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Abstract. We discuss the discrete logarithm problem over the class
group Cl(∆) of an imaginary quadratic order O∆, which was proposed
as a public-key cryptosystem by Buchmann and Williams [8]. While in
the meantime there has been found a subexponential algorithm for the
computation of discrete logarithms in Cl(∆) [16], this algorithm only has
running time L∆[ 1

2
, c] and is far less efficient than the number field sieve

with Lp[
1
3
, c] to compute logarithms in IF∗

p. Thus one can choose smaller
parameters to obtain the same level of security. It is an open question
whether there is an L∆[ 1

3
, c] algorithm to compute discrete logarithms

in arbitrary Cl(∆).

In this work we focus on the special case of totally non-maximal imagi-
nary quadratic orders O∆p such that ∆p = ∆1p

2 and the class number of
the maximal order h(∆1) = 1, and we will show that there is an L∆p [

1
3
, c]

algorithm to compute discrete logarithms over the class group Cl(∆p).
The logarithm problem in Cl(∆p) can be reduced in (expected) O(log3 p)
bit operations to the logarithm problem in IF∗

p (if (∆1
p
) = 1) or IF∗

p2 (if

(∆1
p
) = −1) respectively. This result implies that the recently proposed

efficient DSA-analogue in totally non-maximal imaginary quadratic or-
der O∆p [21] are only as secure as the original DSA scheme based on
finite fields and hence loose much of its attractiveness.

1 Introduction

A general and possible inherent problem of all currently known public key crypto-
systems is that their intractability is based on certain unproven assumptions.
Thus nobody can guarantee that popular cryptosystems based on factoring in-
tegers or computing discrete logarithms in some group will remain secure in the
future. Therefore it is important to study alternative primitives and different
groups to have a backup if one assumption such as the intractability of factoring
or computation of discrete logarithms in one group turns out to be false. Beside
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the multiplicative group of finite fields and the group of points on (hyper-) el-
liptic curves over finite fields, a very promising candidate for a group in which
the discrete logarithm is hard is the class group Cl(∆) of imaginary quadratic
orders, such as proposed by Buchmann and Williams [8] in 1988. For example
the discrete logarithm problem in Cl(∆) has the interesting property that it is
at least as hard as factoring the discriminant ∆. Another reason which makes
studying imaginary quadratic orders O∆ very important today, is that these
rings are isomorphic to the endomorphism rings of non-supersingular elliptic
curves over finite fields. Thus a good understanding of these rings can shed some
light on the real difficulty of the discrete logarithm problem in elliptic curves.
While Hafner and McCurley discovered a subexponential algorithm one year
later [16] to compute discrete logarithms in Cl(∆), this algorithm has a running
time L∆[12 , 1] and is far less efficient than the number field sieve to compute
discrete logarithms in IF∗

p or factoring integers with Ln[13 , (
64
9 )

1/3]. The precise
definition of Ln[e, c] will be given in Section 3. Thus one may choose smaller
parameters, and still obtain the same level of security. It is an open question
whether there is an L∆[13 , c] algorithm to compute discrete logarithms in arbi-
trary imaginary quadratic class groups Cl(∆). Note that as mentioned above
this would imply another asymptotically fast algorithm for factoring integers,
because factoring the discriminant ∆ is reduced to the computation of discrete
logarithms in Cl(∆).

Furthermore these cryptosystems based on imaginary quadratic class groups
are not only interesting from a theoretical point of view. Recently cryptosystems
have been proposed with very practical properties. We will only name a few cryp-
tosystems based on imaginary quadratic orders here and refer to Section 2 for
a more comprehensive survey . In [26] a public key cryptosystem was proposed
with quadratic decryption time. To our knowledge this is the only known cryp-
tosystem having this property. First implementations show that the decryption is
as efficient as RSA-encryption with e = 216+1. While this cryptosystem is based
on factoring, it is also possible to set up interesting DL-based cryptosystems us-
ing non-maximal imaginary quadratic orders. If one uses the recently developed
exponentiation technique for totally non-maximal orders [21] it is possible to
implement efficient DSA-analogues. The running time is roughly comparable to
DSA in IF∗

p and there is certainly much space for further improvements. The ma-
jor property of these totally non-maximal orders is that the class number of the
maximal order h(∆1) = 1 and thus the class number of the non-maximal order
h(∆p) = p − (∆1

p ), where the conductor p is prime and (∆1
p ) is the Kronecker-

Symbol, is known immediately. Note that these totally non-maximal quadratic
orders are therefore analogous to supersingular elliptic curves, where one also
knows the group order in advance.

