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Abstract. This paper gives a new example of exploiting the idea of
using polynomials with restricted coefficients over finite fields and rings
to construct reliable cryptosystems and identification schemes.

1 Overview

The recently discovered idea of using polynomials with restricted coefficients
in cryptography has already found several cryptographic applications such as
the NTRU cryptosystem [7], the ENROOT cryptosystem [4] and the PASS
identification scheme [6]; see also [5].

In contrast to the constructions of NTRU and PASS, which consider classes of
polynomials of low degree with many “small” non-zero coefficients, ENROOT
introduced a public key cryptosystem where the polynomials are of high degree,
but extremely sparse. In this paper, we give a new application of this idea to the
design of a fast and reliable identification scheme.

Let q be a prime power and let IFq be the finite field of q elements.

Given a set S ⊆ IFq, we say that a polynomial G(X) ∈ IFq[X ] is an S-polynomial
if every coefficient of G belongs to S, and we say that it is an essentially S-
polynomial if G(X) − G(0) is an S-polynomial. (This notation is somewhat
reminiscent of the idea of S-units in number theory, and is not related to con-
structions in algebraic geometry.)

Finally, we say that a polynomial G(X) ∈ IFq[X ] is τ-sparse if it has at most τ
non-zero coefficients.

Throughout this paper log z denotes the binary logarithm of z.

The “hard” problem underlying our one-way functions can be stated as follows:
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Given 2m arbitrary elements α1, . . . αm, γ1, . . . , γm ∈ IFq and a set S ⊆
IFq of small cardinality, it is unfeasible to find a τ-sparse S-polynomial
G(X) ∈ IFq[X ] of degree degG ≤ q − 1 such that G(αj) = γj for j =
1, . . . ,m, provided that q is of “medium” size relative to the choice of
m ≥ 1 and τ ≥ 3.

More precisely, we expect that if one fixes the number of pointsm, the cardinality
|S| and the sparsity τ ≥ 3, then the problem requires exponential time as q → ∞.
Of course, we mean exponential time in the bit length of q, that is, in log q.

Indeed, consider the special case q = p, where p is a prime number. Let aij ≡
αi

j (mod p) and cj ≡ γj (mod p) be chosen so that 0 ≤ aij , cj ≤ p − 1 for
i = 0, . . . , p − 1 and j = 1, . . . ,m. In this (simplified!) case, the hard problem
above is still equivalent to the hard problem of finding a feasible solution to the
integer programming problem

p−1∑
i=0

xiεiaij + yjp = cj , j = 1, . . . ,m,
p−1∑
i=0

εi ≤ τ,

where yj ∈ ZZ, xi ∈ S, and εi ∈ {0, 1} for all i and j.

2 Basic Idea

Let us fix the finite field IFq and some integer parameters k ≥ 1 and r, s, t ≥ 2.
To create the signature Alice uses the following algorithm – which we denote
SPIFI, for Secure Polynomial IdentiFIcation.

Initial Set-up

Step 1
Select at random k distinct elements a0, . . . ak−1 ∈ IFq and a random t-sparse
{0, 1}-polynomial ϕ(X) ∈ IFq[X ] of degree at most q− 1 and with ϕ(0) = 0.

Step 2
Compute A = −ϕ(a0), and put f(X) = ϕ(X) + A. Thus f is a t-sparse
essentially {0, 1}-polynomial with f(a0) = 0 and f(0) = A.

Step 3
Compute Cj = f(aj), j = 1, . . . , k − 1.

Step 4
Make the values of A, a0, . . . ak−1 and C1, . . . , Ck−1 public.

To verify Alice’s identity, Alice and Bob use the following procedure:

Verification Protocol
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Step 1
Bob selects at random an s-sparse essentially {0, 1}-polynomial h(X) ∈
IFq[X ] with h(0) = B and sends it to Alice.

Step 2
Alice selects at random an r-sparse {0, 1}-polynomial g(X) ∈ IFq[X ] of de-
gree at most q − 1 with g(0) = 1.

Step 3
Alice computes

F (X) ≡ f(X)g(X)h(X) (mod Xq −X)

and
Dj = g(aj), j = 1, . . . , k − 1,

and sends the polynomial F and D1, . . . , Dk−1 to Bob.
Step 4

Bob computes
Ej = h(aj), j = 1, . . . , k − 1,

and verifies that F (X) is an rst-sparse {0, 1, A,B,AB}-polynomial with
F (0) = AB, and

F (aj) = CjDjEj , j = 0, . . . , k − 1,

where D0 = E0 = 1, C0 = 0.

