
Efficient Buffering in Reliable Multicast
Protocols

Oznur Ozkasap, Robbert van Renesse, Kenneth P. Birman, and Zhen Xiao

Dept. of Computer Science, Cornell University
4118 Upson Hall, Ithaca, NY 14853

ozkasap@bornova.ege.edu.tr, {rvr,ken,xiao}@cs.cornell.edu

Abstract. Reliable multicast protocols provide all-or-none delivery to
participants. Traditionally, such protocols suffer from large buffering re-
quirements, as receivers have to buffer messages, and buffer sizes grow
with the number of participants. In this paper, we describe an opti-
mization that allows such protocols to reduce the amount of buffering
drastically at the cost of a very small probability that all-or-none delivery
is violated. We analyze this probability, and simulate an optimized ver-
sion of an epidemic multicast protocol to validate the effectiveness of the
optimization. We find that the buffering requirements are sub-constant,
that is, the requirements shrink with group size, while the probability of
all-or-none violation can be set to very small values.

1 Introduction

The aim of reliable multicast protocols is to provide all-or-none delivery of mes-
sages to all participants in a group.1 Informally, if any participant delivers the
message, then eventually all participants should deliver the message. Since the
sender may fail, processes buffer the messages that they receive in case a retrans-
mission is necessary. Most existing reliable multicast protocols have all receivers
buffer messages until it is known that the message has become stable (i.e., has
been delivered to every participant).

In such systems, it is always the case that the amount of buffering on each
participant grows with group size for a combination of the following reasons:

1. the time to accomplish stability increases;
2. the time to detect stability increases;
3. depending on the application, the combined rate of sending may increase.

As a result, these multicast protocols do not scale well.
0 This work is supported in part by ARPA/ONR grant N00014-92-J-1866,
ARPA/RADC grant F30602-96-1-0317, NSF grant EIA 97-03470, and the Turkish
Research Foundation.

1 We use here the distributed systems terminology for reliability [HT94], rather than
the networking terminology which does not stipulate all-or-none delivery.

L. Rizzo and S. Fdida (Eds.): NGC’99, LNCS 1736, pp. 188–203, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Efficient Buffering in Reliable Multicast Protocols 189

In this paper, we investigate optimizing buffering by only buffering messages
on a small subset of participants, while spreading the load of buffering over
the entire membership. This way, each participant only requires a fraction of
the buffering space used previously. Indeed, the amount of buffering space per
participant decreases with group size.

On the negative side, we introduce a small, known probability that a mes-
sage is not delivered to all members. For example, this may happen if the ent-
ire subset responsible for buffering the message crashes before the message is
delivered everywhere. We believe that in many situations such small probabi-
lities can be condoned. In fact, epidemic multicast protocols such as used in
the Clearinghouse domain name service [DGH+87], Refdbms [GLW94], Bayou
[PST+97], and Cornell’s bimodal multicast [BHO+99] already introduce such a
small known probability. Because of this, we focus our attention on using our
suggested optimization in such protocols.

Note that, using the terminology of [HT94], the resulting protocols are not
reliable. Yet, we consider the robustness of these protocol better than protocols
such as RMTP [LP96] or SRM [FJL+97], because the probability of message
loss is known and therefore a certain known Quality of Service is provided (even
if the original sender of a message fails). Our protocols are useful for life and
mission-critical applications such as air traffic control, health monitoring, and
stock exchanges, where a certain a priori known probability of message loss is
acceptable [BHO+99]. For such applications as money transfer, fully reliable
all-or-none multicast or atomic transactions would be necessary, while for non-
life or mission-critical applications, such as tele-conferencing or distribution of
software, protocols such as RMTP and SRM are sufficient.

We investigate techniques for choosing suitable subsets of participants for
buffering messages, ways for locating where messages are buffered in case a
retransmission is required, how these techniques improve memory requirements,
and how they impact the reliability of the multicast protocols. We take into
account message loss and dynamic group membership. For analysis we use both
stochastics and simulation.