In this work we will show that the discrete logarithm problem in totally non-
maximal imaginary quadratic orders can be reduced to the discrete logarithm
problem in IF∗

p (if (∆1
p ) = 1) or IF∗

p2 (if (∆1
p ) = −1) respectively. The reduction

is very efficient and can be performed in (expected) O(log3 p) bit operations.
Thus the situation for cryptosystems based on imaginary quadratic orders is
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somewhat analogous to the situation for cryptosystems based on elliptic curves.
This may be summarized as follows:

While there is no known algorithm with L∆[13 , c] for the computation of
discrete logarithms in imaginary quadratic class groups in general, there
are problem classes for which such an algorithm is known. This is no
general problem however, because it is easy to avoid these weak classes
in practice.

It is clear that an analogous statement for elliptic curves would be some-
what sharper and consider algorithms with subexponential running time Lp[e, c],
e < 1.

This paper is organized as follows: In Section 2 we will give a brief survey
of cryptosystems based on imaginary quadratic orders, because many results
appeared very recently and are sometimes not yet published. Section 3 gives the
necessary background and notations of imaginary quadratic orders. In Section
4 we will provide the main result of this paper which consists of the reduction
of the discrete logarithm problem in totally non-maximal imaginary quadratic
orders to the discrete logarithm problem in finite fields. Finally, in Section 5,
we will conclude this work by discussing the cryptographic implications of our
result.

2 A Brief Survey of Cryptosystems Based on Imaginary
Quadratic Orders

We will only highlight the most important works in this direction. As mentioned
above it is a general problem that the security of popular cryptosystems is based
on unproven assumptions. Nobody can guarantee that DL-type cryptosystems
based on finite fields or elliptic curves over finite fields will stay secure forever.
Thus it is important to study alternative groups which can be used if an efficient
algorithm for the computation of discrete logarithms in one particular type of
group is discovered.

2.1 The Early Days - Maximal Orders

With this motivation Buchmann and Williams [8] proposed to use imaginary
quadratic class groups Cl(∆) for the construction of cryptosystems. A nice
property of this approach is that breaking this scheme is at least as difficult
as factoring the fundamental discriminant ∆ of the maximal order. Furthermore
it should be mentioned that imaginary quadratic orders are closely related to
non-supersingular elliptic curves over finite fields. They happen to be isomorphic
to their endomorphism ring. Thus a sound understanding of imaginary quadratic
orders may lead to a better understanding of the real security of elliptic curve
cryptosystems. In 1988, when they proposed these groups for cryptographic pur-
poses, the best algorithms to compute the class number h(∆) and discrete loga-
rithms in Cl(∆) were exponential time algorithms with L∆[1, 1

5 ] [23,30] assuming
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the truth of the Generalized Riemann Hypothesis (GRH) or L∆[1, 1
4 ] without

this assumption. In [6] the first implementation was reported along with a com-
plexity analysis of this key agreement scheme. For example it was shown that
the complexity of an exponentiation in Cl(∆) needs O(log4 |∆|) bit operations,
which is fairly inefficient compared to the original scheme [13] which is of cubic
complexity. Another problem of cryptosystems based on class group Cl(∆) of
the maximal order, was that the computation of the class number h(∆) is almost
as difficult as the computation of discrete logarithms. Thus it seemed impossible
to set up signature schemes analogous to DSA [25] or RSA [28].

