A State-Based Model for Certificate
Management Systems

Chuchang Liu, Maris A. Ozols, Marie Henderson, and Tony Cant

Information Technology Division
Defence Science and Technology Organisation
PO Box 1500, Salisbury
SA 5108, Australia
{Chuchang.Liu,Maris.0zols,Marie.Henderson,Tony.Cant }@dsto.defence.gov.au

Abstract. A Certificate Management System (CMS) is used to gener-
ate, distribute, store and verify certificates. It supports secure electronic
communication through its functions. This paper presents a state-based
model for certificate management systems. The axiomatization of CMS
structures and the security policy followed by CMSs is discussed. The
main functions of a CMS, including certificate issuing, certificate revoca-
tion and certificate rekeying, are formally described through transitions
that change states of the CMS. A major CMS client function, certificate
verification, is also formally discussed. With this model, an approach
to the formal specification of the structure and behavior of a CMS is
provided. The approach is very general, and would be useful in guiding
the developer and the evaluator of a CMS with the design, analysis and
implementation of the system.

Keywords: certificate, CA (Certification Authority), certificate man-
agement systems, certificate verification, information security, formal
methods.

1 Introduction

Certificates have been used with security applications to support the validation of
digital signatures on documents that are exchanged through computer networks.
Recently, there has been substantial interest in public key technologies [2,3,4]
being used to support secure electronic communications. In order to use public
key cryptography, it is necessary to make an entity’s public key available to
others in such a way that its authenticity (i.e., its status as the true public key
of that entity) and validity are verifiable. Public key certificates can be viewed
as a vehicle by which public keys may be stored, distributed or forwarded over
unsecured media while minimising the danger of undetectable manipulation.
Anyone who wants to use a certificate must have a valid copy of the public key
of the Certification Authority (CA) who issued the certificate, and must trust
the CA.

A Certificate Management System (CMS) can provide mechanisms for man-
aging public key certificates through its administration functions. It is used to

H. Imai, Y. Zheng (Eds.): PKC 2000, LNCS 1751, pp. 75-92, 2000.
© Springer-Verlag Berlin Heidelberg 2000

76 Chuchang Liu et al.

generate, distribute, store and verify certificates. Practical discussions on the
structure of a CMS, its establishment, as well as functions and protocols between
its components can be found in a number of research papers and references, such
as in Kapidzic [6,7], Trecek [11], and PKIX Working Group Internet Draft [5].

As is well known, formal methods can provide strict proof technologies for
verifying critical properties of a security system in a precise and unambiguous
way, and also guide the developer towards a design of the security architec-
ture of the system and its implementation. Formal techniques have been used
for specifying authorization requirements [12] and analysing security properties
of cryptographic protocols [10]. Formal methods have also been applied in the
design of security devices. However, there has been a distinct lack of formal
methods and techniques which can be used for the description of the structure
and the behavior of CMSs. Therefore, theoretical studies of CMSs that may lead
to a formal specification for the structure, functions and security properties of
such systems are highly desirable.

In this paper, we present a state-based model for CMSs. One of our con-
tributions is to propose an approach to the formalization of CMS structures
and the security policy. The axiomatization of the topology structure and states
of a CMS is discussed, and a general security policy followed by CMSs is also
formalized. The other contribution is to provide a formal description for the
main functions of a CMS, including certificate issuing, certificate revocation and
certificate rekeying. All these function are described as transitions that change
states of the CMS. A major CMS client function, certificate verification, is also
formally discussed.

Our discussion is based on certificate management systems with top-down
hierarchical structure, but the method is very general. Therefore, the methods
and techniques proposed in this paper are suitable for any other kind of certificate
management systems, and they would be useful in guiding the developer and the
evaluator of a CMS with the design, analysis and implementation of the system.

The rest of the paper is structured as follows. Section 2 introduces the state-
based model for CMSs, and gives a formal definition. Section 3 discusses the
axiomatization of the CMS security policy, including certificate issuing policy,
access control policy and trust policy. Section 4 formalizes the main CMS func-
tions — certificate issuing, certificate revocation, and certificate rekeying — by
defining appropriate transitions. The certificate verification function is discussed
in Section 5, where a number of verification rules are presented. The last section
concludes this paper with a short discussion about future work.

2 The Model

In this section, we present the state-based model for certificate management
systems. An axiomatization of the CMS structure is discussed, and a formal
definition of a CMS is given.

A State-Based Model for Certificate Management Systems 77

2.1 Certification Topology

We classify the entities or agents in a CMS into two classes, Certification Au-
thorities (CAs) and users. CAs can have their own certificates, and they also
issue certificates for others within the CMS. Users, also called end entities, are
people or devices that may hold certificates issued by some CAs, but cannot
issue any certificates themselves.

