏
j: Pj∈Gprev,i

yj)ai and is given to every
signer in Gnext,i, where Gprev,i and Gnext,i denote a group of signers whose
edges are connected to and from Pi in the graph representation, respectively.
The public key of the group is y =

∏
j :Pj∈Glast

yj , where Glast denotes a group
of signers whose edges are combined into the output in the graph representation.

General multisignature protocol

1. Computing r: For all Pi which belong to Ginit, ri = gki , with ki ∈R Z∗
q .

For all Pi that do not belong to Ginit, ri = (
∏

j: Pj∈Gprev,i
rj)aigki where

ki ∈R Z∗
q . The created ri is given to every signer in Gnext,i. Then r =∏

j: Pj∈Glast
rj .

2. Computing s: For all Pi which belong to Ginit, a partial signature (si, ri, r)
of Pi is computed by si = ai + kir · hash(r, M) (modq). Then for all Pi that
do not belong to Ginit, the partial signature (si, ri, r) of Pi is computed by
si = ((

∑
j: Pj∈Gprev,i

sj)+ 1)ai + kir · hash(r, M) (modq), and given to every
signer in Gnext,i. Finally s =

∑
j: Pj∈Glast

sj .

The multisignature of M by the group G is (s, r). It is verified by checking

that gs ?≡ yrr·hash(r,M) (modp).

To show how this is done more explicitly we compute the multisignature
of the group Gfig1 = [∧(P1, (P2, P3, P4)),∧((P5, P6), P7, (P8, P9))] in Figure 1.
The partial public key of Pi in Gfig1 is computed from the secret key ai ∈ Z∗

q

and other partial keys yj (j �= i) as follows: y1 = ga1(modp) for the first

478 Mike Burmester et al.

lower branch, y2 = ga2(modp), y3 = (y2g)a3(modp), y4 = (y3g)a4(modp) for
the first upper branch, y5 = ((y1y4)g)a5(modp), y6 = (y5g)a6(modp) for the
second lower branch, y7 = ((y1y4)g)a7(modp) for the second middle branch,
y8 = ((y1y4)g)a8(modp), y9 = (y8g)a9(modp) for the second upper branch.
Finally the public key y of Gfig1 is computed by y = y6y7y9(modp).

– Computing r: We have r4 = ra4
3 gk4(mod p), r5 = (r1r4)a5gk5(modp), r6 =

(r5)a6gk6(modp), so r = r6r7r9 (modp).

– Computing s: We have s4 = (s3 + 1)a4 + k4r · hash(r, M) (modq), s5 =
((s1 + s4) + 1)a5 + k5r · hash(r, M) (modq) and s6 = (s5 + 1)a6 +
k6r · hash(r, M) (modq), so s = s6 + s7 + s9 (modq).

The multisignature of M by Gfig1 is (s, r). It is verified by checking that

gs ?≡ yrr·hash(r,M) (modp).

9.1 Security Considerations

The partial public key of a signer Pi in a directed series-parallel graph can
be expressed as y = gAai+B, for some A, B ∈ Zq. We study the difficulty of
signature forgery for a structure Gf , given a partial signature (ri, si) of Pi for
the original structure Go.

– Forge[Go, Gf] ≤p
1−tt DLPq :

Forge[Go, Gf](yi−1, yi, y
′, r̃i−1, ri, r̃, s̃i−1, si, β̃, a[1,n,{i}], k[1,n,{i}], M, g, p, q)

= (DLP(y′, g, p, q) + β′r′hash(r′, M) (modq), r′), where β′ ∈R Z∗
q , r′ = gβ′

,
gcd(gβ′

, q) = 1.