Even worse for this approach was the discovery of a subexponential time
algorithm [16] by Hafner and McCurley in 1989. This algorithm has running
time L∆[12 , c] and can be used to compute the class number h(∆) and with some
modifications to the computation of discrete logarithms in Cl(∆) as shown in [5].
Note that at this time the asymptotically best algorithm for factoring integers
was the quadratic sieve [29] with running time Ln[12 , 1] if one makes certain
plausible assumptions. The situation for discrete logarithms in IF∗

p was similar
these days. The algorithm due to Coppersmith, Odlyzko and Schroeppel (COS)
[11] to compute discrete logarithms in prime fields also has running time Lp[12 , 1].

Thus, it was inclined to consider cryptosystems based on imaginary quadratic
class groups Cl(∆) to be unsuitable for practical application.

2.2 The Recent Revival - Non-maximal Orders

In the meantime however an idea of Pollard lead to today’s asymptotically best
algorithm for factoring integers - the number field sieve (see [24]). This algo-
rithm has (expected) running time Ln[13 , (

64
9 )

1/3] and was used in 1996 for the
factorization of RSA-130 [9] and recently for the factorization of RSA-140 [27]
for example. The number field sieve can also be used to compute discrete log-
arithms in finite fields (see e.g. [15,31]), where the (expected) running time is
Lp[13 , (

64
9 )

1/3] as well. In contrast to this development there is still no L∆[13 , c]
algorithm known for the computation of discrete logarithms in arbitrary Cl(∆).
The asymptotically best algorithm for this task still is an analogue of the mul-
tiple polynomial quadratic sieve [22] with L∆[12 , 1].

It is clear that this development alone would not justify the term ”revival”.
In 1998 it was shown in [19] that by using class groups Cl(∆p), ∆p = ∆1p

2, of
non-maximal orders one solves the problem that the class number h(∆p) can not
be determined and that one is able to implement an ElGamal-type cryptosystem
with comparably fast decryption. While the performance of this scheme still was
too bad to be used in practice this result may be considered as the birth of a
new generation of cryptosystems based on quadratic orders.

Recently, a very efficient successor [26] with quadratic decryption time was
proposed. This scheme was later on called NICE for New Ideal Coset Encryption.
First implementations show that the time for decryption is comparable to RSA
- encryption with e = 216+1. The central idea is to use an element g ∈ ker(ϕ−1)
to mask the message in the ElGamal-type encryption scheme by multiplication
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with gk for random k. Here ϕ−1 is the isomorphism introduced in [19] which al-
lows switching from the public non-maximal order to the secret maximal order.
Thus during the decryption step, which essentially consists of the computation
of ϕ−1, the mask gk simply disappears and the message is recovered. Note that
the computation of ϕ−1 is essentially one modular inversion with the Extended
Euclidean Algorithm which takes quadratic time. It is clear that this cryptosys-
tem is very well suited for applications in which a central server has to decrypt
a large amount of ciphertext in a short time. For this scenario one may use the
recently developed NICE-batch-decryption method [21], which speeds up the al-
ready very efficient decryption process by another 30% for a batch size of 100
messages. An efficient undeniable signature scheme based on the NICE-structure
was also proposed [3].

In 1998 the first conventional signature schemes based on non-maximal imag-
inary quadratic orders were also proposed. In [20] RSA- and Rabin analogues
were proposed. The corresponding encryption schemes have the major advan-
tage that they are immune against low-exponent- and chosen-ciphertext attacks.
Moreover a novel algorithm to compute square roots in Cl(∆p) was proposed,
which replaces the fairly inefficient Gaussian algorithm using ternary quadratic
forms. To avoid the computation of h(∆1), where |∆1| should have at least 200
bits to prevent the factorization of ∆p using ECM (see [4] for a recent find-
ing of a 53 digit factor), it was proposed to use totally non-maximal imaginary
quadratic orders. Note that the above cryptosystems are based on completely
factoring the non-fundamental discriminant ∆p or ∆pq in the case of totally
non-maximal orders respectively. While the utilization of totally non-maximal
orders for RSA-analogues is only interesting from a theoretical point of view,
it is clear that this structure may well be used to set up DSA analogues. The
discriminant ∆p = ∆1p

2, with ∆1 = −163 and hence h(∆) = 1 for example,
can be chosen with about 800 bits to obtain the same level of security as for
DSA in IF∗

p with p about 1000 bits. Note that this comparison, i.e. 400 bit p for
Cl(∆p) compared to 1000 bit p for IF∗

p, is a rather pessimistic one. Nevertheless
this DSA analogue seemed to be too inefficient to be used in practice.

