
K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASIACRYPT'99, LNCS 1716, pp. 150-164, 2000.
 Springer-Verlag Berlin Heidelberg 2000

On the Design of RSA with Short Secret Exponent*

Hung-Min Sun1, Wu-Chuan Yang2 and Chi-Sung Laih2

1 Department of Computer Science and Information Engineering
National Cheng Kung University; Tainan, Taiwan 701

hmsun@mail.ncku.edu.tw
2 Department of Electrical Engineering

National Cheng Kung University, Tainan, Taiwan 701
wcyang77@ms32.hinet.net

laihcs@eembox.ee.ncku.edu.tw

Abstract. At Eurocrypt'99, Boneh and Durfee presented a new short
secret exponent attack which improves Wiener’s bound (d< 25.0N) up to
d< 292.0N . In this paper we show that it is possible to use a short secret
exponent which is below these bounds while not compromising with
the security of RSA provided that p and q are differing in size and are
large enough to combat factoring algorithms. As an example, the RSA
system with d of 192 bits, p of 256 bits, and q of 768 bits is secure
against all the existing short secret exponent attacks. Besides, in order
to balance and minimize the overall computations between encryption
and decryption, we propose a variant of RSA such that both e and d are
of the same size, e.g., e2log ≈ d2log ≈ 568 for a 1024-bit RSA
modulus. Moreover, a generalization of this variant is presented to
design the RSA system with e2log + d2log ≈ N2log + kl where kl is
a predetermined constant, e.g., 112. As an example, we can construct a
secure RSA system with p of 256 bits, q of 768 bits, d of 256 bits, and e
of 880 bits.

1 Introduction
The RSA public-key cryptosystem was invented by Rivest, Shamir, and Adleman [16]
in 1978. Since then, the RSA system has been the most well-known and accepted
public key cryptosystem. Usually, the RSA system is deployed in various application
systems for providing privacy and/or ensuring authenticity of digital data. Hence
many practical issues have been sequentially considered when implementing RSA,
e.g., how to reduce the storage for RSA modulus [13,24], how to use short public
exponent for reducing the encryption execution time (or signature-verification time)
[2-4,8-9], and how to use short secret exponent for reducing the decryption execution
time (or signature-generation time) [1,25-26]. In this paper, we are interested in the
use of short secret exponent because it is particularly advantageous when there is a
large difference in computing power between two communicating devices. For

* This wok was supported in part by the National Science Council, Taiwan, under contract

NSC-88-2213-E-324-007 and NSC88-2213-E-006-025.

On the Design of RSA with Short Secret Exponent 151

example, it would be desirable for a smart card to have a short secret exponent in
order to speedup the decryption or the generation of signatures in the smart card, and
for a larger computer to have a short public exponent in order to speedup the
encryption or the verification of signatures required in the smart card. We are also
interested in the use of balanced and minimized public and secret exponents that the
length of both is approximately equal and is as short as possible. The main motivation
for this is to provide the requirement of those applications when the computing power
between two communicating devices is approximately equal. Particularly, it is
advantageous when a sequence of encryptions and decryptions (or signature
generations and verifications) are required to run synchronously, i.e., no party is idle
between communication. Inspired by the above concept, we are also interested in
balancing and minimizing the encryption time and the decryption time when there is a
difference in computing power between two communicating devices. It is an intuitive
thought that if the computation amount in encryption is heavier, then the computation
amount in decryption will be lighter, and vice versa. Therefore there should exists a
trade-off between encryption and decryption, e.g., the overall computation amount is
constant. Consequently, what we concern is how to reduce the overall computations
used in encryption and decryption and how to distribute the overall computations
between encryption and decryption. If the distributed computations between
encryption and decryption are roughly proportional to the computing power of the
two communicating devices, we can balance the encryption time and the decryption
time even if there is a difference in computing power between these two devices.

We first describe a simplified version of RSA primitive as follows: Let N=pq be
the product of two large primes. If both p and q are 512 bits long, then N is about
1024 bits long. Let e and d be two integers satisfying ed=1 mod φ(N), where φ(N)=(p-
1)(q-1) is the Euler totient function of N. Here we call N the RSA modulus, e the
public exponent, and d the secret exponent. The public key is the pair (N, e) and the
secret key is d. For simplicity, we assume the owner of the secret key is Alice. To
provide privacy, one can encrypt a message M into a ciphertext C by: C= eM mod N,
while only Alice can decrypt the ciphertext C into the plaintext M by: M= dC mod N.
To ensure authenticity of digital data, only Alice can sign a document M to obtain a
signature S by: S= dM mod N, while one can verify the validity of Alice’s signature S
on M by checking if M= eC mod N satisfies a predetermined redundancy scheme.

For a fixed modulus size, the RSA encryption or decryption time is roughly
proportional to the number of bits in the exponent. To reduce the encryption time (or
the signature-verification time), one may wish to use a small public exponent e. The
smallest possible value for e is 3. If e=3 is used for encryption, it has been proven to
be insecure against some short public exponent attacks [9]. The most powerful attack
on short public exponent is due to Coppersmith, Franklin, Patarin and Reiter [4].
Under their attack, the RSA primitive is insecure for all public exponents of length up
to around 32 bits. Therefore it is suggested to use public exponents of length more
than 32 bits. Note that these short public exponent attacks succeed only in the
encryption of the RSA primitive. They cannot work in the RSA with the protection of
the standards PKCS#1 v2.0 or IEEE P1363.