This paper is organized as follows. In Section 2, we describe the group mem-
bership model, as well as how reliable multicast protocols (particularly epide-
mic protocols) are structured. The buffer optimization technique is presented in
detail, and analyzed stochastically, in Section 3. Section 4 describes how this
technique may be incorporated into an existing multicast protocol. In Section 5,
we weaken our assumptions and describe a technique to improve the reliability of
the optimized protocol without sacrificing the scalability. Simulation results are
presented in Section 6. Section 7 describes related work, and Section 8 concludes.

2 Model and Epidemic Protocols

We consider a single group of processes or members. Each member is uniquely
identified by its address. Each member has available to it an approximation
of the entire membership in the form of a set of addresses. We do not require



190 O. Ozkasap et al.

that the members agree on the membership, such that a scalable membership
protocol such as [vRMH98] suffices to provide this membership information. We
consider a non-Byzantine fail-stop model of processes. As is customary, recovery
of a process is modeled as a new process joining the membership.

The members can send or multicast messages among each other. There are
two kinds of message loss: send omissions and receive omissions. In case of a
send omission, no process receives the message. In case of a receive omission,
only a corresponding receiver loses the message. Initially, we assume that receive
omissions are independent from receiver to receiver and message to message, and
occur with a small probability Ploss, and that there are no send omissions. We
weaken these assumptions in Section 5.

The members run a reliable multicast protocol that aims to provide all-
or-none delivery of multicast messages, that is, to deliver each message to all
processes that are up (not failed) at the time of sending. We do not require
FIFO or total order on message delivery. All such protocols run in three phases:

1. an initial (unreliable) multicast phase attempts to reach as many members
as possible;

2. a repair phase detects message loss and retransmits messages;
3. a garbage collection phase detects message stability and releases buffer space.

Most protocols use a combination of positive or negative acknowledgment
messages for the last two phases. Epidemic multicast protocols accomplish the
all-or-none guarantee with high probability by a technique called gossiping. Each
member p periodically chooses another member q at random to send a gossip
message to, which includes a report of what messages p has delivered and/or
buffered. (Every message that is buffered by a process has been delivered by
that process, but not necessarily vice versa.) q may update p with messages that
q has buffered, but p has not delivered. q may also request from p those messages
that p has buffered but q has not delivered.

Garbage collection in epidemic protocols is accomplished by having members
only maintain messages in their buffer for a limited time. In particular, members
garbage collect a message after a time at which they can be sure, with a specific
high probability, that the gossiping has disseminated all messages that were lost
during the initial multicast. This time grows O(log n), where n is the size of the
membership as the corresponding member observes it [BHO+99].

3 Basic Optimization

In this section, we describe the technique we use to buffer messages on only a
subset of the membership. The subset has a desired constant size C. We say
desired because, as we shall see, failures and other randomized effects cause
messages to be buffered on more or fewer than C members. The subset is not
fixed, but randomized from message to message in order to spread the load of
buffering evenly over the membership.



Efficient Buffering in Reliable Multicast Protocols 191

We assume that each message is uniquely identified, for example by the tuple
(source address, sequence number). Using a hash function H : bitstring →
[0 · · · 1], we hash tuples of the form 〈message identifier, member address〉 to
numbers between 0 and 1. This hash function has a certain fairness property, in
that for a set of different inputs, the outputs should be unrelated. Cryptographic
hashes are ideal, but too CPU-intensive. CRCs (cyclic redundancy checks) are
cheap, but the output is too predictable for our purpose: when given the 32-bit
big-endian numbers 0, 1, 2, ... as input, the output of CRC-16 is 0, 256, 512, etc.
We will describe a hash function that is cheap and appears fair, as well as why
we require these properties, in Section 4.

A member with address A and a view of the membership of size n buffers a
message with identifier M if and only if H(〈M, A〉)× n < C. We call a member
that buffers M the bufferer of M . If H is fair, n is correct, and there is no
message loss, the expected number of bufferers for M is C. Also, for a set of
messages M1, M2, . . ., the messages are buffered evenly over the membership.