– DLPq ≤p
1−tt Forge[Go, Gf] :

DLPq(gai , g, p, q) = α′−1
1 {−β′r′hash(r′, M)−α′

2 + FC(Forge[Go, Gf](gα,

(gai)α+1, (gai)α′
1 · gα′

2 , gβ̃, (gsi · (gai)−α−1)(r̃·hash(r̃,M))−1
, r̃, α + β̃ r̃ ·

hash(r̃, M), si, β̃, a[1,n,{i}], k[1,n,{i}], M, g, p, q))} (modq),

where a[1,n] ∈ Z∗
q ×· · ·×Z∗

q is appropriate for {Go, Gf}, Go, Gf ∈ G, β̃ ∈R Z∗
q

with gcd(gβ̃, q) = 1, si ∈R Zq with gcd((gsi · (gai)−α−1)(r̃hash(r̃,M))−1
, q) = 1,

r̃ ∈R Z∗
p with gcd(r̃, q) = 1, M ∈R {0, 1}∗, k[1,n,{i}] ∈R Z∗

q × · · · × Z∗
q , α =

fα(a[1,n,{i}]), α′
1 = fα′

1
(a[1,n,{i}]), α′

2 = fα′
2
(a[1,n,{i}]), with fα determined

by Go, fα′
1
, fα′

2
determined by Gf , Pi ∈ Go, Gf ,

Therefore DLPq ≡p
1−tt Forge[Go, Gf].

This proof does not hold when: (i) α′
1 = 0, (ii) β′ satisfies gcd(gβ′

, q) = 1. In
both cases we cannot show DLPq ≤p

1−tt Forge[Go, Gf].
A typical example of the latter case is when the signer structure from the

first signer to Pi in Go is preserved in Gf . For example, it is easy to forge
a signature for Gf = (· · · , Pi, Pi+2, Pi+1, · · ·)) from an original graph Go =
(· · · , Pi, Pi+1, Pi+2, · · ·).

A Structured ElGamal-Type Multisignature Scheme 479

9.2 Constructible and Available Groups

We give a very rough estimate of the number of signers for which the complete
set of signer groups becomes constructible.

Let Tn be the number of all signer structures for n signers whose directed
graph G satisfies conditions (G-1) and (G-2). Then,

Tn < 2n(2n − 1)(2n − 2) · · · (2n − (n − 1)) < 2n2
.

A bound for the number Kn of all partial public keys for G is given by,

Kn ≤ 2(2n − 1) + 1 = 2n+1 − 1.

Therefore, the number of all partial public keys for all directed graphs with n
signers is bounded by,

Tn · Kn < 2n2
(2n+1 − 1) = 2n2+n+1 − 2n2

.

Using the birthday paradox we can now get an upper bound on the number of
signers for which we have constructible groups for any set. We have

Tn · Kn < 2n2+n+1 − 2n2
<<

√
q.

Thus when n <
√

log
√

q any signer group should have a different public key.

Figure 3 and Figure 4 show directed non-series-parallel graphs whose signer
groups are not available. The partial public keys of these structures are the same
for any choice of signers’ secret keys.

P1 P2
P3

P2

P1

Fig. 3. A non series-parallel graph

P1

P1

P2

P3

P3

Fig. 4. A non series-parallel graph

Indeed, let yfig.3 and yfig.4 be public keys of these graphs respectively. We
can easily check that

yfig.3 ≡ g((a1+(a1+1)a2)+1)a3+(a1+1)a2

= g((a1+(a1+1)a3)+1)a2+(a1+1)a3

≡ yfig.4 .

480 Mike Burmester et al.

10 An Efficient Structured Multisignature Scheme

We have not fully exploited the structure of the decomposition tree in our
earlier approach. We shall now show how this can be done by considering
the group structure Gfig1 = [∧(P1, (P2, P3, P4)),∧((P5, P6), P7, (P8, P9))] in
Figure 1. From the decomposition tree in Figure 2, using our earlier approach
for serial/parallel executions, we see that may take as group secret key, the key

a = [[a1 + ((a2 + 1)a3 + 1)a4] + 1] · [(a5 + 1)a6 + a7 + (a8 + 1)a9]

with corresponding group public key y = ga. Here a secret key is computed for
every sub-tree in Figure 2 precisely once: [a1 + ((a2 + 1)a3 + 1)a4] is the secret
key for the left sub-tree [∧(P1, (P2, P3, P4)]. This makes use of ((a2+1)a3+1)a4

