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Abstract. Gaudry has described a new algorithm (Gaudry’s variant)
for the discrete logarithm problem (DLP) in hyperelliptic curves. For
hyperelliptic curves of small genus on finite field GF(q), Gaudry’s variant
solves for the DLP in O(q2 logγ(q)) time. This paper shows that Cab

curves can be attacked with a modified form of Gaudry’s variant and
presents the timing results of such attack. However, Gaudry’s variant
cannot be effective in all of the Cab curve cryptosystems, this paper
provides an example of a Cab curve that is unassailable by Gaudry’s
variant.

1 Introduction

Gaudry has described a new algorithm (Gaudry’s variant) for the discrete log-
arithm problem (DLP) in hyperelliptic curves [7]. Gaudry’s variant uses the
method for Pollard’s rho algorithm [12] with the function field sieving algorithm
of Adleman,DeMarrais, and Huang [1]. Gaudry’s variant solves the DLP in hy-
perelliptic curves of genus g defined on the finite field Fq in time O(q2 logγ(q))
when the genus g is sufficiently small in comparison to the order q of the defini-
tion field.

Arita and Galbraith et al. have described addition algorithms on the Jaco-
bian group of Cab and superelliptic curves respectively, and have demonstrated
algorithm applications in discrete-log-based public key cryptosystems [3,6]. This
paper shows that Cab and superelliptic curves can be attacked by a modified
Gaudry’s variant and presents timing results from the attack.

With hyperelliptic or Cab curve cryptosystems, researchers usually select a
sufficiently large genus so that definition fields are less than one word in size to
hasten computations [14,3]. Gaudry’s variant has excluded out this conventional
hastening method. However, Gaudry’s variant cannot be effective in all of the
non-elliptic algebraic curve cryptosystems. This paper provides an example of a
Cab curve that is unassailable by Gaudry’s variant.

2 Gaudry’s Variant

Take hyperelliptic curve C : y2 = x2g+1 +a1x
2g + · · · a2g+1 of genus g defined on

finite filed Fq. Suppose the genus g is sufficiently small in comparison to the order
q of the definition field. Let JC denote the Jacobian group of the hyperelliptic
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curve. To handle with the DLP, look for integer λ that satisfies D2 = λD1 for
two elements D1 and D2 in JC .

In Pollard’s rho algorithm, we calculate the random linear sums Ri = αiD1+
βiD2 (i = 1, 2, · · ·) of D1 and D2 step by step through a random walk, and wait
for a collision Ri = Rj . Once it occurs, from αiD1 + βiD2 = αjD1 + βjD2, we
get D2 = (αi − αj)/(βj − βi)D1, and λ is obtained.

In Gaudry’s variant, just as in the case of rho algorithm, we calculate the
linear sums Ri = αiD1 +βiD2 (i = 1, 2, · · ·) of D1 and D2 step by step through
a random walk. However, we gather smooth Ri value’s instead of waiting for a
collision. Element D in JC is called smooth when D is the sum of Fq rational
points on C; that is, we take all of the Fq rational points as a factor base. Let all
of the Fq rational points on C be {P1, P2, ..., Pw}. Then, w-dimensional vector
Mi = (mi,1, · · · ,mi,w) corresponds to every smooth Ri through Ri =

∑
k mi,kPk.

In the polynomial expression Ri = [ui(x), vi(x)] from Cantor’s algorithm [4],
Ri is smooth if and only if the polynomial ui(x) is factored into the linear
product

∏
k(x − ck) over Fq, and then we get Ri =

∑
k(ck, v(ck)). Therefore,

by calculating all of the Fq rational points {P1, P2, · · · , Pw} in advance at a
complexity of O(q), vector Mi is easily obtained.

When g is sufficiently small in comparison to q, about 1/g! of all of the
elements in JC are smooth ([7]Prop.4). We encounter a smooth Ri for every g!
steps (remember g is small), and we obtain w′ ( ≥ w) smooth Ri values after
g! · w′ steps. The w′ vectors Mi = (mi,1, · · · ,mi,w) (i = 1, · · · , w′) then become
linearly dependent, and by solving the w-dimensional linear equation, we obtain
values for γi (i = 1, · · · , w′) that satisfy

w′∑

i=1

γiMi = 0.