On the other hand, to reduce the decryption time (or the signature-generation time),
one may also wish to use a small secret exponent d. Unfortunately, based on the

152 Hung-Min Sun et al.

convergents of the continued fraction expansion of a given number, Wiener [26]
showed that the RSA system can be totally broken if d< 25.0N . Verheul and van
Tilborg [25] proposed an extension of Wiener’s attack that allows the RSA system to
be broken when d is a few bits longer than N2log25.0 . For d> 25.0N , their attack

need do an exhaustive search for about 2t+8 bits, where t= 0.25
2log (/)d N . If t =20

(which leads to an order of magnitude 482) is feasible to do an exhaustive search,
then the RSA system with d< 25.0202 N is insecure. Thus this gives a 20 bits
improvement on Wiener’s bound. Recently, based on lattice basis reduction, Boneh
and Durfee [1] proposed a new attack on the use of short secret exponent. They
improved Wiener’s bound up to d< 292.0N . This gives a 43 bits improvement on
Wiener’s bound if N is the size of 1024 bits. In general, the use of short secret
exponent encounters a more serious security problem than the use of short public
exponent.
 In this paper, we show that it is possible to use a short secret exponent which is
below both Wiener’s bound and Boneh and Durfee’s bound while not compromising
the security of RSA provided that p and q are differing in size and are large enough to
combat the factoring algorithms which are based on elliptic curves. As an example,
when p is the size of 256 bits and q is the size of 768 bits, d of 192 bits is large
enough to combat the existing short secret exponent attacks. In this study of the
balanced and minimized public and secret exponents, we propose a secure variant of
RSA such that e and d are of the same size, e.g., e2log ≈ d2log ≈ 568 for a 1024-bit
RSA modulus. We analyze the security of the proposed RSA variant according to the
ways of attacking short secret exponent RSA and conclude that the proposed scheme
is secure enough to defeat all the existing short secret exponent attacks. Finally, the
trade-off between the length of secret exponent and public exponent is analyzed. We
show that it is possible to design a secure RSA system with

e2log + d2log ≈ N2log + kl where kl is a predetermined constant, e.g., 112.
Compared with typical RSA system that e is of the same order of magnitude as N if d
is first selected, these variants of RSA have the advantage that the overall
computations can be significantly reduced. As an example, we can construct a secure
RSA system with p of 256 bits, q of 768 bits, d of 256 bits, and e of 880 bits.

The remainder of this paper is organized as follows. In section 2, we review some
well-known attacks on the use of short secret exponent. In section 3, we propose and
analyze a construction of RSA system to combat those short secret exponent attacks.
In section 4, we present a variant of RSA such that the length of the secret exponent
and the public exponent can be balanced and minimized. In section 5, the trade-off
between the length of the secret exponent and the length of the public exponent is
analyzed. Finally, we conclude this paper in section 6.

2 Overview of Previous Works
Because the security analysis of our schemes is related to Wiener’s attack [26],
Verheul and van Tilborg’s attack [25], and Boneh and Durfee’s attack [1] on the use
of short secret exponent, here we briefly review these attacks as the background

On the Design of RSA with Short Secret Exponent 153

information for reading this paper. Additionally, we also introduce the basic concept
of unbalanced RSA which was proposed by Shamir [19].

2.1 Wiener’s Attack and its Extension on Short Secret Exponent

Wiener's attack [26] is based on approximations using continued fractions to find the
numerator and denominator of a fraction in polynomial time when a close enough
estimate of the fraction is known. He showed the RSA system can be totally broken if
the secret exponent with up to approximately one-quarter as many bits as the modulus
(both p and q are of the same size). For simplicity, we slightly modify Wiener’s attack
in the following. Let ed = kφ(N)+1 in a typical RSA system. Hence gcd(d, k)=1. We

can rewrite this equation as: ed=k(N-(p+q)+1)+1. Therefore, δ=− ||
d
k

N
e , where

N
k

qp

d
k

11−−+
=δ . It is known that for a rational number x such that |x-

A
B |< 22

1
A

,

where gcd(A, B)=1,
A
B can be obtained as convergents of the continued fraction

expansion of x. For further discussion of continued fractions, we refer the reader to

[26]. As pointed out by Pinch [15], if p<q<2p and d<
3
1 25.0N , then p+q-1 < N3 and

k<d<
3
1 25.0N . Therefore, 2225.0 2

1
3

11 ||
dddNd

k
N
e <<≤− . Thus

d
k can be found

because
d
k is one of the logN convergents of the continued fraction for

N
e .

The extension of Wiener’s attack, proposed by Verheul and van Tilborg [25],
basically follows Wiener’s approach except that they proposed a more general method
to compute the convergents of the continued fraction expansion of the same number
as in Wiener’s attack up to the point where the denominator of the convergent
exceeds approximately 25.0N . For d> 25.0N , their attack need do an exhaustive search
for about 2t+8 bits, where t =)/(log 25.0

2 Nd . Because Verheul and van Tilborg’s
attack is not directly related to our work, we omit reviewing their attack here.