which is the secret key for (P2, P3, P4). Similarly [(a5 +1)a6 +a7 +(a8 +1)a9] is
the secret key for the right sub-tree ∧((P5, P6), P7, (P8, P9)) which uses (a5+1)a6

as secret key for (P5, P6) and (a8 + 1)a9 as secret key for (P8, P9).
The resulting scheme is far much more efficient than the earlier scheme for

which the group key was,

a′ = (([a1 + ((a2 + 1)a3 + 1)a4] + 1)a5 + 1)a6 +
+ ([a1 + ((a2 + 1)a3 + 1)a4] + 1)a7 +
+ (([a1 + ((a2 + 1)a3 + 1)a4] + 1)a8 + 1)a9 .

Since the security for the general case can be reduced to that of the serial and
parallel structures, we only need to prove that these are secure. This follows
from our earlier reductions.

Let us describe the multisignature protocol for the example of the group
structure Gfig1 with the decomposition tree shown in Figure 2. The partial public
key of Pi in Gfig1 is computed from the secret key ai ∈ Z∗

q and other partial keys
yj (j �= i) as follows: y1 = ga1(modp) for the first left branch, y2 = ga2(mod
p), y3 = (y2g)a3(modp), y4 = (y3g)a4(modp), for the second left branch, y5 =
((y1y4)g)a5(modp), y6 = ((y1y4)y5g)a6(modp) for the first right branch, y7 =
((y1y4)g)a7(modp), for the second right branch, y8 = ((y1y4)g)a8(modp), y9 =
((y1y4)y8g)a9(mod p) for the third right branch. Finally the public key y of Gfig1

for the new protocol is computed by y = y6y7y9(modp).

– Computing r: We have

r4 = ra4
3 gk4 (modp),

r5 = (r1r4)a5gk5 (modp),
r6 = ((r1r4)r5)a6gk6 (modp).

Similarly,

r7 = (r1r4)a7gk7 (modp),
r8 = (r1r4)a8gk8 (modp),
r9 = ((r1r4)r8)a9gk9 (modp).

A Structured ElGamal-Type Multisignature Scheme 481

Then r = r6r7r9 (modp).

– Computing s: We have

s4 = (s3 + 1)a4 + k4r · hash(r, M) (modq),
s5 = ((s1 + s4) + 1)a5 + k5r · hash(r, M) (modq),
s6 = ((s1 + s4) + s5 + 1)a6 + k6r · hash(r, M) (modq).

Similarly,

s7 = ((s1 + s4) + 1)a7 + k7r · hash(r, M) (modq),
s8 = ((s1 + s4) + 1)a8 + k8r · hash(r, M) (modq),
s9 = ((s1 + s4) + s8 + 1)a9 + k9r · hash(r, M) (modq).

So s = s6 + s7 + s9 (modp).

The new multisignature of M by Gfig1 is (s, r). It is verified by checking that

gs ?≡ yrr·hash(r,M) (modp).

11 Conclusions

A structured multisignature scheme is a scheme for which the group of signers
is structured. We have studied such schemes and proposed structured multisig-
nature schemes based on a modified ElGamal signature scheme. For the security
proof we have considered attacks for which all the signers except one honest
signer Pi collude. The attackers give a partial signature for a message M to Pi

and obtain a valid partial signature for M by Pi. Under this attack model, the
security of the proposed scheme is proven by showing reductions of the discrete
logarithm problem to the problems of extracting a secret key of a target signer,
changing the signing order in a serial multisignature and changing the signing
structure in a mixed structure.

Acknowledgements

The authors are grateful to Chandana Gamage and Yuliang Zheng for their kind
assistance during the printing trouble of this paper.