If members agree on the membership, then any member can calculate for
any message which members are the bufferers for this message. If members have
slightly different memberships, it is possible that they disagree on the set of
bufferers for a message, but not by much. In particular, the sets of bufferers
calculated by different members will mostly overlap.

Also, if C is chosen large enough, the probability that all bufferers fail to
receive a message is small. We will now calculate this probability. For simpli-
city, we assume that every member agrees on the membership (and is therefore
correct), and that this membership is of size n. We consider an initial multicast
successful if it is received by all members, or if it is received by at least one
bufferer (which can then satisfy retransmission requests). Thus, the probability
of success is the sum of the following two independent probabilities:

P1: no members are bufferers, but they all received the initial multicast;
P2: there is at least one member that is a bufferer and that received the initial

multicast.

P1 is simple to calculate, as, by fairness of H, “being a bufferer” is an in-
dependent event (with probability C/n), as is message loss (with probability
Ploss):

P1 = ((1 − C

n
) · (1 − Ploss))n (1)

P2 can be calculated as follows:

P2 = P (∃bufferer that receives M) (2)
= 1 − P (all processes are not bufferers or lose M)
= 1 − P (a process is not a bufferer or loses M)n

= 1 − (1 − P (a process is bufferer and receives M)n

= 1 − (1 − C

n
· (1 − Ploss))n



192 O. Ozkasap et al.

The probability of failure Pfail is then calculated as:

Pfail = 1 − P1 − P2 = (1 − C

n
· (1 − Ploss))n − ((1 − C

n
) · (1 − Ploss))n (3)

Assuming Ploss is constant (independent of n), it is easy to see that as n
grows, Pfail tends to e−C·(1−Ploss). Thus, given the probability of receive omis-
sion, the probability of failure can be adjusted by setting C, independent of the
size of the membership. Pfail gets exponentially smaller when increasing C.

In many cases Ploss is a function of group size, as it depends on the size
and topology of the underlying network. For example, in a tree-shaped topology,
messages have to travel over O(log n) links. If Pll is the individual link loss,
then Ploss = 1 − (1 − Pll)t, where t is the average number of links that the
message has to travel (t grows O(log n)). Worse yet, receive omissions are no
longer independent from each other. Thus, setting C in this case does depend on
n. We discuss a solution to this problem in Section 5, and see how this affects
the choice of C in Section 6.

4 Implementation

In this section, we discuss the design of the hash function H that we use, how
we integrate our optimization with an epidemic multicast protocol, and how this
affects the buffering requirements of the protocol.

As mentioned, the hash function H has to be fair and cheap. It has to be
fair, so that the expected number of bufferers for a message is C, and so that the
messages are buffered evenly over the membership. It has to be cheap, since it is
calculated each time a message is received. Cryptographic hashes are typically
fair, but they are not cheap. CRC checks are cheap, but not fair. We therefore
had to design a new hash function.

Our hash function H uses a table of 256 randomly chosen integers, called the
shuffle table. The input to H is a string of bytes, and the output is a number
between 0 and 1. The algorithm is:

unsigned integer hash = 0;
for each byte b do

hash = hash XOR shuffle[b XOR least signif byte(hash)]);
return hash/MAX INTEGER;

To integrate optimized buffering into an actual epidemic protocol (see Section
2), we have to modify the protocol as follows. Previously, members satisfied the
retransmission of a message out of their own buffers. With the optimization, if
a member does not have the message buffered locally, it calculates the set of
bufferers for the message and picks one at random. The member then sends a
retransmission request directly to the bufferer, specifying the message identifier



Efficient Buffering in Reliable Multicast Protocols 193

and the destination address. A bufferer, on receipt of such a request, determines
if it has the message buffered. If so, it satisfies the request. If not, it ignores the
request.