A wuser of a security service requiring knowledge of a public key generally
needs to obtain and validate the certificate containing the required public key. If
the user does not already hold an assured copy of the public key of the CA who
signed the certificate, then he might need an additional certificate to obtain that
public key. In general, a chain of multiple certificates may be needed, comprising
the certificate of the public key owner signed by one CA, and zero or more
additional certificates of CAs issued by other CAs. Such chains of certificates
are called certificate paths.

There are different ways in which CMS entities might be configured so that
public key users are able to find certificate paths. For instance, RFC 1422 [§]
defines a rigid hierarchical structure for the Internet Privacy Enhanced Mail
(PEM) [5], in which there are three types of PEM CAs: Internet Policy Regis-
tration Authority (IPRA) acts as the root of the PEM certification hierarchy at
level 0, and issues certificates only for the next level of authorities, called PCAs
(Policy Certification Authorities); PCAs, at level 1 of the PEM certification hi-
erarchy, take the responsibility for establishing and publishing the certification
policy with respect certifying users or subordinate certification authorities; and
CAs, which are at level 2 of the hierarchy and can also be at lower levels (those
at level 2 are certified by PCAs).

With our intention being to discuss CMSs in general, we assume that all the
entities of a CMS, we call them agents, form a single root top-down certification
hierarchy. This means that there is a special CA at the root, called the PAA
(Policy Approval Authority), whose role is different from that of the other CAs.
The PAA can certify others (but no one certifies it) and it holds a certificate
which is trusted by everyone. All CAs can only issue certificates to their children,
and no certificates are issued by users. In our model, the top-down certification
hierarchy is formally described using a series of agent axioms.

Definition 1 Let 2 be a set of agents (including a special agent, called the PAA)
and | a binary relation over 2. Then (§2,]) is called a certification topology if
it satisfies the agent axioms AA1 — AAG given below.

Agent Axioms

(AA1) VXe (IsCA(X)V IsUsr(X))

(AA2) VXe(IsCAX)«— JYe(X|Y))

(AA3) VXe (IsUsr(X)« VYe—(X|Y))

(AA4) VXe (X =PAA < (IsCA(X)A—IYe (Y |X)))
(AA5) VXe—(X]X)

(AAG) VXeVYe (X |TY— —(Y]|TX)

78 Chuchang Liu et al.

Here, IsCA(X) means X is a CA, and IsUsr(X) means X is a user. The axiom
AA6 includes a new relation operator | as a transitive closure of the relation
|, which is defined by the following formula:

VieVYe (X |TY— (X|Y)VIZeX|TZA(Z]|TY))

Note that axioms AA2 and AA4 together have ruled out the trivial case that
{2 has only one agent, the PAA. Therefore, in this structure, the PAA is always
a CA.

A certification topology has an intuitive direct graphical representation —all
agents (i.e., CAs and users) are represented as nodes and, for any X, Y € {2, there
is a directed edge from X to Y if and only if X | Y holds (in the case, we say X is
a parent of Y or Y is a child of X). The PAA as a special agent at the root has no
parents. An example of a certificate topology is shown in Figure 1.

@@

Fig. 1. A certification topology

The topology gives a trust model for certificate management. A search for
finding a certificate path, as we will see, can be done based on the certification
topology. In fact, certificate paths correspond to directed paths in the graphical
representation of the topology. Based on the topology axioms, it is not difficult
to show that, for any CA or any user, there exists at least one directed path to
it from the PAA.

A State-Based Model for Certificate Management Systems 79

2.2 Certificates

A public-key certificate is a data structure consisting of a data part and a sig-
nature part. The data part contains, as a minimum, a public key and a string
identifying the party (subject) to be associated therewith and the issuer of the
certificate. The signature part consists of the digital signature of the issuer over
the data part, thereby binding the subject’s identity to the specified public key.

The certificates we consider have a standard public-key certificate format
with the basic information outlined below.

Definition 2 A certificate has the following form:
Cert (I,Ds,D,,S,PKs, SIG1(I, Dy, D¢, S, PKs))

or, simply, written as Cert (I,Dg,De,S,PKs, SIGr), where I is the issuer, Dy and
D, are the start date and expiry date respectively, S is the subject of the certificate,
PXs is the public key of S, and SIGy is the signature of the issuer 1.

There is a special certificate, named as PAAcert, that has the special form
as follows:

Cert (_, -y = PAA, PKPAA; _ D

PAAcert is intended to be the certificate of the PAA. The PAA is the top CA:
its certificate is not issued by any other CA, so PAAcert is usually viewed as a
self-signed certificate. In the case, the issuer’s name, the start date, the expiry
date and the signature parts are all omitted. All CAs and users would trust this
certificate held by the PAA.