2.2 Boneh and Durfee’s Attack on Short Secret Exponent

Based on solving the small inverse problem, Boneh and Durfee [1] proposed a new
attack on short RSA secret exponent, which leads to a tighter bound than the bound
proposed by Wiener. They concluded that if e≈N and d < 292.0N , then the secret
exponent d can be efficiently found. In a typical RSA system, ed = kφ(N)+1. So, ed =
k((N+1)-(p+q))+1. Let A= 1+N and s= -(p+q), and t=-k. Then ed + t(A+s)=1. Thus
t(A+s) =1 (mod e). If both t and s are much smaller than e, the problem can be viewed
as follows: given an integer A, find an element close to A whose inverse modulo e is

154 Hung-Min Sun et al.

small. This problem is usually referred as the small inverse problem. Let e ≈ αN and

d < βN . So far, Boneh and Durfee have showed that if β<
6
7 - 2/1)61(

3
1 α+ , then the

small inverse problem can be solved. Consequently, RSA is insecure whenever d
< 285.0N (which can be slightly improved up to 292.0N) if α=1.

2.3 Unbalanced RSA System

It is generally accepted that RSA moduli are composed of two large primes of the
same size. Shamir [19] proposed a variant of the typical RSA, called unbalanced RSA,
that the two primes are widely differing in size, e.g., pq 22 log10log ⋅= . His
motivation is to provide higher security without increasing computational cost.

In general, all the existing factoring algorithms to break RSA can be classified into
two types: algorithms whose running time depends on the smaller factor p, and
algorithms whose running time depends on the size of the modulus N. The fastest
factoring algorithm of the first type is based on elliptic curves, and its asymptotic
running time is exp(O(2/1

22
2/1

2)log(log)(log pp)). This algorithm is usually referred
as the elliptic curve method (ECM). So far, the largest factor that has ever been found
in practice with this algorithm is about 53 digits (≈176 bits) long [6]. Therefore, if we
choose p to be larger than 256 bits, the elliptic curve method becomes infeasible. The
fastest factoring algorithm of the second type is based on the general number field
sieve (GNFS), and its asymptotic running time is exp(O 3/2

22
3/1

2)log(log)(log NN)).
So far, the largest RSA modulus has ever been factored in practice with this algorithm
is 140 digits (≈ 465 bits) long [5]. As the fast development of computer techniques
and factoring algorithms, it is clear that the standard 512-bit RSA modulus no longer
provides adequate security and must be significantly increased. Generally, for a large
RSA modulus the GNFS attack is much more efficient than the ECM attack.
Therefore, there is no need to increase the sizes of the RSA modulus and its prime
factors at the same rate. Note that at the Eurocrypt'99 rump session, Shamir [20]
announced his design for a special hardware, called "TWINKLE" device which can
execute sieve-based factoring algorithms approximately two to three orders of
magnitude as fast as a conventional fast PC. If the device can be implemented
efficiently, this new technique will increase the size of factorable numbers by 100 to
200 bits for a GNFS attack.

Note that Gilbert et al. [7] pointed out that Shamir’s unbalanced RSA suffers from
some weaknesses. However, these weaknesses come from decrypting only modulo p
(and thus limiting the plaintexts to integers smaller than p). Our schemes proposed in
this paper don’t suffer from the same weaknesses.

Note that some fast and practical public-key cryptosystems [11,14,23] which rely
on the difficulty of factoring numbers of the type qp 2 were proposed recently. These
cryptosystems also use the same concept of making the factors short but large enough
such that an ECM attack is infeasible.

On the Design of RSA with Short Secret Exponent 155

3 RSA with Short Secret Exponent

In this section, we propose an unbalanced RSA system such that the use of short
secret exponent in the RSA is still secure against all the existing short secret exponent
attacks. We show that when p and q are the size of 256 bits and 768 bits, d of 192 bits
is large enough to combat all the existing short secret exponent attacks.

3.1 The Proposed Scheme (Scheme I)

We propose a construction of the unbalanced RSA as follows:

Step 1. Randomly select a prime p and a prime q (p<q) such that p and N is large
enough to make an ECM attack and a GNFS attack infeasible respectively,
e.g., p and q are 256 bits and 768 bits long, and therefore N is about 1024
bits long.

Step 2. Randomly select a short secret exponent d such that d2log + p2log >

N2log
3
1 (see Section 3.4) and d > 5.02 pγ , where γ is a security parameter,

e.g., γ = 64 and hence d is 192 bits long. Note that it is necessary that γ
satisfies the following inequality: 32α 2log eγ >> 3(1-α-2 2log eγ)2,
where qelog≈α . Here elog denotes the logarithm with the base e that is
the public exponent. We give the details in Section 3.3.

Step 3. Find e such that ed=1 mod φ(N), where φ(N)=(p-1)(q-1). Generally, e will
be the same order of magnitude as φ(N). Here we assume e ≥ φ(N)/2 +1
(the occurrence probability of this case is 1/2). If not, we repeat Step 2
again.

It is clear that the construction leads to a short secret exponent, e.g., a 192-bit d for
a 1024-bit RSA modulus, which is far below the lower bounds proposed by Wiener
(256 bits [26]) and by Boneh and Durfee (299 bits [1]). Note that if γ≈0.5 p2log , to
our best knowledge, no information can be obtained to break the resulting RSA
system until now. The details are explained in Section 3.3. So, the RSA system with
p of 256 bits, q of 768 bits, d of 256 bits (due to 128-bit γ) and e of 1024 bits is quite
secure.