Of course, there is a negligible chance that the constructed polynomial F (X) is
not a {0, 1, A,B,AB}-polynomial, however if rst is substantially smaller than q
this chance is extremely small (and in this case Alice and Bob can always repeat
the procedure).

The sparsity of the polynomials involved guarantees the computational efficiency
of this scheme.

In particular, using repeated squaring one can compute any power ae with a ∈ IFq

and an integer e, 0 ≤ e ≤ q−1, in about 2 log q arithmetic operations in IFq in the
worst case and about 1.5 log q arithmetic operations on average; see Section 1.3
of [1], Section 4.3 of [2], or Section 2.1 of [3]. Thus any τ -sparse G(X) ∈ IFq[X ]
can be evaluated at any point in about O(τ log q) arithmetic operations in IFq.

It is also well known that any element of IFq can be encoded by using about log q
bits.

Finally, we remark that if 0 ∈ S ⊆ IFq then any τ -sparse S-polynomial G(X) ∈
IFq[X ] of degree at most q − 1 can be encoded with about τ log(q|S| − q) bits.
Indeed, we have to identify at most τ positions at which G has a non-zero
coefficient. Encoding of each position requires about log q bits. For each such
position, about log(|S|−1) bits are then required to determine the corresponding
element of S.
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For example, the signature must encode rst positions of the polynomial F (cor-
responding to its non-zero coefficients), which takes about rst log q bits. Each
position requires two additional bits to distinguish between the possible coeffi-
cients 1, A, B and AB. The encoding of D1, ..., Dk−1 requires about (k−1) log q
bits. Thus, the total signature size is (rst+ k − 1) log q + 2rst bits.
Putting everything together, after simple calculations we derive that, using the
naive repeated squaring exponentiation,

◦ the initial set-up takes O(kt log q) arithmetic operations in IFq;
◦ the private key size is about (t+ 1) log q bits;
◦ the public key size is about 2k log q bits;
◦ signature generation, that is, computation of the polynomial F and elements
Dj , j = 0, . . . , k− 1, takes O(rst) arithmetic operations with integers in the
range [0, 2q − 2] and O ((k − 1)r log q) arithmetic operations in IFq;

◦ the signature size is about (rst + k − 1) log q + 2rst bits;
◦ signature verification, that is, computation F (aj) and the products CjDjEj ,
j = 0, . . . , k − 1, takes about O (ksrt log q) arithmetic operations in IFq.

We remark that the practical and asymptotic performance of this scheme can
be improved if one uses more sophisticated algorithms to evaluate powers and
sparse polynomials; see [1,2,3,9,11]. In particular, one can use precomputation
of certain powers of the aj’s and several other clever tricks which we do not
consider in this paper.

3 Possible Attacks

It is clear that recovering or faking the private key (that is, finding a t-sparse
essentially {0, 1}-polynomial polynomial f̃(X) ∈ IFq[X ] with f̃(0) = A, and
f̃(aj) = Cj , j = 0, . . . , k − 1, C0 = 0) or faking the signature (that is, finding
a rst-sparse {0, 1, A,B,AB}-polynomial F̃ (X) ∈ IFq[X ] with F̃ (0) = AB, and
F̃ (aj) = CjDjEj , j = 0, . . . , k − 1) represent the same problem (with slightly
different parameters).

We also remark that that without the reduction

f(X)g(X)h(X) (mod Xq −X),

one of the one possible attacks would be via polynomial factorization. In particu-
lar, in a practical implementation of this scheme, one should make sure that both
f and g have terms of degree greater than q/2 (so there are some reductions).
Moreover, even without the reduction modulo Xq −X , the factorization attack
does not seem to be feasible because of the large degrees of the polynomials
involved; all known factorization algorithms (as well as their important compo-
nents such as irreducibility testing and the greatest common divisor algorithms)
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do not take advantage of sparsity or any special structure of the coefficients;
see [2,10]. In fact the first factor any of this algorithms will find will be the
trivial one, that is, X − a0. However the quotient F (X)/(X − a0) is most likely
neither sparse nor a {0, 1}-polynomial.
It is also possible that by using some “clever” choice of polynomials h, after
several rounds of identification, Bob will be able to gain some information about
f . Although the polynomials g are supposed to prevent him from doing this, in
the next section we present another idea, which can be applied to other situations
and which should make this attack completely unfeasible.