We denote the set of all certificates issued by CAs in the CMS as C, called
the total certificate set of the CMS. This means that any certificate we consider
at any time must belong to C. For any certificate C € C, the following projection
functions can be used to obtain the value of each component contained in C. Let
C = Cert (I, Dy, D, S, PKs, SIG:(I, Dy, D., S, PKs)), we define:

I(c)=1 D,(C) =D,
D.(C) =D, §(c) =5
PK(C) = PKq SIG(C) = SIG:(I, Dy, D, S, PKg)

These functions will be used frequently in our discussion.

2.3 CMS States and Transitions

At any moment in time, or at any given state, an agent in the CMS should hold
zero or more certificates and, in particular, any CA should also be associated
with a CRL (Certificate Revocation List) issued by itself periodically. Thus, we
define states of a CMS as follows:

80 Chuchang Liu et al.

Definition 3 Let (§2,]) be a certification topology and C the total certificate
set. A relation s from £2 to 2€ x 2€ is called a CMS state if it satisfies the state
axioms SA1 — SA3 given below, where 2€ is the power set of C. Under a state
s, we call s(X,¢,n) a triple, where {(C C) is a set of certificates issued to X and
n(C C) is a set of certificates issued by X.

State Axioms

(SAL) VXe3Cedne(s(X,(,n) AV eV e (s(X,¢",n') = ("= A0 =n)))
(SA2) VXeVCe (s(X,(,n)ANCe€(—3(C)=X)
(SA3) VXeVCe (s(X,(,n)ACeEn—I(C)=2X)

According to Definition 3, at any given state s (referred to as the current state),
any agent X is associated with two certificate sets: (and 7. All certificates in
¢ should be possessed by X because their subject is X; and all certificates in 7
must be issued by X itself at sometime because their issuer is X. Thus, ¢ may
be viewed as the possessed certificate set of X, while 7 may be viewed as the
revoked certificate set of X. Formally, we have

Definition 4 Let s be a CMS state. If we have s(X,(,n), then ¢ is called the
possessed certificate set of X, which lists all certificates possessed by X, and 1 is
called the revoked certificate set of X, which represents the CRL issued by X at
the state s. In particular, if C € ¢, we say that X holds the certificate C; if C €),
we say that X has revoked the certificate C.

In the following, for the reason of simplifying our discussion, we will often use
(x and 7% to denote the possessed certificate set and the revoked certificate set
of an agent X, respectively, at a given CMS state.

In the theory of state machines, transitions are usually described as actions
that change states of a machine. Adopting the formal approach to defining a
state machine proposed by Eastaughffe et al. [1], we define transitions of the
CMS as follows:

Definition 5 A CMS transition changes one CMS state into another and con-
sists of three parts:

- the Let declaration, which introduces local variables for abbreviating expres-
stons within the transition;

- the guard, denoted as Pre, a boolean expression which must be true for the
current values of the variables; and

- the action list Act, essentially a parallel assignment statements, which involve
the state changes.

As an example, a simple transition is given as follows. Suppose Y | X, and,
at the current state s, we have s(X, (x,nx) and now a transition involving only
the issue by Y of a new certificate C to X is applied, then the transition might be
defined as:

A State-Based Model for Certificate Management Systems 81

Let: C = Cert (Y,Dj,De,X, PKx, SIGy)
Pre: SucReqCert(X,Y)
Act: G — GU{C}

This definition means that, if the checking of the certificate request “X requests

a certificate issued by Y” is successful, Y will issue a certificate to X. Therefore,

when SucReqCert (X,Y) has the value “True”, at the next state, denoted as s,

the set of certificates held by X will be (x U {C}. Thus, we have s'(X, x U{C},n).

This transition does not involve any other actions than issuing the certificate C

to X by Y. Therefore, for any Z € 2, if s(Z,(z,nz) and Z # X, then s'(Z, (z,17).
An expanded discussion on transitions will be given in Section 4.

2.4 A Formal Definition of a CMS
We are now able to give the formal definition of a CMS as follows.

Definition 6 A CMS (Certificate Management System) is defined as a 5-tuple
($2,1,C, 8, T) where

- 02 is a set of agents, including the special agent PAA, and (2 with the relation
| forms a certification topology ({2,]);

- C is a non-empty set of certificates, called the total certificate set, that con-
tains all possible certificates issued by CAs and a special element called the
PAAcert, which is held by the PAA.

- S is a set of CMS states; and

- T is a set of transitions, a transition may change one state into another
when it is applied.

According to the definition, a CMS must satisfy all the axioms AA1 — AA6 and
SA1 — SA3.

3 The CMS Policy

In this section, we present a general security policy for CMSs, which involves
certificate issuing, access control, the validity of certificates, and the distribution
of trust.

We assume that the operations that can be taken by agents are classified into
two types: CMSservice and other. To formalize the general security policy, we
introduce several predicates as follows:

CanCertify(X,Y): X can certify Y.

ActType(a, Ty): The type of an operation a is Ty.

CanTake(X, a): X can perform the operation a.