156 Hung-Min Sun et al.

3.2 Combating Wiener’s Attack and its Extension

Because d > 5.02 pγ , it is clear that 2
2 121

dp
γ> . Because kφ(N)=ed-1, we can obtain

d
k =

)(

1

N
d

e

φ

−
≥

)(

11
2

)(

N
d

N

φ

φ −+
≥

)(
2

)(

N

N

φ

φ

≥
2
1 . Thus ||

d
k

N
e − =

N
k

qp

d
k

11−−+
>

N
q

d
k =

pd
k 1 >

2
1

2
2 12

d
γ = 2

2

2
12
d

γ >> 22
1
d

. If γ is adequately large, the value ||
d
k

N
e −

will be far away the value 22
1
d

. Thus, Wiener’s attack doesn’t apply to Scheme I.

3.3 Combating Boneh and Durfee’s Attack

Following Boneh and Durfee’s approach, let A= 1+N , s= -(p+q), and t=-k. Thus
t(A+s) =1 (mod e). Let |s|< αe and |t| < βe . The sufficient condition for solving the
small inverse problem is: 2)1(3)12(4 αβαβα −−<−+ . Because of the limit of
space, we provide the details in the full version of this paper.

In our construction e ≈ N, q ≈ |s| ≈ αe , d ≈ |k| ≈ |t| ≈ βe , therefore p=
q
N ≈ αe

e ≈ α−1e .

Hence d≈ 5.02 pγ ≈)1(5.02 αγ −e . Let γ2 ≈ 'γe , i.e., 2log' eγγ ≈ . Therefore, d

≈)1(5.0' αγ −+e . Thus, αγβ −+≈ 1'22 . So, the sufficient condition for solving the small
inverse problem can be reduced into 32αγ’ < 3(1-α-2γ’)2 . Hence, in order to combat
Boneh and Durfee’s attack, it is necessary that γ is adequately large such that the
following inequality holds: 32α 2log eγ >> 3(1-α-2 2log eγ)2. As an example, we
assume p, q, γ and d are 256 bits, 768 bits, 64 bits, and 192 bits long respectively.
Thus α=0.75 and β=0.1875. It is clear that)12(4 −+αβα = 0.375 >>

2)1(3 αβ −− =0.117186. So, Boneh and Durfee’s attack cannot succeed.
An important observation proposed by Boneh and Durfee [1] is that the unique

solution of the small inverse problem encodes enough information to find d.
Therefore, a strong resistance to Boneh and Durfee’s attack is to make the small
inverse problem failed to have a unique solution. This is why Boneh and Durfee
believed that a typical RSA with d ≈ 5.0N is strongly secure against short secret
exponent attacks. So, if we let γ be slightly larger than 0.5 p2log , then d > p.

Without loss of generality, we assume |t| ≈ d > p ≈ α−1e , then |t| > α−1e . Thus the
resulting small inverse problem: t(A+s) =1 (mod e), where |t| > α−1e and |s|≈ αe , will
no longer have a unique solution. As a result, if d is a few bits larger than p, the

On the Design of RSA with Short Secret Exponent 157

resulting RSA is strongly secure against Boneh and Durfee's attack even if Boneh and
Durfee's attack can be up to d< 5.0N .

3.4 Combating the Cubic Attack

Here we consider a kind of attack, named the cubic attack, in the following.
Because ed=k(p-1)(q-1)+1 and N=pq, we can obtain the following system of modular
equations:
(1) k(p-1)(q-1)+1 = 0 (mod e)
(2) pq = N (mod e).
Combining (1) and (2), we can obtain the following cubic equation in two variables k
and p:
(3) k(p-1)(N-p)+p = 0 (mod e)
Coppersmith [2] has shown how to solve such cubic equations heuristically if

k2log + p2log < e2log
3
1 . To combat Coppersmith's attack, we need the constraint:

d2log + p2log > N2log
3
1 because k2log ≈ d2log and e2log ≈ N2log in Scheme

I. On the other hand, if one can know the exact value of k, then the equation (3) can
be reduced to a quadratic equation in a single variable p and hence can be solved
provided that either e is prime, or can be factored and doesn’t have too many prime
factors. Therefore, we must make k unknown to an attacker. In Scheme I, because k
is of the same order of magnitude as d, it is large enough to make an exhaustive
search infeasible. Hence Scheme I is secure against the cubic attack.

4 RSA with Balanced Public Exponent and Secret Exponent

Traditionally, when constructing RSA, p and q are first selected. After that, either
first select the secret exponent d and then determine the public exponent e, or vice
versa. Thus either e or d is of the same order of magnitude as φ(N). In this section,
we are interested in constructing RSA with balanced and minimized public and secret

exponents such that both are approximately (N2log
2
1 +56) bits long without

compromising the security of RSA. Different from traditional constructions, we first
select p and d, and then determine e and q.

4.1 The Proposed Scheme (Scheme II)

Theorem 1. Let two integers a, b > 1. If gcd(a, b) =1, then we can find a unique pair
(uh, vh) satisfying auh-bvh=1, where (h-1)b< uh < hb and (h-1)a< vh< ha, for any
integer h≥1.