These values for γi produce λ through the equation Ri =
∑

k mi,kPk ;

λ = −
∑

i

γiαi/
∑

i

γiβi.

In calculating Gaudry’s variant, the most complex step is that of solving the
w-dimensional linear equation

∑
i γiMi = 0 (i = 1, 2, · · · , w′). The matrix (mi,k)

has a size equal to about q × q and is sparse since there are only g non-zero
elements in each row; thus the linear equation can be solved in q2 steps. The
complexity of Gaudry’s variant is given as O(q2 logγ(q)).

When C has non-trivial automorphism φ, Gaudry’s variant becomes more
powerful. Let m denote the order of φ. In this case, all of the Fq rational points
are unnecessary. Only the representatives of orbits in Fq rational points for the
action of φ are needed as a factor base. The number of the orbits is q/m, so the
complexity of Gaudry’s variant becomes O((q/m)2 logγ(q)).

However, automorphisms in C can be ignored, according to a theorem from
Arbarello et al [2].

Theorem 1. The order of the automorphism group of a smooth algebraic curve
of genus ≥ 2 is at most 84(g − 1).
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Using this theorem, we know that the effect of automorphisms can be ignored
by expanding the size of the definition field with log2(84(g − 1)) more bits.

3 Cab and Superelliptic Curve

The Cab curve is a nonsingular affine curve with the equation
∑

0≤i≤b,0≤j≤a,ai+bj≤ab

αi,jx
iyj = 0,

where both αb,0 and α0,a are not equal to zero [10]. Arita has described an
addition algorithm for the Jacobian group of a Cab curve in terms of ideals of the
coordinate ring; he has also proposed discrete-log-based public key cryptosystems
using Cab curves [3]. For a Cab curve with 160 bits of a Jacobian group, timing
results from the addition algorithm are listed in Tables 1,2, and 3.

Table 1. Performance for the C35 curve in ms at 266 MHz, using a Pentium II
chip.

simple random

sum 3.39 3.65

double 3.76 4.21

scalar 862 958

Table 2. Performance for the C37 curve in ms at 266 MHz, using a Pentium II
chip.

simple random

sum 1.15 1.24

double 1.15 1.28

scalar 273 300

Table 3. Performance for the C2,13 curve in ms at 266 MHz, using a Pentium II
chip.

simple random

sum 0.70 0.73

double 0.65 0.68

scalar 158 167

In the tables, “simple” denotes Cab curves with equation Y a +αXb +β, and
“random” denotes randomly chosen Cab curves. “Sum”, “double”, and “scalar”
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denote addition, doubling, and scalar multiplication of random elements, respec-
tively.

A superelliptic curve is a nonsingular affine curve of the equation

yn = aδx
δ + · · ·+ a0,

where n is prime to the characteristics of the definition field, and n and δ are
prime to each other [6]. Galbraith et al. have described an addition algorithm in
the Jacobian group of a superelliptic curve in terms of lattice computation [6].

Given these definitions, Cab curves clearly include superelliptic curves. There-
fore, only Cab curves will be examined.

4 Application of Gaudry’s Variant to Cab Curves

I modified Gaudry’s variant and applied it to Cab curves. The problems I en-
countered were how to decide if a given element in a Jacobian group is smooth
or not, and, if it is smooth, how to represent the element as a sum of Fq rational
points.

For example, with a C37 curve, where the genus is 6, element R in the Ja-
cobian group is expressed as an ideal of the coordinate ring using the Gröbner
basis with respect to the C37 order [3]:

R = {a0 + a1x + a2x
2 + a3y + a4x

3 + a5xy + x4,

b0 + b1x + b2x
2 + b3y + b4x

3 + b5xy + x2y,

c0 + c1x + c2x
2 + c3y + c4x

3 + c5xy + y2}.