Note that processes still have to maintain some information about the mes-
sages they have, or have not, received. In the original protocol, processes had to
buffer all messages until they are believed to be stable (a global property). In
the optimized protocol, processes only need to remember the identifiers of mes-
sages they have received locally. They can do so in sorted lists of records, one
list per sender. Each record describes, using two sequence numbers, a range of
consecutively received messages. Since there are typically not many senders, and
each list will typically be of size 1, the amount of storage required is negligible.

The buffering requirements of the epidemic protocol are improved as follows.
In the original protocol, the memory requirement for buffering on each member
grew O(ρ log n), where ρ is the total message rate and n is the number of parti-
cipants (assuming fixed sized messages and fixed message loss rate) [BHO+99].
This is because the number of rounds of gossip required to spread information
fully with a certain probability grows O(log n). In the modified protocol, the
buffering requirement on each member shrinks by O(ρ log n/n), since C is con-
stant.

5 Improvement

Up until now we have assumed that the only message loss was due to rare
and independent receive omissions. In this section, we will suggest an improved
strategy in order to deal with more catastrophic message loss, without sacrificing
the advantageous scaling properties. The improvement consists of two parts.

The first part is to maintain two message buffers. The so-called long-term
buffer is like before, in which messages are kept for which the corresponding
process is a bufferer. The short-term buffer is a buffer in which all messages are
kept in FIFO order as they are received for some fixed amount of time. (Since
messages are kept for a fixed amount of time, the size of this buffer is linearly
dependent on the message rate ρ, but independent of group size.) Both buffers
can be used for retransmissions.

The second part involves an improvement to the initial multicast phase. The
idea is to detect send omissions or large dependent receive omission problems,
and retransmit the message by multicasting it again (rather than by point-to-
point repairs). Such strategies are already built into multicast protocols such
as bimodal multicast [BHO+99] and SRM [FJL+97]. Thus, the initial multicast
phase is subdivided into three subphases:

1a. an unreliable multicast attempts to reach as many members as possible;
1b. detection of catastrophic omission;
1c. multicast retransmission if useful.

For example, in a typical epidemic protocol this can be done as follows.
Members detect holes in the incoming message stream by inspecting sequence



194 O. Ozkasap et al.

numbers. They include information about holes in gossip messages. When a
member receives a gossip with information about a hole that it has detected as
well, it sends a multicast retransmission request to the sender. The probability of
this happening is low in case of a few receive omissions, but high in the case of a
catastrophic omission. The sender should still have the message in its short-term
buffer to satisfy the retransmission request. Since these retransmission requests
are only triggered by randomized gossip messages, it will not lead to implosion
problems such as seen in ack or nak based protocols.

These two parts, when combined, lead to two significant improvements. First,
they make catastrophic loss unlikely, so that the assumptions of the original basic
optimization are approximately satisfied. Secondly, since most message loss is
detected quickly, retransmissions will typically be satisfied out of the short-term
buffer without the need for retransmission requests to bufferers. The long-term
buffer is only necessary for accomplishing all-or-none semantics in rare failure
scenarios.

6 Simulation Results

34

33

32
31

30
29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

119

120

20

19

2

91

118

18

1

89

90

117

17

0

88

116

16

87

115

15

86

114

14

85

113

13

84

112

12

83

111

11

82

109

110

10

81

108

79

80

107

78

106

77

105

76

104

75

103

74

102

73

101

72

100

71
69

70
68

67

66
65

64

63

62

61

59

60

58

57

56

55

54

53

52

51

49

50

48

47

46

45

44

43

42
41

40

39

38

37

36

35

34

33

32

31

30

29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

123

23

5

94

122

22

4

93

121

21

3

92

119

120

20

19

2

91

118

18

1

89

90

117

17

0

88

116

16

87

115

15

86

114

14

85

113

13

84

112

12

83

111

11

82

109

110

10

81

108

79

80

107

78

106

77

105

76

104

75

103

74

102

73

101

72

100

71

69

70

68

67

66

65

64

63

62

61

59

60

58

57

56

55

54

53

52

51

49

50

48

47

46

45

44

43

42

41

40
39

38

37

36

35

(a) (b)

Fig. 1. (a) a tree topology; (b) a transit-stub topology.