158 Hung-Min Sun et al.

 We assume p and q are approximately (N2log
2
1 - 112) and (N2log

2
1 +112) bits

long respectively. Here we assume that p and N are large enough to make an ECM
attack and a GNFS attack infeasible, e.g., p and N are about 400 bits and 1024 bits
long respectively. Our construction is the following:

Step 1. Randomly select a prime number p of (N2log
2
1 -112) bits.

Step 2. Randomly select a number k of 112 bits.

Step 3. Randomly select a number d of (N2log
2
1 +56) bits such that gcd(k(p-1),

d)=1.
Step 4. Based on Theorem 1, we can uniquely determine two numbers u’ and v’

such that du’-k(p-1)v’=1, where 0< u’ < k(p-1) and 0< v’< d.
Step 5. If gcd(v’+1, d) ≠ 1, then go to Step 3.
Step 6. Randomly select a number h of 56 bits, compute u = u’+hk(p-1) and v =

v’+hd.
Step 7. If v+1 isn’t a prime number, then go to Step 6.
Step 8. Let e=u, q=v+1, and N=pq, then p, q, e, d, and N are the parameters of

RSA.

Clearly, in this construction e and d satisfy the equation: ed =k(p-1)(q-
1)+1=kφ(N)+1. Therefore, the equation: ed=1 mod φ(N) still holds as that in typical
RSA. Obviously, both e and d obtained from this construction are approximately

(N2log
2
1 +56) bits long, and p and q are approximately (N2log

2
1 -112) bits and

(N2log
2
1 +112) bits long respectively. As an example, if N2log ≈1024, then d is

568 bits long, p is 400 bits long, e is about 568 bits long and q is about 624 long. A
concrete example for this case is given in Appendix A. In order to measure the
efficiency of the proposed scheme, we ran some experiments to test the average times
required to find a suitable h in Step 6 for obtaining a prime q. Under 100 samples,
our results indicate that in average we need try 487.48 times for Step 6 when N is of
1024 bits long. A comparative result is 566.31 times of selecting a random number of
624 bits and testing whether the number is a prime. This shows that both have
approximately the same cost in order to obtain a prime q. Note that in Step 5, if
gcd(v’+1, d) ≠ 1, it implies that it is impossible to find h such that v’+hd+1 is a prime.
In addition, the prime p generated in Step 1 can be arbitrarily determined, e.g.,
selecting a strong prime p, but the prime q generated in Step 8 cannot. Fortunately,
the requirement for RSA key that p and q are strong primes is no longer needed due to
[17,21-22].

Note that compared with the RSA with CRT-based implementations, Scheme II
apparently doesn't provide better efficiency. However the CRT-based RSA needs to
keep more secrets p and q than the typical RSA. Moreover, the CRT-based RSA
usually incurs some additional security problems [12], even some error detection
techniques are applied to it.

On the Design of RSA with Short Secret Exponent 159

4.2 Combating Wiener’s Attack and its Extension:

Here we examine the security of Scheme II following the line of the attack, proposed
by Wiener, on short RSA secret exponent.

It is clear that ||
d
k

N
e − =

N
k

qp

d
k

11−−+
 >

N
q

d
k =

pd
k 1 . Without loss of

generality, we assume that k> 1112 , 5.01132 N− <p< 5.01122 N− and 5.0552 N <d< 5.0562 N .

Hence, 5.0

11221
Np

> and
dN
121 55

5.0 > . Thus
pd

k 1 > 1112 5.0

11221
Nd

> 2
279

2
12
d

>> 22
1
d

.

So, ||
d
k

N
e − will be much larger than 22

1
d

. Thus, Wiener’s attack doesn’t apply to

Scheme II.

4.3 Combating Boneh and Durfee’s Attack:

Similar to Section 3.3, the sufficient condition for solving the small inverse problem
is: 2)1(3)12(4 αβαβα −−<−+ . Due to the difficulty of obtaining a general proof,
we only show Scheme II with N of 1024 bits is secure against Boneh and Durfee’s
Attack. For Scheme II, if N2log ≈1024, then d is 568 bits long, p is 400 bits long, e

is about 568 bits long and q is about 624 bits long. Thus α=
568
624 and β =

568
112 . It is

clear that)12(4 −+αβα = 2.1664 >> 2)1(3 αβ −− =0.2625. So, Boneh and
Durfee’s attack doesn’t apply to Scheme II.

4.4 Combating the Cubic Attack

Here we refer to Section 3.4. In Scheme II, because k2log + p2log = N2log
2
1 >>

e2log
3
1 , Coppersmith's attack cannot work here. In addition, because k is 112 bits

long, it is large enough to make an exhaustive search infeasible. Hence Scheme II is
secure against the cubic attack.

160 Hung-Min Sun et al.

5 Trade-off between Public Exponent and Secret Exponent

From Section 4, we know that it is possible for us to use median public and secret
exponents in RSA system such that the overall computations required in encryption
and decryption are minimized and balanced without compromising with the security
of RSA. Therefore, one may be desirable to have secret and public exponents which
are differing in size, but the overall computations are still minimized, e.g., d≈ 25.0N
and e≈ 86.0N . To minimize the overall computations required in encryption and
decryption, it is natural that there exists a trade-off between the length of the public
exponent and the length of the secret exponent. In this section, we are interested in
addressing this problem.