Here, ai, bi, and ci are elements in the definition field. The common zeroes of
these three equations are six points on the C37 curve, that comprise R. When
definition field Fq is large enough, for almost any R in the Jacobian group, the
six points comprising R have distinct x-coordinates to each other. So, almost
any R can be expressed as common zeroes of two polynomials:

R = {sixth degree polynomial of x,

y + (fifth degree polynomial of x)},

just as in hyperelliptic curves. The expression is nothing but the Grobner basis
of (the ideal corresponding to) R with respect to the lexicographic order.

Therefore, in Gaudry’s variant against Cab curves, for almost any Ri, the
decision regarding the Ri value’s smoothness and representation as a sum of
Fq rational points follows the same pattern as for hyperelliptic curves, after
translating the Gröbner basis of Ri w.r.t. Cab order to another Gröbner basis
w.r.t. lexicographic order. It is well known that Gröbner bases can be effectively
translated between distinct monomial orders. If exceptional values for Ri are
found, they are simply discarded. It is known that Gaudry’s variant can also be
applied to Cab curves.
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Table 4. 93 bits of a C37 curve over 17 bits of a prime field

finite field F84211

defining equation 1 + 24740x7 + 32427y3 = 0

genus 6

order of Jacobian 43 · 8068970623016239605318986617
order of automorphism 3 · 7

I implemented the modified Gaudry’s variant with C language and the PARI-
GP [11], and then tested it against the C37 curve in Table 4. The curve has 93
bits of a Jacobian group over 17 bits of a prime field. Let ζ3 and ζ7 denote
the primitive seventh root of one and the third root of one, respectively. Since
the curve has the automorphism φ(x, y) = (ζ7x, ζ3y) of order 21, the number of
rational points in a factor base should be 84211/21 = 4010. · · · or more. I needed
to collect 4011 or more smooth elements and then solve about 4011 dimensional
spare linear equations. For solving these linear equations, I used the Lanczos
algorithm [9].

I randomly generated two elements, D1 and D2, in the Jacobian group:

D1 = {x4 + 77465x3 + 75875x2 + (37117y + 57992)x
+ (42876y + 21588),
5485x3 + (y + 79222)x2 + (4298y + 50456)x
+ (36882y + 81869),
41971x3 + 64608x2 + (26263y + 16207)x
+ (y2 + 42778y + 62216)},

D2 = {x4 + 64296x3 + 44620x2 + (29434y + 15779)x
+ (61013y + 42557),
51156 ∗ x3 + (y + 32172)x2 + (62401y + 22153)x
+ (78055y + 13056),
79116x3 + 5028x2 + (69977y + 21979)x
+ (y2 + 75761y + 2009)}.

Then, running the modified Gaudry’s variant, I obtained

λ = 4082271804134874346983670415

for D2 = λD1 in the time given in Table 5. The average and variance of the
number of steps needed to produce every smooth element were 848.265 and
680786, respectively, reasonable results when compared to Gaudry’s theoretical
estimate of 6! = 720 [7].
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Table 5. Timing results of modified Gaudry’s variant against the C37 curve from
Table 4 using a 266-MHz Pentium II chip.

Collection of rational points (PARI-GP) 5 m 13 s

Collection of smooth elements (C) 2 h 33 m 6 s

Solving linear equation (C) 32 m 2 s

Total 3 h 11 m 21 s

5 Cab Curves that are Unassailable by Gaudry’s Variant

Let a and b be distinct prime numbers. Let C(p, α, β)(= C(p, a, b, α, β)) denote
a Cab curve over prime field Fp with the equation

αY a + βXb + 1 = 0.

In this section, I will construct a Cab curve C(p, α, β) of a small genus, that is
secure against Gaudry’s variant. Let h be the order of the Jacobian group of
C(p, α, β). Conditions for security are:

Condition 1 h has at least 160 bits of prime factor l [12],
Condition 2 prime factor l does not divide pk − 1 for small values of k [5],
Condition 3 prime factor l is not equal to p [13], and
Condition 4 p has (40 + log2(84(g − 1))) or more bits.