Very recently however a new arithmetic for these totally non-maximal orders
was proposed [21]. The central idea is to replace the fairly inefficient conventional
ideal -arithmetic, i.e. multiplication and reduction of ideals, by simple manipu-
lations on the corresponding generator in the maximal order. This means that
instead of (multiple) applications of the comparably costly Extended Euclidean
Algorithm one only has a few modular multiplications. This strategy turns out
to be thirteen times as fast and ends up with a DSA analogue based on totally
non-maximal orders, in which the running time for the signature generation
is roughly comparable to the conventional DSA in IF∗

p. Furthermore there still
seems to be much space for further improving this scheme.

However beside the possibility to speed up the DSA analogues, there is yet
another and even more important effect of the very recent result [21]:

It was precisely the way in which one considers the arithmetic of ideals
in totally non-maximal orders, which led to the (previously conjectured)
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constructive version of the reduction proof presented in Section 4 of this
work.

3 Some Background and Notations Concerning
Imaginary Quadratic Orders

We first define the function Ln[e, c] which is used to describe the asymptotic
running time of subexponential algorithms. Let n, e, c ∈ IR with 0 ≤ e ≤ 1 and
c > 0. Then we define

Ln[e, c] = exp
(
c · (log |n|)e · (log log |n|)1−e

)
.

Thus the running time for subexponential algorithms is between polynomial time
(Ln[0, c]) and exponential time (Ln[1, c]).

Now we will give some basics concerning quadratic orders. The basic notions
of imaginary quadratic number fields may be found in [7,10]. For a more compre-
hensive treatment of the relationship between maximal and non-maximal orders
we refer to [12,19].

Let∆ ≡ 0, 1 mod 4 be a negative integer, which is not a square. The quadratic
order of discriminant ∆ is defined to be

O∆ = ZZ + ωZZ,

where

ω =

{√
∆
4 , if ∆ ≡ 0 (mod 4),

1+
√

∆
2 , if ∆ ≡ 1 (mod 4).

(1)

The standard representation of some α ∈ O∆ is α = x+ yω, where x, y ∈ ZZ.
If ∆1 is squarefree, then O∆1 is the maximal order of the quadratic number

field Q(
√
∆1) and ∆1 is called a fundamental discriminant. The non-maximal

order of conductor p > 1 with (non-fundamental) discriminant ∆p = ∆1p
2 is de-

noted by O∆p . We will always assume in this work that the conductor p is prime.
Furthermore we will omit the subscripts to reference arbitrary (fundamental or
non-fundamental) discriminants. Because Q(

√
∆1) = Q(

√
∆p) we also omit the

subscripts to reference the number field Q(
√
∆). The standard representation of

an O∆-ideal is

a = q

(
aZZ +

b+
√
∆

2
ZZ

)
= q(a, b), (2)

where q ∈ Q>0, a ∈ ZZ>0, c = (b2 −∆)/(4a) ∈ ZZ, gcd(a, b, c) = 1 and −a < b ≤
a. The norm of this ideal is N (a) = aq2. An ideal is called primitive if q = 1.
A primitive ideal is called reduced if |b| ≤ a ≤ c and b ≥ 0, if a = c or |b| = a.
It can be shown, that the norm of a reduced ideal a satisfies N (a) ≤ √|∆|/3
and conversely that if N (a) ≤√|∆|/4 then the primitive ideal a is reduced. We
denote the reduction operator in the maximal order by ρ1() and write ρp() for
the reduction operator in the non-maximal order of conductor p.
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The group of invertible O∆-ideals is denoted by I∆. Two ideals a, b are
equivalent, if there is a γ ∈ Q(