To validate our techniques, we have simulated bimodal multicast [BHO+99]
with and without our buffering optimization. This protocol follows the descrip-
tion of epidemic protocols in Section 2 closely, and contains a multicast retrans-
mission scheme similar to the one described in Section 5. For our simulations,
we used the ns2 network simulator [BBE+99], and multicast messages from a
single sender. In all experiments, we set C so that Pfail ≈ 0.1%, based on the
link loss probability and the number of members (see Equation 3).



Efficient Buffering in Reliable Multicast Protocols 195

We simulated on two different network topologies (see Figures 1(a) and (b)):
a pure tree topology, with the sender located at the root of the tree, and a transit-
stub topology (generated by the ns2 gt-itm topology generator), with the sender
located on a central node. The transit-stub topology is more representative of
the Internet than is the tree topology. The topology has an influence on the
probability of message loss, but as we shall see, the overall effect of these two
topologies on the buffering requirements is similar.

In Figures 2 and 3, we show the required amount of buffer space (the maxi-
mum number of messages that needed to be buffered) per member as a function
of group size. In all these experiments, the individual link-loss probability in the
network is 0.1%. In these cases, C ≈ 6. The graphs for the original bimodal
multicast are labeled “pbcast-ipmc,” while the buffer optimized multicast gra-
phs are labeled “pbcast-hash.” Figure 2 uses a rate of 25 messages/sec. In (a)
we used the tree topology, and in (b) the transit-stub topology. Figure 3 shows
the same graphs for 100 messages/sec. We find not only that the buffering op-
timization greatly reduces the memory requirements on the hosts, but also that
the buffering behavior is more predictable.

To see the effect of message rate and noise rates more clearly, see Figure
4. In both experiments we used a tree topology with 100 members. In (a), the
link-loss probability is still fixed at 0.1%, while the message rate is varied from
25 to 100 messages/sec. In (b), the message rate is fixed at 100 messages/sec,
but the link loss probability is varied from 0.1% to 1.5%. At Pll = 1.5%, we find
that C ≈ 9.

Figure 5 shows that the buffer optimization significantly reduces the memory
requirements on each individual host, and also that the buffering responsibility
is spread evenly over all members. Again, we are using a tree topology with 100
members. We show how much was buffered on each one of the members using
both the original protocol and the optimized one. In (a), the message rate is 25
messages/sec, while in (b) it is 100 messages/sec.

In Figure 6, we show on how many locations each of the messages numbered
1000-1500 was buffered for two different link-loss probabilities: (a) 0.1% and (b)
1.5%. With larger loss, it is necessary to buffer messages in more locations in
order to get the same Pfail probability. Because of this, the probability that no-
body buffers a message (1−P2) is actually smaller for situations with larger loss.
The graphs demonstrate this clearly. Note that although, in (a), three messages
were not buffered anywhere, this does not imply that the messages were not
delivered to every member. In fact, all three messages were correctly delivered.

7 Related Work

Work on buffering in group communication can be classified in three categories:

1. Multicast flow control techniques attempt to control the amount of buffering
using rate or credit-based mechanisms;



196 O. Ozkasap et al.

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

group size

m
ea

n 
bu

ffe
r 

re
qu

ire
m

en
t

pbcast−ipmc
pbcast−hash

(a)

20 30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

group size

m
ea

n 
bu

ffe
r 

re
qu

ire
m

en
t

pbcast−ipmc
pbcast−hash

(b)

Fig. 2. The required amount of buffer space per member as a function of group size.
In (a) we use a tree topology, while in (b) we use a transit-stub topology. The message
rate is 25 messages/sec.