One might also consider lattice attacks. In the abstract, they could succeed,
but since the dimension of the lattice would be equal to the (very large) degree
of the polynomials involved, any such attack would be completely unfeasable.
In particular, with current technology one can reduce lattices of degrees in the
hundreds, while our lattices will have dimension roughly 231.

Finally, the probability of success in a brute force attack to discover or fake
the signature, when the attacker selects a random rst-sparse {0, 1, A,B,AB}-
polynomial F̃ (X) ∈ IFq[X ] with F̃ (0) = AB that verifies only if F̃ (aj) =
CjDjEj , j = 0, . . . , k − 1, is about

min

{
4−rst+1

(
q − 1
rst− 1

)−1

, q−k

}
.

Similarly, the probability of randomly guessing or faking the private key f is

min

{(
q − 1
t− 1

)−1

, q−k

}
.

In particular, we do not see any security flaws in this scheme even if k = 1. While
the choice k = 1 has the obvious advantage of minimizing the signature size (in
this case, Alice sends only the polynomial F ), in order to provide the required
level of security, quite large values of q must be used. From a practical standpoint,
it is very convenient to work in the field with p = 231 − 1 elements. Thus, to
guarantee the 290 level of security, which is currently accepted as standard, it is
better to take k ≥ 3. We believe that the choices q = p = 231 − 1, r = s = t = 5,
and k = 3 provide a fast, short (about 4200 bits long), and reliable signature.

4 Modification of the Basic Scheme

To prevent Bob from gaining any useful information about f by selecting some
special polynomials h, Alice can select a ∈ IFq and two t-sparse essentially
{0, 1}-polynomials f1(X), f2(X) ∈ IFq[X ] of degree at most q−1 which for some
A,C1, . . . , Ck−1 ∈ IFq and distinct a0, . . . , ak−1 ∈ IFq satisfy the conditions

f1(0) = f2(0) = A (1)
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and
f1(aj) = f2(aj) = Cj , j = 0, . . . , k − 1, (2)

where C0 = 0.

To do so, Alice selects a certain parameter n < t, considers random {−1, 1}-
polynomials ψ(X) and tries to find a root of this polynomial over IFq. For values
of n of reasonable size this can be done quite efficiently, at least in probabilistic
polynomial time; see [2,10].

It follows from Theorem 3 of [8] that for sufficiently large q the probability of a
monic polynomial of degree n over IFq having k distinct roots in IFq is

Pk(n, q) =
∞∑

m=k

(
q

m

)
q−m

n−m∑
l=0

(−1)l
(
q −m

l

)
q−l.

In particular,

lim
n→∞ lim

q→∞Pk(n, q) =
1

k ! ek
.

Therefore, after O(k!ek) Alice will find with high probability an n-sparse {−1, 1}-
polynomial ψ(X) ∈ IFq[X ], having k distinct roots a0, . . . , ak−1 ∈ IFq. Then
she can write Xψ(X) = ϕ1(X) − ϕ2(X) where ϕ1, ϕ2 are {0, 1}-polynomials.
Obviously,

ϕ1(aj) = ϕ2(aj), j = 0, . . . , k − 1,
and

ϕ1(0) = ϕ2(0) = 0

Then Alice selects a random (t − n)-sparse {0, 1}-polynomial ϕ(X) ∈ IFq[X ] of
degree at most q − 1 and with ϕ(0) = 0 Now Alice puts

fi(X) = ϕ(X) + ϕi(X) +A, i = 1, 2,

where
A = −ϕ(a0)− ϕ1(a0) = −ϕ(a0)− ϕ2(a0).

Thus f1 and f2 are t-sparse essentially {0, 1}-polynomials which satisfy (1)
and (2). Therefore, now Alice can alternate f1 and f2 in a random order.

Instead of the sum ϕ(X) + ϕi(X), i = 1, 2, one can also consider more compli-
cated linear combinations with {0, 1}-polynomial coefficients. For example, one
can put

fi(X) = ϕ(X) + ψ(X)ϕi(X) +A, i = 1, 2,

for a random {0, 1}-polynomial φ(X) ∈ IFq[X ] and

A = −ϕ(a0)− ψ(a0)ϕ1(a0) = −ϕ(a0)− ψ(a0)ϕ2(a0).
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5 Concluding Remarks

It is natural to try to construct and use more than two t-sparse essentially
{0, 1}-polynomials which take the same value at k distinct points. However our
approach of Section 4 does not seem to extend to this case.
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