√
∆), such that a = γb. This equivalence relation

is denoted by a ∼ b. The set of principal O∆-ideals, i.e. which are equivalent to
O∆, is denoted by P∆. The factor group I∆/P∆ is called the class group of O∆

denoted by Cl(∆). Cl(∆) is a finite abelian group with neutral element O∆. In
every equivalence class there is one and only one reduced ideal, which represents
its class. Algorithms for the group operation (multiplication and reduction of
ideals) can be found in [10]. The order of the class group is called the class
number of O∆ and is denoted by h(∆).

All cryptosystems from Section 2.2 make use of the relation between the
maximal and some non-maximal order. Any non-maximal order of conductor p
may be represented as O∆p = ZZ + pO∆1 . A special type of non-maximal order,
which is of central importance in this work, is given if h(∆) = 1. In this case
O∆p is called a totally non-maximal imaginary quadratic order. An O∆-ideal a
is called prime to p, if gcd(N (a), p) = 1. It is well known, that all O∆p -ideals
prime to the conductor are invertible.

Denote by I∆p(p) (respectively, P∆p(p)) the O∆p-ideals prime to p (respec-
tively, the principal O∆p -ideals prime to p). There is an isomorphism (See [12,
Proposition 7.22,page 145])

I∆p(p)
/
P∆p(p)

� I∆p

/
P∆p

= Cl(∆p). (3)

Thus we may ’neglect’ the ideals which are not prime to the conductor, if we
are only interested in the class group Cl(∆p). There is an isomorphism between
the group of O∆p-ideals which are prime to p and the group of O∆1 -ideals, which
are prime to p, denoted by I∆1(p) respectively:

Proposition 1. Let O∆p be an order of conductor p in an imaginary quadratic
field Q(

√
∆) with maximal order O∆1 .

(i.) If A ∈ I∆1(p), then a = A ∩ O∆p ∈ I∆p(p) and N (A) = N (a).
(ii.) If a ∈ I∆p(p), then A = aO∆1 ∈ I∆1(p) and N (a) = N (A).
(iii.) The map ϕ : A �→ A ∩ O∆p induces an isomorphism I∆1(p)

∼→I∆p(p).
The inverse of this map is ϕ−1 : a �→ aO∆1 .

Proof. See [12, Proposition 7.20, page 144] . ✷

Thus we are able to switch to and from the maximal order as applied in the
cryptosystems of Section 2.2. The algorithms GoToMaxOrder(a, p) to compute
ϕ−1 and GoToNonMaxOrder(A, p) to compute ϕ respectively may be found in
[19]. Note, that the above map is defined on ideals themselves, rather than
equivalence classes. The class group Cl(∆p) of a non-maximal order can be
described as follows:

Proposition 2. There is an isomorphism

Cl(∆p) � I∆1(p)
/
P∆1,ZZ (p)

,
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where P∆1,ZZ (p) denotes the subgroup of I∆1(p) generated by the principal ideals
of the form αO∆1 where α ∈ O∆1 satisfies α ≡ a mod pO∆1 for some a ∈ ZZ
such that gcd(a, p) = 1. This isomorphism is induced by isomorphism ϕ between
I∆1(p) and I∆p(p).

Proof. See the details in [12, Proposition 7.22,page 145]. For the sake of conve-
nience we describe the outline of proof. Recall I∆p(p)/P∆p(p) � Cl(∆p). Isomor-
phism ϕ−1 : a �→ aO∆1 maps P∆p(p) to a subgroup P ′ of I∆1(p). We can prove
that P ′ = P∆1,ZZ(p) using relation

α ≡ a mod pO∆1 , a ∈ ZZ, gcd(a, p) = 1 ⇐⇒ α ∈ O∆p , gcd(N(α), p) = 1.