Valid(X): X is valid, where X can be a certificate, a public key, or a
signature.

Holds(X,C): X holds the certificate C.

HasRevoked(X,C): X has revoked the certificate C.
Trusts(X,C): X trusts the certificate C.

82 Chuchang Liu et al.

3.1 Certificate Issuing Policy

Let (£2,],C,S,7T) be a CMS. Then, by the agent axioms, we can directly obtain
the following conclusion: For any X € {2, its certification domain is defined.
Formally, we define

VX e (IsCertDom(D,X) < VYe (YED < X | Y))

where IsCertDom(D, X) means that D is the certification domain of X.

This definition does not require that X must be a CA; it can actually be any
agent in the CMS. However, if X is a user, using the axiom AA3, it is easy to
show that D is empty. That is, the certification domain of any user is the empty
set.

Thus, the certificate issuing policy can simply be stated as follows:

— In a CMS, an agent can certify only those who belong to its certification
domain.

This policy can be formalized as the following axiom:
(PA1) VX @ VY @ (CanCertify(X,Y) — Y € D A IsCertDom(D, X))

An obvious corollary of the axiom PA1 is that users cannot certify anybody,
because their certification domains are empty.
As an alternative of PA1, we may have

(PA1") VXeVYe (CanCertify(X,Y) — X |Y)

It is easy to show that PA1 and PA1’ are logically equivalent. However, we
prefer PA1 due to a technical reason: the amount of work in checking if someone
is an eligible member to whom an entity can issue a certificate based on the the
certificate domain of this entity is usually less than that based on the relation |
if the certificate domain has already been calculated.

3.2 Access Control Policy

If a user requests a CMS service, he may be able to provide a valid certificate;
but in some case he may not have one. Also attackers may try to use forged
or stolen certificates to access the system. In the state-based model, to exclude
unauthorised users, the CMS follows a basic rule — the access control policy
stated as follows.

— No one without a valid certificate can be allowed to use security applications
(CMS services).

This policy is formalized as the axiom:

(PA2) VX eVae (CanTake(X,a) —
ActType(a, other) vV 3C e (Holds(X,C) A Valid(C)))

This says: for any agent X and any operation a, if X can perform the operation
a, then the type of a is other or X holds a valid certificate.

A State-Based Model for Certificate Management Systems 83

3.3 The Validity of Certificates

According to the access control policy, any user who is applying for CMS services
should be able to provide a valid certificate issued by a CA. In other words, the
CMS must verify the validity of every certificate that a security application uses.
Therefore, the CMS should provide support for the verification process to check
if a certificate is valid. The CMS policy regarding the validity of certificates
include the following items:

— The certificate PAAcert is held by the PAA and it is valid.

— A certificate held by someone other than the PAA is valid if and only if
the following conditions are all satisfied: (1) the issuer of the certificate is
a parent of this person, (2) the current time belongs to the time interval
shown on the certificate, (3) the signature of the issuer is valid, and (4) the
certificate has not been revoked by the issuer.

— The signature on a certificate is valid if and only if the issuer of the certificate
holds a valid certificate.

In the state-based model, all these items have been formalized as the following
axioms:

(PA3) Holds(PAA,PAAcert) A Valid(PAAcert)

(PA4) VX eVCe (Holds(X,C) A =(X = PAA) — (Valid(C) < I(C) | XA
(Ds(C) < Today < D.(C))A Valid(SIG(C)) A ﬂHasRevoked(I(C), C)))

(PA5) VCe (Valid(SIG(C)) < 3¢’ e (Holds(I(C),C") A valid(C')))

where Today is variable representing the current time.

3.4 Trust Policy Axioms

From the above policy axioms, we can see that in general a single certificate is
not enough to establish assurance that the certificate subject is authorised to
access a CMS service it is requesting. Usually, a certificate path that starts from
the certificate held by the trusted issuer is needed.

We make the following assumptions concerning trust within the CMS:

(1) CAs and users trust all CAs to faithfully execute their CA operations; and
(2) CAs and users trust that it is not viable to tamper with CMS certificates.

These assumptions can be well founded and supported by CMS practices. Firstly,
assurance is provided for (1) through the use of accreditation of CAs, Certificate
Practice Statements published by CAs and the implementation of appropriate
policy!. Assurance is provided for (2) through the use of digital signatures, and
good control of private keys.

! Note that policy for CAs can be listed and checked in much the same way as in which
certificates are checked and can even be included as an extension in certificates.

84 Chuchang Liu et al.

The only assumption made concerning trusted certificates is that the certifi-
cate PAAcert, held by the PAA, is trusted by all CAs and users within the CMS.
In fact, since the CMS is a top-down hierarchy, trust of all CMS certificates can
be determined using the PAA certificate and by checking the validity of certifi-
cates along the certification path. For example, suppose that a CA’s certificate
is valid and its issuer is the PAA whose certificate is trusted then, from our
assumptions, the CA’s certificate is trusted. It is seen that for the CMS trust
must always be referenced back to the single trust point, namely, the PAA’s
certificate (as is the case in top-down hierarchies).