Efficient Buffering in Reliable Multicast Protocols 197

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

group size

m
ea

n 
bu

ffe
r 

re
qu

ire
m

en
t

pbcast−ipmc
pbcast−hash

(a)

20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

110

group size

m
ea

n 
bu

ffe
r 

re
qu

ire
m

en
t

pbcast−ipmc
pbcast−hash

(b)

Fig. 3. Same as Figure 2, but for 100 messages/sec.



198 O. Ozkasap et al.

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

message rate (msgs/sec)

m
ea

n 
bu

ffe
r 

re
qu

ire
m

en
t

pbcast−ipmc
pbcast−hash

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

system wide noise ratio (%)

m
ea

n 
bu

ffe
r 

re
qu

ire
m

en
t

pbcast−ipmc
pbcast−hash

(b)

Fig. 4. In (a), we show the average amount of buffer space per member as a function
of message rate. In (b), we show the buffer space as a function of link loss probability.



Efficient Buffering in Reliable Multicast Protocols 199

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

group member no

bu
ffe

r 
re

qu
ire

m
en

t
pbcast−ipmc
pbcast−hash

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

group member no

bu
ffe

r 
re

qu
ire

m
en

t

pbcast−ipmc
pbcast−hash

(b)

Fig. 5. This graph shows, for each member, how much buffer space was required. In (a),
the message rate is 25 messages/sec, while in (b) the message rate is 100 messages/sec.



200 O. Ozkasap et al.

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
0

5

10

15

20

25

message number

nu
m

be
r 

of
 lo

ca
tio

ns
 m

es
sa

ge
 is

 b
uf

fe
re

d

(a)

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
0

5

10

15

20

25

message number

nu
m

be
r 

of
 lo

ca
tio

ns
 m

es
sa

ge
 is

 b
uf

fe
re

d

(b)

Fig. 6. This graph shows, for 500 messages starting at message 1000, on how many
locations each of these messages was buffered. In (a), the link loss probability is 0.1%,
which in (b) this probability is 1.5%.



Efficient Buffering in Reliable Multicast Protocols 201

2. Stability optimization techniques attempt to minimize the time to achieve
and detect stability of messages, thereby reducing the time that messages
are buffered;

3. Memory reduction techniques attempt to minimize the amount of buffer
memory necessary.

In the first category, a good representative paper is by Mishra and Wu
[MW98]. They study the effect of buffering of rate and credit-based flow con-
trol in both ACK and NAK-based multicast protocols using simulation. They
conclude that rate-based flow control techniques are generally best. We note
that flow control is mostly orthogonal to the buffer optimization. Flow control is
an adaptive mechanism, intended to deal with varying availability of resources.
These resource include CPU and memory resources on end-hosts and routers,
and bandwidth availability on network links. Buffer optimization is not adap-
tive, but as it reduces the use of memory resources on the end-hosts, it will have
an impact on flow control. (Note that although related, congestion control deals
with buffering requirements on routers rather than end-hosts, and is therefore
not discussed here further.)

In the second category, all reliable communication protocols attempt to opti-
mize the time to achieve stability. Mishra and Kuntur [MK99] present a general
technique, which they call Newsmonger, to improve the time to detect stabi-
lity. This is important when the application requires uniform or safe delivery
of messages. As a beneficial side-effect, it also reduces the amount of time that
messages need to be buffered. The Newsmonger is a token that rotates among
the members, and can be applied to any reliable multicast protocol that provides
membership agreement of some sort. The technique, when combined with our
buffering optimization, is still useful to improve the latency of uniform delivery.

Our buffer optimization technique belongs in the third category. The best
known work in this category is a general protocol model called Application Le-
vel Framing (ALF) [CT90]. ALF leaves many reliability decisions to the applica-
tion, rather than providing an abstraction of a reliable multicast channel. SRM
[FJL+97] is a well-known implementation of a multicast facility in the ALF mo-
del, and is used in various tele-conferencing applications. SRM does not buffer
or order messages, but provides call-backs to the application when it detects that
a message is lost. It is the application that decides whether and how it wants to
retransmit the message. Rather than buffering messages, the application may be
able (and, in current SRM applications, usually is able) to regenerate messages
based on its state. In contrast to our work, SRM does not provide all-or-none
delivery with any known level of reliability.