5.1 The Proposed Scheme (Scheme III)

In the following, generalizing Scheme II, we give an efficient construction of RSA
such that e2log + d2log ≈ N2log + kl , where kl is a predetermined constant.

Step 1. Randomly select a prime number p of length pl (pl < N2log
2
1) such that

it is large enough to make an ECM attack infeasible, e.g., pl =256.
Step 2. Randomly select a number k of length kl , e.g., kl =112.
Step 3. Randomly select a number d of length dl such that gcd(k(p-1), d)=1, e.g.,

dl =256.
Step 4. Based on Theorem 1, we can uniquely determine two numbers u’ and v’

such that du’-k(p-1)v’=1, where 0< u’ < k(p-1) and 0< v’< d.
Step 5. If gcd(v’+1, d) ≠ 1, then go to Step 3.
Step 6. Randomly select a number h of length dp llN −−log , compute u =

u’+hk(p-1) and v = v’+hd.
Step 7. If v+1 isn’t a prime number, then go to Step 6.
Step 8. Let e=u, q=v+1, and N=pq, then p, q, e, d, and N are the parameters of

RSA.

From Step 1-3, we know that k, p, and d are kl bits, pl bits, and dl bits long.
Obviously, e and q obtained from the above construction are roughly dk llN −+log
bits and plN −2log bits long. These parameters kl , pl , and dl must satisfy the
following requirements:
(1) 1+−>> dpk lll . (See 5.2)

(2) α and β must satisfy: 2)1(3)12(4 αβαβα −−>>−+ , where α

=
dk

p

llN
lN
−+

−

2

2

log
log

 and β =
dk

k

llN
l

−+2log
. (See 5.3)

On the Design of RSA with Short Secret Exponent 161

(3) k is large enough to make an exhaustive search infeasible and kl + pl >

N2log
3
1 (see Section 5.4)

As an example, if k, p, and d are 112 bits, 256 bits, and 256 bits long, then e is
about 880 bits long and q is about 768 bits long. A concrete example for this case is
given in Appendix B. In order to measure the efficiency of the proposed scheme, we
also ran some experiments to test the average times required to find a suitable h in
Step 6 for obtaining a prime q. Under 100 samples, our results indicate that in
average we need try 743.56 times for Step 6. A comparative result is 696.86 times of
selecting a random number of 768 bits and testing whether the number is a prime.
This shows that both have approximately the same cost in order to obtain a prime q.

Note that if one wish to have a smaller public exponent and a larger secret
exponent, he need only modify this construction by interchanging the positions of e
and d, i.e., he first fixes e and p and then determines d and q.

5.2 Combating Wiener’s Attack and its Extension

Here we refer to Section 3.2. It is clear that ||
d
k

N
e − >

pd
k 1 . Without loss of

generality, we assume that k> 12 −kl , 12 −pl <p< pl2 and 12 −dl <d< dl2 . Hence, pl

p
−> 21

and
d

dl 12 1 >+− . Obviously,
pd

k 1 >
d

pk ll 12 1−− =
d

pk ll

2
12 − . From requirement (1):

1+−>> dpk lll , we know that 1+−>>− dpk lll . Therefore,
pd

k 1 >>
d

dl

2
12 1+− >

22
1
d

. So, ||
d
k

N
e − is much larger than 22

1
d

. Thus, Wiener’s attack doesn’t apply

to Scheme III.

5.3 Combating Boneh and Durfee’s Attack

Because k, p, and d are kl bits, pl bits, and dl bits long, e and q obtained from
Scheme III will be roughly dk llN −+log bits and plN −log bits long. Note that

q>p. Let |s|< αe and |t| < βe . Therefore, α ≈
dk

p

llN
lN
−+

−

2

2

log
log

 and β

≈
dk

k

llN
l

−+2log
. As described in Section 3.3, to combat Boneh and Durfee’s

attack, α and β must satisfy: 2)1(3)12(4 αβαβα −−>>−+ . As an example, if k,
p, and d are 112 bits, 256 bits, and 256 bits long (hence e and q are about 880 bits and

162 Hung-Min Sun et al.

768 bits long), then α ≈
880
768 and β ≈

880
112 . It is clear that)12(4 −+αβα = 0.4443 >>

2)1(3 αβ −− =0.

5.4 Combating the Cubic Attack

Here we refer to Section 3.4. In Scheme III, because k2log + p2log > N2log
3
1 >

e2log
3
1 , Coppersmith's attack cannot work here. Besides, kl =112 makes an

exhaustive search infeasible. Therefore, Scheme III is secure against the cubic attack.

6 Conclusions

An important observation obtained in this paper is that making the size of p and q
different enhances RSA to combat all the existing short secret exponent attacks.
Although this also reduces the strength of RSA against factoring, p of 256 bits is large
enough to combat an ECM attack at present. Hence RSA with d of 192 bits, p of 256
bits, and q of 768 bits is secure against Boneh and Durfee's attack. To our best
knowledge, d of 256 bits is quite secure even if Boneh and Durfee's attack can be up
to d< 5.0N . We also propose an efficient construction of RSA with e2log = d2log =

N2log +56 and its generalization with e2log + d2log ≈ N2log + kl where kl is a
predetermined constant. These two constructions are also secure against all the
existing short secret exponent attacks due to making the size of p and q different. As
an example, RSA with e of 568 bits, d of 568 bits, p of 400 bits, and q of 624 bits and
RSA with p of 256 bits, q of 768 bits, d of 256 bits, and e of 880 bits are both secure.