Trust is transferred throughout the CMS using the trust policy stated as
follows:

— Everybody trusts the certificate PAAcert.
— One trusts a certificate other than the PAAcert if and only if the certificate
is valid and the certificate’s issuer holds a certificate that the person trusts.

We formalize the trust policy with the following axioms:

(PAT) VX e Trusts(X,PAAcert)
(PAS) VX e VC o (—(C = PAAcert) — (Trusts(X,C) <
Valid(C) A 3¢’ (Holds(I(C),C’) A Trusts(X,C'))))

In our model, the trust policy of the CMS consists of only the two axioms as
given above. These axioms restrict the CMS to have only one trust point from
which all trust is inferred. There are other ways to distribute trust within a
CMS, such as multiple trust points, but these will not be considered here.

4 The Formalization of CMS Functions

In this section, we consider three CMS functions: certificate issuing, certificate
revocation and certificate rekeying. All these functions of a CMS may lead to
dynamic changes of state. We have already stated that the actions which change
states of a CMS can be viewed as transitions within the system. Therefore, all
these functions can formally be described through transitions.

4.1 Transitions

Let (£2,],C,8,T) be a CMS. We now discuss transitions at a given state s,
where s € S.
A simple transition is defined as one of the following actions:

- Issuing of a certificate C to an agent X by a CA Y;
- Revoking of a certificate C by an agent X.
- Rekeying of a certificate C held by an agent X.

A State-Based Model for Certificate Management Systems 85

We denote the simple transitions involving the above actions as Issues(Y,C,X),
Revokes(X,C), and Rekeys (X,C) respectively.

Without loss of generalisation, a transition of a CMS may be a simple transi-
tion as above, or a compound transition formed from several simple transitions
that occur in parallel at the same time. That is, if t1, ..., ¢, are simple transi-
tions, ¢1|| .. .||t is a compound transition, where || is called the parallel operator
over transitions.

4.2 Certificate Issuing

CMSs support two types of certification requests: self-registration and agent-
registration. In a self-registration request, an Organization Registration Author-
ity (ORA) may provide a secret message to the prospective certificate holder.
The entity itself generates its own key pair, forms a certificate request, signs it
with the corresponding private key material, and includes authentication infor-
mation based on the secret message provided by the ORA. The CA receives the
request, and verifies the requester’s identity through the authentication infor-
mation. If accepted, the CA will generate a new certificate and send it to the
certificate holder.

In an agent-registration request, the agent vouches for the prospective cer-
tificate holder’s identity and the binding to the public key. When a certificate
request comes from an accredited agent, the receiving CA will process the request
and, if accepted, generate a new certificate and send it to the agent. The CA
may also send the new certificate to the holder. The CA may reject the agent-
generated certification request due to the following reasons: the authentication
of the identity of the certificate’s subject fails, or the agent does not possesses
a valid certificate. If the CA rejects the request, it will report the failure to the
agent stating the reason of the failure.

In any case, the action “issuing a certificate to X by Y’ can happen only
when the checking of certificate request is successful. We use the predicate
SucReqCert (X,Y) to denote that the checking of certificate request “X requests
a certificate issued by Y” is successful. Then the transition Issues(Y,C,X) has
the form given in Section 2.3.

The certificates issuing function must follow the certificate issuing policy.
Therefore, the action “issuing a certificate to X by Y’ can be performed only
when the following conditions are satisfied:

- Y can certify X, i.e., Y | X; and
- Y holds a valid certificate.

Thus, the value of the guard SucReqCert (X,Y) can be obtained by the formula:
SucReqCert(X,Y) « (Y | X) A 3C" o (Holds(Y,C') A Valid(C'))

By axiom PA1, if the prospective certificate holder in a certification request
does not belong to the certification domain of the issuer required, the request
must not be accepted. Usually, when a CA receives a certification request, it will

86 Chuchang Liu et al.

first check if that the prospective certificate holder appears in its certification
domain. If not, it may immediately reject the request.

In the case that a number of issuing certificate actions happen at the same
time, a compound transition may be needed. The definition of a compound
transition can simply be formed by conjunction of the formulas appearing in the
corresponding parts of all simple transitions constructing the compound transi-
tion. For instance, suppose “issuing a certificate C; to X7 by Y17, ..., “issuing a
certificate C,, to X, by Y,,” happen at the same time, then the certificate issuing
behavior can be described as the compound transition

Issues(Y,,C1,X1)] ... | Issues(Y,,Cpn,Xn),

whose definition as follows can directly be obtained from the simple transitions
Issues(Y;,Ci,X1), ..., and Issues(Y,,Cy,Xp):

Let: C; = Cert (Yy,Ds,,D.,, X1, PKx,SIGy,),
C, = Cert (Y,,Ds,,De, , Xn, PKx
Pre: SucReqCert(X,,Y;)

SIGy,)

n?