8 Conclusion

In this paper, we presented a technique that significantly optimizes buffer requi-
rements in reliable multicast protocols. In particular, the buffer requirements on
a host are reduced by a factor of n/C, where n is the size of the group, and C is a



202 O. Ozkasap et al.

small constant containing the number of sites where a message should be buffered
(typically on the order of about 10). The reliability guarantees of the protocol
are slightly adversely affected, but the probability of this can be calculated and
limited by choosing a suitable C. Using simulation, we have demonstrated that
this technique is highly effective.

We have described how buffer optimization can be incorporated into an epi-
demic multicast protocol such as bimodal multicast [BHO+99]. In the future, we
would like to study the impact of our optimization on other, non-epidemic, relia-
ble multicast protocols. Since such protocols do not allow occasional violations of
the all-or-none delivery guarantee, additional mechanisms may be necessary. For
example, in so-called virtually synchronous protocols, the conflict can be solved
by simulating a partition in the membership if a message cannot be recovered.
Since such events should be rare, this may be an acceptable solution, as these
protocols already deal with real network partitions.

References

[BBE+99] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Hand-
ley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie,
P. Sharma, K. Varadhan, Y. Xu, H. Yu, and Zappala D. Improving simulation
for network research. Technical Report 99-702, Univ. of Southern California,
March 1999.

[BHO+99] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky.
Bimodal multicast. ACM Transactions on Computer Systems, 17(2):41–88,
May 1999.

[CT90] D.D. Clark and D.L. Tennenhouse. Architectural considerations for a new
generation of protocols. In Proc. of the ’90 Symp. on Communications Ar-
chitectures & Protocols, pages 200–208, Philadelphia, PA, September 1990.
ACM SIGCOMM.

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated database
maintenance. In Proc. of the Sixth ACM Symp. on Principles of Distributed
Computing, pages 1–12, Vancouver, British Columbia, August 1987. ACM
SIGOPS-SIGACT.

[FJL+97] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level framing.
IEEE/ACM Transactions on Networking, 5(6):784–803, December 1997.

[GLW94] R.A. Golding, D.D. Long, and J. Wilkes. The refdbms distributed biblio-
graphic database system. In USENIX Winder 1994 Technical Conference
Proceedings, January 1994.

[HT94] V. Hadzilacos and S. Toueg. A modular approach to the specification and
implementation of fault-tolerant broadcasts. Technical Report TR94-1425,
Department of Computer Science, Cornell University, 1994.

[LP96] J.C. Lin and S. Paul. Rmtp: A reliable multicast transport protocol. In Proc.
of IEEE INFOCOM’96, pages 1414–1424, March 1996.

[MK99] S. Mishra and S.M. Kuntur. Improving performance of atomic broadcast pro-
tocols using the newsmonger technique. In Proc. of the 7th IFIP Internatio-
nal Working Conference on Dependable Computing for Critical Applications,
pages 157–176, San Jose, CA, January 1999.



Efficient Buffering in Reliable Multicast Protocols 203

[MW98] S. Mishra and L. Wu. An evaluation of flow control in group communication.
IEEE/ACM Transactions on Networking, 6(5), October 1998.

[PST+97] K. Petersen, M.J. Spreitzer, D.B. Terry, M.M. Theimer, and A.J. Demers.
Flexible update propagation for weakly consistent replication. In Proc. of
the Sixteenth ACM Symp. on Operating Systems Principles, pages 288–301,
Saint-Malo, France, October 1997.

[vRMH98] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection
service. In Proc. of Middleware’98, pages 55–70. IFIP, September 1998.


	Introduction
	Model and Epidemic Protocols
	Basic Optimization
	Implementation
	Improvement
	Simulation Results
	Related Work
	Conclusion