The fourth condition secures a curve against Gaudry’s variant. Note that the
effect of automorphisms can be ignored by expanding the size of the definition
field with log2(84(g − 1)) more bits (refer to Theorem 1).

Because we are handling a curve with a small genus, we do not need to
consider Adleman,DeMarrais,and Huang’s algorithm [1] or its extension to su-
perelliptic curves [6].

Koblitz used Jacobi sums to calculate the order of Jacobian groups of hy-
perelliptic curves [8]. Jacobi sums can also be used for curve C(p, α, β). For
simplicity, p ≡ 1 (mod lcm(a, b)) has been assumed.

Fix the generator w of multiplicative group F ∗
p . For a rational number s

where (p− 1)s is an integer, character χs of F ∗
p is defined by

χs(w) = e2πis.

Then, extend χs to the whole Fp by setting χs(0) = 0 when s is not an integer
and setting χs(0) = 1 when it is.

For integers l = 1, 2, . . . , a− 1 and m = 1, 2, . . . , b− 1,

jp(l,m) =
∑

1+v1+v2=0

χl/a(v1)χm/b(v2) (1)

is called a Jacobi sum. Here, v1 and v2 run over Fp under the condition 1 + v1 +
v2 = 0.
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Weil has demonstrated that the L function Lp(U) of C(p, α, β) can be ex-
pressed by Jacobi sums [15]:

Lp(U) =
∏

l=1,2,...,a−1
m=1,2,...,b−1

(1 + χl/a(α)χm/b(β)jp(l,m)U),

where χs denotes the complex conjugate of χs.
Generally, the order of a Jacobian group of a curve is equal to the value of

the L function L(U) of the curve at U=1, so the order h of the Jacobian group
of C(p, α, β) is given as

h = Lp(1) (2)

=
∏

l=1,2,...,a−1
m=1,2,...,b−1

(1 + χl/a(α)χm/b(β)jp(l,m))

Thus, to know the order h of the Jacobian group, it is sufficient to calculate
the Jacobi sums jp(l,m). However, they cannot be calculated directly using the
formula (1) for Jacobi sums, so we use the Stickelberger element to calculate
them.

Let [λ] denote the largest integer under the rational number λ, and < λ >
denote λ − [λ]. Take cyclotomic field Q(ζ) with a primitive ab-th root ζ of 1.
Let σt denote the Galois map ζ 	→ ζt of Q(ζ). An element ω(a, b) in group ring
ZZ[Gal(Q(ζ)|Q)] defined by

ω(a, b) =
∑

t

[<
t

a
> + <

t

b
>]σ−1

−t , (3)

where t runs over reduced residue classes mod ab, is called a Stickelberger ele-
ment. As an ideal of Q(ζ),

(jp(l,m)) = Pω(a,b), (4)

where P denotes an prime ideal of Q(ζ) lying over p [16]. By knowing the prime
p and the prime ideal P in advance, Equation (4) can be used to determine
jp(l,m) up to the power of −ζ.

By determining the Jacobi sums using a Stickelberger element, the following
algorithms can be obtained:

Algorithm 1 (To search for a secure C(p, α, β))
Input: a, b
Output: p, α, β, and the order h of the Jacobian group

1. g ← (a− 1)(b− 1)/2
2. m←Max(
160/g�, 
40 + log2(84(g − 1))�)

n� denotes the least integer over n.
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3. Search the candidate j for value of a Jacobi sum for some prime p of m or
more bits by using Algorithm 2:

(p, j)← Algorithm2(m).

4. For every k = 0, 1, . . . , ab− 1,

hk ←
∏

l=1,2,...,a−1
m=1,2,...,b−1

(1 + (−ζ)kj).

5. Check that there is a value hk that satisfies Conditions 1,2, and 3 for security
in the set {h0, h1, . . . , hab−1}. If there is not, Go to step 3. If it does, h← hk.