SucReqCert(X,,Y,)
Act: (x, «— G, U{Ci}

G &, U{Cn}

However, we should note that, if there is more than one CA issuing a certifi-
cate to the same agent, the actions involved in those issues could be combined
to a single action. For instance, suppose a compound transition contains two
simple transitions:

Issues(Y,,Ci,X) and Issues(Y,,Co,X),
where both

Cy = Cert (Y1,Dy,,De, , X, PKx, SIGy,) and
Cy = Cert (Ys,Ds,, D¢, , X, PKg, SIGy,)

are issued to X. We have the action (x < (x U {C1} in the simple transi-
tion Issues(Y;,Ci,X), and the action (x < (x U {C2} in the simple transition
Issues(Y,,C2,X). In this case, the two actions should be combined to a single
action (x < (x U {C1,Ca}.

4.3 Certificate Revocation

At the initial time when the CMS starts, we may assume that the sets of re-
voked certificates for all CAs (as well as all users) are empty. At any time after
the initialization, every CA in the CMS must periodically issue a CRL, which
contains all the certificates that it has revoked.

A State-Based Model for Certificate Management Systems 87

Certificates are revoked by a CA who issued them when the CA has reason
to believe that they can no longer be trusted. At any time, when a CA, say X,
issues a certificate C, X should of course trust C. That is, the formula Trusts (X, C)
automatically obtains the truth value “True” at the same time when C is issued,
and this value will keep until C will not be trusted by X due to some reasons.
Therefore, if a CA X revokes a certificate C, then preconditions should include:
the issuer of C is X, and X does not trust C. We define

ApvRevCert(X,C) <« (I(C) = X) A —Trusts(X,C)

where ApvRevCert (X,C) means that a need “X revokes the certificate C” is ap-
proved. Thus, “X revokes C” is the simple transition Revokes(X,C), which can
be defined as follows:

Let:
Pre: ApvRevCert (X,C)
Act: nx < nxU{C}

A CA periodically issues a CRL, which may revoke a number of certificates.
For instance, suppose that, at the current time, the certificates that X is re-
voking include Cy,...,C,, then the revocation action can be represented as the
compound transition Revokes(X,Cy)l|...||Revokes(X,C,). In the same way we
used for the representation of certificate issuing functions, we can easily obtain
the definition of the compound transition as follows:

Let:

Pre: ApvRevCert(X,C,)
ApvRevCert(X,C,)

Act: ny — nxU{C1,...,Cpn}

The definition of a compound transition involving the case where several
CAs revoke a number of certificates can also be obtained from the definitions of
simple transitions contained in the compound transition.

4.4 Certificate Rekeying

At any time after the CMS is initialized, it is possible that some CA may need to
change the key pair (the public key and the corresponding private key) involved
in a certificate held by itself due to an increased risk of the current keys being
compromised.

The process of changing the keys of a CA for a certificate, performed by the
certificate rekeying function, is as follows. When a new key pair is generated for
a certificate by the CA who wants to change its key pair, a new certificate is
created and a certificate signature request is sent to the parent who signed the
old certificate. If the certificate rekeying request is accepted, the parent signs the
new certificate and returns it to the CA. Rekeying a certificate must affect the

88 Chuchang Liu et al.

certificate hierarchy, since some certificates held by the CA’s children may have
been signed with the old private key of the CA. Therefore, upon receiving the
new certificate, the CA needs to re-sign all those certificates of its subordinates
with the new private key, which were signed with that old private key.

The certificate rekeying function can also formally be described using tran-
sitions. To do this, we first introduce two new predicates as follows:

AcpReKey(X,C): The request “X wants to rekey the certificate C” is accepted.
SIGKEY(C;,Cy): The certificate C; is signed with the private key for which
the corresponding public key is issued in the certificate Co.

We now assume that X changes the key pair for a certificate C held by itself,
and Cq,...,C, are all the certificates signed with the private key for which the
corresponding public key is issued in the certificate C. Then this action can be
expressed as the simple transition Rekeys (X,C), which has the form as follows:

Let: C = Cert (Y,Ds,De, X, PKx, SIGy)
C' = Cert (Y, Today,D., X, PKy, SIG})
C; = Cert (X,Ds,,De,, X1, PKx,, SIGx)
| = Cert (X, Today,D’, , X1, PKx,, SIG)

ey’

Cn = Cert (X,Ds, ,De, , Xn, PKx, , SIGx)
C,, = Cert (X, Today, D, ,X,,PKx,,SIGy)
Pre: AcpReKey(X,C)
SIGKEY(C,,C)
SIGKEY(C,,C)
Act: G (G \ {chHu{c’}
(o= (Gu \{Chufct,

G, = (G \{Cn}) U{Cn}

where Today is a variable representing the current time, and A \ B stands for
the difference set of the sets A and 5.