Remark: After we finished this paper, Marc Joye provided us with a related article
by Sakai, Morii, and Kasahara [18]. In the paper, they proposed a key generation
algorithm for RSA cryptosystem which can make e2log + d2log ≈ N2log . Their
schemes have the following properties:

(1) ed = 1
2

)1)(1(
+

−−
g

qpk
, where g is a large prime and g|(p-1), g|(q-1)

(2) p2log ≈ q2log ≈ N2log
2
1

It should be noticed that Wiener [26] has pointed out that making g large (and hence
GCD(p-1, q-1) is large) may cause some security problems. For example, one can
find g from N-1 by factoring algorithms because g divides pq-1=(p-1)(q-1)+(p-1)+(q-
1). If g isn't large enough to combat an ECM attack, e.g., g of 110 bits and 120 bits in
Sakai et al.'s schemes, g can be found from N-1 easily. Even if g is large enough to

On the Design of RSA with Short Secret Exponent 163

combat an ECM attack, e.g, 250 bits long, it is still possible to factor N-1 and hence
obtain g because N-1 may possibly contain only some small prime factors excluding
g. Once g is obtained, Wiener's attack can work efficiently [26]. A possible solution
to repair their schemes is to make g much larger (> 250 bits) and let N-1 contain at
least two large prime factors (> 250 bits) including g. However, in some literatures
and current practical use, e.g., X9.31, it is usually recommended to make GCD(p-1, q-
1) small in order to guard against the relevant attacks such as repeat encryption
attacks.

Acknowledgments. We are grateful to Marc Joye for providing us with reference
[18] and his valuable comments. We also thank Sung-Ming Yen and the anonymous
referees for their helpful comments.

References
1. D. Boneh and G. Durfee, “Cryptanalysis of RSA with private exponent d < 292.0N ”, Proc.

of EUROCRYPT’99, LNCS 1592, Springer-Verlag, pp. 1-23, 1999.
2. D. Coppersmith, “Finding a small root of a univariate modular equation”, Proc. of

EUROCRYPT’96, LNCS 1070, Springer-Verlag, pp. 155-165, 1996.
3. D. Coppersmith, “Small solutions to polynomial equations, and low exponent RSA

vulnerabilities”, Journal of Cryptology, Vol. 10, pp. 233-260, 1997.
4. D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, “Low-exponent RSA with related

messages”, Proc. of EUROCRYPT’96, LNCS 1070, Springer-Verlag, pp. 1-9, 1996.
5. S. Cavallar, W. Lioen, H. te Riele, B. Dodson, A. Lenstra, P. Leyland, P.L. Montgomery, B.

Murphy, P. Zimmermann, “Factorization of RSA-140 using the Number Field Sieve”, Proc.
of ASIACRYPT’99, Springer-Verlag, 1999.

6. ECMNET Project; http://www.loria.fr/~zimmerma/records/ecmnet.html
7. H. Gilbert, D. Gupta, A. Odlyzko, and J.J. Quisquater, “Attacks on Shamir’s RSA for

paranoids”, Information Processing Letters, Vol. 68, pp. 197-199, 1998.
8. J. Hastad, “On using RSA with low exponent in a public key network”, Proc. of

CRYPTO’85, LNCS, Springer-Verlag, pp. 403-408, 1986.
9. J. Hastad, “Solving simultaneous modular equations of low degree”, SIAM J. of Computing,

Vol. 17, pp. 336-341, 1988.
10.I.N. Herstein, Topics in Algebra, Xerox Corporation, 1975.
11.D. Hühnlein, M.J. Jacobson, S. Paulus, and T. Takagi, “A cryptosystem based on non-

maximal imaginary quadratic orders with fast decryption”, Proc. of EUROCRYPT’98,
LNCS 1403, Springer-Verlag, pp. 294-307, 1998.

12.M. Joye, J.J. Quisquater, S.M. Yen, and M. Yung, “Security paradoxes: how improving a
cryptosystem may weaken it”, Proceedings of the Ninth National Conference on
Information Security, Taiwan, pp. 27-32, May 14-15, 1999.

13.A. Lenstra, “Generating RSA moduli with a predetermined portion”, Proc. of
ASIACRYPT’98, LNCS 1514, Springer-Verlag, pp. 1-10, 1998.

14.T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure as factoring”,
Proc. of EUROCRYPT’98, LNCS 1403, Springer-Verlag, pp. 308-318, 1998.

15.R. Pinch, “Extending the Wiener attack to RSA-type cryptosystems”, Electronics Letters,
Vol. 31, No. 20, pp. 1736-1738, 1995

16.R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems”, Communication of the ACM, Vol. 21, pp. 120-126, 1978.

164 Hung-Min Sun et al.

17.R. Rivest and R. D. Silverman, “Are strong primes needed for RSA?”, in The 1997 RSA
Laboratories Seminar series, Seminar Proceedings, 1997.