6. Let ζa and ζb denote the primitive a-th and b-th root of 1, respectively. For
every l = 0, 1, · · · , a − 1 and m = 0, 1, · · · , b − 1, check if the order of the
Jacobian group of C(p, ζl

a, ζ
m
b ) is equal to h or not; for example, check if h

times the random element is equal to the unit element, or not. If the order
is equal, output p, α = ζa

l, β = ζb
m, and h. If there is no such l and m, go

to step 3.

As per step 2, p has 40 + log2(84(g− 1)) or more bits, so the curve obtained
by Algorithm 1 is secure against Gaudry’s variant.

Algorithm 2, contained in Algorithm 1, makes use of Equation (3) and (4)
for the Stickelberger element to find the candidate value of the Jacobi sum.

Algorithm 2 (To find the candidate of the Jacobi sum)
Input: m
Output: p and j
1. ω ←∑

t(<
t
a > + < t

b >)σ−1
−t

2. Randomly generate γ0 =
∑(a−1)(b−1)−1

l=0 clζ
l (−20 ≤ cl ≤ 20).

3. For every i = 1, 2, . . .,
γ ← γ0 + i
p← NormQ(ζ)|Q(γ)
If p < 2m, then try the next i.
If p >> 2m, then go to step 2.

‘>>’ means ‘sufficiently larger than.’
If p is not prime, then try the next i.

4. j ← γω

Output p and j.

Example Algorithm 1 was run for a = 3 and b = 5.

1. g ← (3− 1)(5− 1)/2 = 4
2. m← max(160/4, 
40 + log2(84 · 3)�) = 48
3. Run Algorithm 2 for m = 48.

(a) ω ←∑
t(<

t
3 > + < t

5 >)σ−1
−t = σ1 + σ7 + σ11 + σ13
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(b) γ0 ← 20 − 3ζ − 12ζ2 + 20ζ3 − 11ζ4 − 4ζ5 + 3ζ6 − 16ζ7 was randomly
generated.
For γ ← γ0 + 60 = 80− 3ζ − 12ζ2 + 20ζ3 − 11ζ4 − 4ζ5 + 3ζ6 − 16ζ7,
p← Norm(γ) = 581929936583251 is a prime of 50 bits. Now, the Jacobi
sum candidate j for p is

j ← γγ(7)γ(11)γ(13)

= 18682331 + 1900434ζ + 3903200ζ2

+ 735220ζ3 + 2683534ζ4 − 6028054ζ5

− 1372490ζ6 + 3103044ζ7

4. For every k = 0, 1, . . . , 29, compute hk ← Norm(1 + (−ζ)kj):

h0 ← 114678672941303554807554279710671283827257404103736047882496
· · ·

h6 ← 114678699138696308587273958663265811323988422727826915122881
· · ·

h29 ← 114678746421612909844326492247007547650638094985955354652416

5. h6 satisfies Condition 1,2 and 3. In fact,

h← h6 = 2511 · l
Here,

l = 45670529326442177852359202972228519045793876036569858671

is a prime of 185 bits, distinct from p. Condition 2 is satisfied for k ≤ 1000.
6. For α = 579364850535396 and β = 289406374935593, it is verified that the

order of the Jacobian group of C(p, α, β) is equal to h.

Thus, a C35 curve is obtained with

579364850535396y3 + 289406374935593x5 + 1 = 0

over the prime field GF(581929936583251) with the Jacobian group of the order

2511 · 45670529326442177852359202972228519045793876036569858671,

which is secure against Gaudry’s variant.

6 Conclusion

I have demonstrated that Cab and superelliptic curves can be attacked by a
modified Gaudry’s variant, and I reported timing results for the attack. Miura
has demonstrated that any algebraic curve with at least one rational point has
a Cab-type model [10]. Therefore, I determined that Gaudry’s variant could be
applied to virtually all algebraic curves.

However, Gaudry’s variant cannot be effective in all non-elliptic algebraic
curve cryptosystems. I have provided an example of a C35 curve that is unas-
sailable by Gaudry’s variant.
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