Note that, when the certificate C is rekeyed to become the new certificate C’,
the old certificate C is automatically revoked by its issuer at the same time. For
simplifying our discussion, we omit such an action.

Similarly, we can consider those cases where a number of CAs change the
key pairs for a number of certificates at the same time. We may also consider
a compound transition consisting of different types of simple transitions. There
should not be any difficulty obtaining the definition of a compound transition
from the definitions of simple transitions.

5 Certificate Verification

In a CMS, the certificate verification function is a major CMS client function,
which is responsible for verifying the validity of every certificate that a security

A State-Based Model for Certificate Management Systems 89

application uses. Certificate verification proves that no one has tampered with
the contents of the certificate, i.e. the public key, the validity date, and the
identity of the certificate issuer and owner have not been changed. This relies
on the properties of the digital signature?. This section discusses the certificate
verification principle, and presents verification rules.

5.1 The Certificate Verification Principle

Verifying a given certificate involves verifying the identity of the certificate issuer
and owner, verifying the validity dates of the certificate, verifying the signature
on the certificate, and verifying the certificate against the latest issuer’s CRL
list to make sure it has not been revoked. In order to verify the signature on
the certificate, the certificate that the issuer holds should also be verified in the
same way using the next higher certificate in the certificate path. Therefore, the
verification process is iterative and terminates when a trusted certificate (by the
verifier) is reached, or a invalid certificate is encountered.

When an invalid certificate is encountered, the certificate is not accepted as
valid by the verifier. The verification process may begin by verifying the signature
on the next certificate on the certification path with the PAA’s public key from
PAAcert. This process continues down the certification path until the required
certificate is verified or an invalid certificate is encountered.

The certificate verification principle, which must be followed by all CMS
users, can be stated as below:

— In a certificate verification process, when the verifier has found a certificate
path constructed for verifying a required certificate in which all certificates
are valid he may accept this certificate as valid, and in all other cases the
certificate is regarded as invalid.

Note that, according to the certificate verification principle, it can happen
that a certificate may actually be valid but the verifier did not find a correspond-
ing certificate path in which all certificates are valid. In such a case, the verifier
cannot accept this certificate as valid. This is the correct choice on security
grounds.

5.2 Verification Rules

According to the above discussion, the process of obtaining and verifying the
certificates from the trusted certificate to a required certificate is referred to
as certificate path development and certificate path verification, respectively. An

2 The digital signature provides a way to detect if any of these values have been
changed. The original certificate issuer calculates a digital signature over the values
that require protection and then issues the values and the signature which form
the certificate. This signature can be checked by anyone who has a valid copy of
the issuer’s public key (obtained from the issuer’s certificate), at a later stage. The
details of the signature algorithm are beyond the scope of this paper.

90 Chuchang Liu et al.

efficient way to develop a certificate path is to start with the required certificate
and build a certificate chain back towards a certificate trusted by the verifier.
Certificate path verification can be done using certificate verification rules shown
below. These rules are directly derived from the policy axioms.

A rule is usually expressed in the following form:

A Ay L A,

which means that if formulas A1, As, ..., A, are all proved to be true, then the
fact “the formula A is true” is proved.

Verification Rules

I(C) | 5(C) Ds(C) < Today < D.(C) —(C €5y valid(SIG(C))

(R1) valid(C)
®2) e
o150

(Today < D4(C)) V (Today > D.(C))
(R4) —Valid(C)
(R5) %ZZ%)
m) O
®’7) -3¢’ » ic; ael :}% (vCa;])_id(C/))
) e

Rules (R1) and (R2) together form the basis for the verification of certificates;
while rules (R3) — (R7) can be applied to promptly exclude unauthorised users
by finding some flaw in their certificates. The rule (RX) depends on a particular
verifier (X) and is related to trust.

Suppose a certificate path, say (Co,C1,...,Cn_1,Cp) has been developed for
verifying the certificate Cy, where C,, is a certificate trusted by the verifier. Then
certificate path verification, i.e., proving that all the certificates in the path are
valid, is required for verifying Cy. There are two ways to perform the verification
process: one is top-down verification, and the other is bottom-up verification. In
bottom-up verification, the verifier starts to consider the validity of Cy. He first
checks if I(C,) | S(C,) holds, checks if D4(C) < Today < D.(C) holds, and checks

A State-Based Model for Certificate Management Systems 91

if Cyp does not belong to UCRE If any of the three checks fails, the verification
process terminates with the result that Cy cannot be accepted as valid from this
path. If all of these checks are successful, the verifier then checks validity of the
signature on Cy. He then needs to consider the validity of C;. In the same way, he
may terminate with the result that Cy cannot be accepted as valid from this path
because C; is not valid, or proceed to to consider the validity of Co. Continuing
the process, at the last, the verifier may only need to consider the validity of C,,.
Because C,, is a certificate trusted by the verifier, valid(C,)) holds. Thus, the
verifier has proved that all certificates on the path are valid, and may therefore
accept the certificate Cqy as valid.