References

[BR93] M. Bellare, and P. Rogaway, Random Oracles are Practical: a paradigm
for designing efficient protocols, Proc. of 1st ACM Conference on Com-
puter and Communication Security, pp. 62–73, 1993. 468

482 Mike Burmester et al.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodol-
ogy, Revisited, Proc. of the 30th Annual ACM Symposium on Theory of
Computing, STOC, pp. 209–218, 1998. 468

[DF91] Y. Desmedt, and Y. Frankel, Shared generation of authenticators and sig-
natures, Lecture Notes in Computer Science 576, Advances in Cryptology
-Crypto ’91, pp. 457-469, 1991. 477

[DOMU94] H. Doi, E. Okamoto, M. Mambo, and T. Uyematsu, Multisignature
Scheme with Specified Order, Proc. of the 1994 Symposium on Cryp-
tography and Information Security, SCIS94-2A, January 27-29, 1994.
467, 477

[DOM98] H. Doi, E. Okamoto, and M. Mambo,Multisignature Schemes for Various
Group Structures, The 36-th Annual Allerton Conference on Communi-
cation, Control, and Computing, pp. 713-722,1999. 467, 468, 477

[ElG85] T. ElGamal, A public key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Trans. on Inform. Theory, Vol. IT-31, No. 4,
pp. 469-472, 1985. 467, 472

[FS86] A. Fiat, and A. Shamir, How to Prove Yourself: Practical Solution to Iden-
tification and Signature Problems, Lecture Notes in Computer Science
263, Advances in Cryptology -Eurocrypt ’86, Spring-Verlag, pp. 186-194
1987. 468

[HMP94] P. Horster, M. Michels, and H. Petersen, Meta-ElGamal Signature
Schemes, Proc. of the 2nd ACM Conference on Computer and Com-
munications Security, pp. 96-107, November 1994. 467

[HMP95] P. Horster, M. Michels, and H. Petersen Meta-multisignature schemes
based on the discrete logarithm problem, Information Security -the Next
Decade, Proc. of IFIP/Sec’95, Chapman & Hall pp. 128-142 1995. 467

[HZ92] T. Hardjono, and Y. Zheng A practical digital multisignature scheme
based on discrete logarithms, Lecture Notes in Computer Science 718,
Proc. of Auscrypt’92, Springer-Verlag, pp. 122-132, 1993. 467

[Len90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
B. G. Teubner Stuttgart, John Wiley & Sons, 1990. 468

[OO91] K. Ohta, and T. Okamoto, A digital multisignature scheme based on the
Fiat-Shamir scheme, Lecture Notes in Computer Science 739, Advances
in Cryptology -Asiacrypt’91, Springer-Verlag, pp. 139-148, 1993. 467,
468

[OO99] K. Ohta, and T. Okamoto, Multisignature schemes secure against active
insider attacks, IEICE Trans. Fundamentals Vol. E82-A, No. 1, pp. 21-31,
1999. 467

[Oka88] T. Okamoto, A Digital Multisignature Scheme Using Bijective Public-
Key Cryptosystems, ACM Trans. on Computer Systems, Vol. 6, No. 8,
pp. 432-441, November 1988. 467

[PS96] D. Pointcheval, and J. Stern, Security Proofs for Signature Schemes, Lec-
ture Notes in Computer Science 1070, Advances in Cryptology -Eurocrypt
’96, Springer-Verlag, pp. 387-398, 1996. 468

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communcation of the ACM,
Vol. 21, No. 2, pp. 120-126, 1978. 467

[Schn91] C. P. Schnorr, Efficient Signature Generation by Smart Cards, Journal
of Cryptology, Vol. 4, No. 3, pp. 161-174 1991. 467, 474

A Structured ElGamal-Type Multisignature Scheme 483

[Shim94] A. Shimbo, Multisignature Schemes Based on the ElGamal Scheme,
Proc. of The 1994 Symposium on Cryptography and Information Secu-
rity, SCIS94-2C, January 27-29, 1994. 467

[Woll87] H. Woll, Reductions among number theoretic problems, Information and
Computation, Vol. 72, pp. 167-179, 1987. 470

[YL93] S. Yen, and C. Laih, New Digital Signature Scheme Based on Discrete
Logarithm, Electronics Letters, Vol. 29, No. 12, pp. 1120-1121, 1993. 472

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