18.R. Sakai, M. Morii, and M. Kasahara, “New key generation algorithm for RSA
cryptosystem”, IEICE Trans. Fundamentals, Vol. E77-A, No. 1, pp. 89-97, 1994

19.A. Shamir, “RSA for paranoids”, CryptoBytes, Vol. 1, No. 3, pp. 1,3-4, 1995.
20.A. Shamir, “Factoring large numbers with the TWINKLE device”, presented at

Eurocrypt'99, 1999.
21.R. D. Silverman, “Fast generation of random, strong RSA primes”, CryptoBytes, Vol. 3, No.

1, pp. 9-13, 1997.
22.R. D. Silverman, “The requirement for strong primes in RSA”, RSA Laboratories Technical

Note, May 17, 1997.
23.T. Takagi, “Fast RSA-type cryptosystem modulo qp 2 ”, Proc. of CRYPTO’98, LNCS 1462,

Springer-Verlag, pp. 318-326, 1998.
24.S.A. Vanstone and R.J. Zuccherato, “Short RSA keys and their generation”, Journal of

Cryptology, Vol. 8, pp. 101-114, 1995.
25.E. Verheul and H. van Tilborg, “Cryptanalysis of less short RSA secret exponents”,

Applicable Algebra in Engineering, Communication and Computing, Springer-Verlag, Vol.
8, pp. 425-435, 1997.

26.M. Wiener, “Cryptanalysis of short RSA secret exponents”, IEEE Transactions on
Information Theory, Vol. 36, No. 3, pp. 553-558, 1990.

Appendix A: An example for p of 400 bits, q of 624 bits, d of 568 bits,
and e of 568 bits

p=0000cd0a 73cb74b6 27aa29e7 9b1a3c1b d73f4b67 92abde25 c2dcc2dd 68f7a477
 9cc6f0a0 d5eeea7c 7c740c8c b370a2e1 6112a393
q=0000807e 4aac7213 62d7d547 4e4dac07 1ea03096 0f13c597 a619a6d7 4c8a3e5b
 dcd00bcb dcfb0758 555f6b4e 23cc4f6a 5221fa87 bfef172d b815a296 4c5c5be7
 61a22fe4 53808fac 0a2fb2d2 548285af
d=008dc2d0 0c1e3027 e0a43f18 022896a0 35379c76 b1e5577c 71038464 bf9ef9a6
 00bb3aa0 bb4f590d ef8311ab 95282426 7277f349 200c5d67 5e23dc05 9613dccc
 ae0a5dad 1209cc53
e=00b335b3 9edd0f90 546f4a51 2ec2a0dd 191e1fb0 38f6b5dd b9ef5156 7ecdc538
 355a67b6 d7fbbee3 0926925c b0112914 bbe9f4bf a1a61f92 53dfab7e d9c40261
 6fc3d7a8 f77c025f

Appendix B: An example for p of 256 bits, q of 768 bits, d of 256 bits,
and e of 880 bits

p=f80dd4da c85afbd9 019d0f24 92c03006 c5baef83 7cfc15eb 2e17b1c1 1fb166e3
q=96d12784 058456cf 00e17f03 b6402825 00a95a1a 772f7059 ea78ac03 57e49dbf
 feaff1d1 b556e47f 855e8d74 9905753b 12a46068 ce6df746 0e85602c 8f4ed8ac
 ed6b7f21 2fb1d58f ca645447 ae39277d d01e681a e8a630c6 8c158859 c2e4b743
d=bd82175c 6d9bd203 9ce3f83b cdbceb8e 51c82b29 7f4e237d b0eb3518 807c02bf
e=0000c3b8 1c856425 ff98f54d 605ebe3e 58fd6381 acd328b8 0c4c1d7d ebba6832
 061d6fa7 baa8b814 65a82be5 93cdc56a 21ac87e7 693e97e9 3632dfc7 47572a58
 f3683163 cd312935 bd24a7ac 08204830 1ba73867 da7456d7 f5efcada 715ad9a0
 cec3edd3 e773421b 2c699c42 ef62ebff

	Introduction
	2 Overview of Previous Works
	2.1 Wiener’s Attack and its Extension on Short Secret Exponent
	2.2 Boneh and Durfee’s Attack on Short Secret Exponent
	2.3 Unbalanced RSA System

	3 RSA with Short Secret Exponent
	3.1 The Proposed Scheme (Scheme I)
	3.2 Combating Wiener’s Attack and its Extension
	3.3 Combating Boneh and Durfee’s Attack
	3.4 Combating the Cubic Attack

	4 RSA with Balanced Public Exponent and Secret Exponent
	4.1 The Proposed Scheme (Scheme II)
	4.2 Combating Wiener’s Attack and its Extension:
	4.3 Combating Boneh and Durfee’s Attack:
	4.4 Combating the Cubic Attack

	5 Trade-off between Public Exponent and Secret Exponent
	5.1 The Proposed Scheme (Scheme III)
	5.2 Combating Wiener’s Attack and its Extension
	5.3 Combating Boneh and Durfee’s Attack
	5.4 Combating the Cubic Attack

	6 Conclusions
	Remark: After we finished this paper, Marc Joye provided us with a related article by Sakai, Morii, and Kasahara [18]. In the paper, they proposed a key generation algorithm for RSA cryptosystem which can make �+�(�. Their schemes have the following

	Acknowledgments
	References
	Appendix A: An example for p of 400 bits, q of 624 bits, d of 568 bits, and e of 568 bits
	Appendix B: An example for p of 256 bits, q of 768 bits, d of 256 bits, and e of 880 bits