With top-down verification, the verifier starts to consider the validity of C,,_1
by accepting C, as a valid certificate, because he trusts C,.

6 Conclusion

We have presented an approach to the formal specification of the structure,
functions and the security policy of a CMS. A state-based model for CMSs has
been proposed. With this model, all CMS functions, such as certificate issuing,
certificate revocation and certificate rekeying, have formally been specified as
transitions that change the states of a CMS. For the major CMS client function
— certificate verification, we have in particular discussed the verification principle,
certificate path development, and given the verification rules which can be used
for certificate path verification.

The correctness and effectiveness of security mechanisms for a system (par-
ticularly a computer network) usually depend on the understanding of the de-
veloper and the evaluator to the security requirements of the system and their
analysis. Many mechanisms, presented in somewhat descriptive form, are not
suitable for formal analysis and practical implementation. Our model provides
an approach to the formal specification of a CMS, the security policy and CMS
functions are all formally specified. Based on this model, the security mecha-
nisms, which are used to enforce the policy, can also be presented in a formal
form. Such a formal presentation can help the developer and the evaluator as
well as the user to understand the security-relevant behavior of a system, and
guide them in the design and analysis of the security architecture, and in the
implementation of the system. The formal approach proposed in this paper and
the state-based model itself may be used as the basis for other activities in the
secure computer network area, such as research into new mechanisms, services
and secure network applications areas, and integration of individual mechanisms
into large secure and reliable network architectures.

As a future work, we have planed to mechanise our theory in a general theo-
rem prover, Isabelle [9]. Once a reasoning system for CMSs has been developed,
certificate verification and the proof of security properties of a CMS can be
automatically performed.

Future work also includes investigating the certificate verification algorithms
based on the state-based model. It may also be interesting to look at the different

92

Chuchang Liu et al.

distributions of trust points within a CMS in more detail. Joining CMS’s, with
so called cross-certificates, is another important issue. Comparisons of solutions
and suggestions as to how distribution of trust points could be implemented in
these extended CMS structures also needs to be considered.

Acknowledgements

We would like to thank Dr. Brendan Mahony and Dr. Jim McCarthy for help-
ful discussions on the theory and techniques aspects. Thanks are also due to
anonymous referees for their valuable comments and suggestions.

References

1.

10.

11.

12.

K. A. Eastaughffe, M. A. Ozols, and A. Cant. Proof tactics for a theory of state
machines in a graphical environment. In Proceedings of the 14th International
Conference on Automated Deduction (CADE-14), Lecture Notes in Artificial In-
tellegince, pages 366-379. Springer-Verlag, 1997. 80

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transaction on Information Theory, 31:469-472, 1985. 75

W. Ford. Advances in public-key certificate standards. ACM SIGSAC Security
Audit € Control Review, 13(3), 1995. 75

W. Ford and M. Baum. Secure Electronic Commerce: Building the Infrastructure
for Digital Signatures and Encryption. Prentice-Hall, 1997. 75

R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key infrastructure
certificate and CRL profile. IETF X.509 PKI (PKIX) Working Group (Draft),
January 1999. 76, 77

N. Kapidzic. Extended certificate management system: Design and protocols. Tech-
nical report, DVS, 1997. 76

N. Kapidzic. Creating security applications based on the global certificate man-
agement system. Computers € Security, 17:507-515, 1998. 76

S. Kent. Privacy Enhancement for Internet Electronic Mail, Part II: Certificate-
Based Key Management, Request for Comments 1422. Network Working Group,
1993. 77

L. C. Paulson. ML for Working Programmer. Cambridge University Press, 1991.
91

L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6(1-2):85-128, 1998. 76

Denis Trcek. Organization of certification authorities in a global network. Com-
puter Security Journal, 10(1):72-81, 1994. 76

T. Y. C. Woo and S. S. Lam. Authorization in distributed systems: A new ap-
proach. Journal of Computer Security, pages 107-136, 2(1993). 76

	Introduction
	The Model
	Certification Topology
	Certificates
	CMS States and Transitions
	A Formal Definition of a CMS

	The CMS Policy
	Certificate Issuing Policy
	Access Control Policy
	The Validity of Certificates
	Trust Policy Axioms

	The Formalization of CMS Functions
	Transitions
	Certificate Issuing
	Certificate Revocation
	Certificate Rekeying

	Certificate Verification
	The Certificate Verification Principle
	Verification Rules

	Conclusion