✷

This interpretation of Cl(∆p) will be used in Section 4 to reduce the compu-
tation of discrete logarithms in totally non-maximal imaginary quadratic orders
to the computation of discrete logarithms in finite fields.

Definition 1. Let ∆1 < 0 and ∆1 ≡ 0, 1 mod 4, such that h(∆1) = 1 and p
prime. Furthermore let g and a be reduced O∆p -ideals in standard-representation
(2), which represent classes of the class group Cl(∆p) of the totally non-maximal
order. Then the discrete logarithm problem DLP in Cl(∆p) is given as follows:
Determine an a ∈ ZZ such that ga ∼ a, or show that no such a exists.

Furthermore the class number of a totally non-maximal order of conductor
p is given as follows:

Proposition 3. Let ∆1 < −4, ∆1 ≡ 0, 1 mod 4 such that h(∆1) = 1 and p
prime. Then h(∆p) = p− (∆1

p ), where (∆1
p ) is the Kronecker-symbol.

Proof. This follows immediately from [12, Theorem 7.24, page 146]. ✷

Finally we will make use of the following interpretation of the ring (O∆1/pO∆1)
∗:

Proposition 4. Let O∆1 be the maximal order and p be the prime conductor.
Then there is an isomorphism between

(O∆1/pO∆1)
∗ � IFp[X ]

/
(f(X)),

where (f(X)) is the ideal generated by f(X) ∈ IFp[X ] and

f(X) =
{
X2 − ∆1

4 , if ∆ ≡ 0 (mod 4),
X2 −X + 1−∆1

4 , if ∆ ≡ 1 (mod 4).
(4)

Proof. Let ρ ∈ IFp be a root of f(X) ∈ IFp[X ], where f(X) is as given above.
Then an element α ∈ IFp[X ]/(f(X)) has a representation α = x + yρ, where
x, y ∈ IFp. On the other hand an element β ∈ (O∆1/pO∆1)∗ has a representation
β = x̄ + ȳω, where ω given as in (1) and x̄, ȳ ∈ IFp. If we set x ≡ x̄ mod p
and y ≡ ȳ mod p we immediately have the desired bijective correspondence.
Furthermore it can be easily shown by straight forward calculation that this
bijective correspondence is indeed an isomorphism. ✷

Note that this isomorphism implicitly was used in [21] to speed up the arith-
metic in totally-non-maximal orders.
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4 Reducing Logarithms in Totally Non-maximal Orders
to Logarithms in Finite Fields

In this section we will show that the discrete logarithm problem in Cl(∆p) as
given in Definition 1 can be reduced to the discrete logarithm problem in finite
fields. More precisely we will show the following

Theorem 1. The DLP in the class group Cl(∆p) of a totally non-maximal
order O∆p , where ∆p = ∆1p

2 for prime p, can be reduced in (expected) O(log3 p)
bit operations

1. to the DLP in IF∗
p2 if (∆1

p ) = −1 or
2. to the DLP in IF∗

p if (∆1
p ) = 1.

To show the above result we will first consider the structure of the class group
Cl(∆p) of the totally non-maximal order. By the definition of a totally non-
maximal order, we know that the class number of the maximal order h(∆1) = 1.
This means that in O∆1 there are only principal ideals and hence I∆1 = P∆1 .
Recall from Proposition 2 that Cl(∆p) � I∆1(p)/P∆1,ZZ(p), where P∆1,ZZ (p)
denotes the principal ideals αO∆1 of the form α ≡ a mod pO∆1 , with a ∈ ZZ
and gcd(a, p) = 1. Thus in our case we obtain the following isomorphism:

Cl(∆p) � P∆1(p)
/
P∆1,ZZ(p)

.

Hence the group structure of the class group Cl(∆p) can be explained ex-
clusively by a relation of principal ideals in the maximal order O∆1 . With this
knowledge we are able to relate the ring (O∆1/pO∆1)∗ to our class group Cl(∆p).

Lemma 1. The map (O∆1/pO∆1)∗→P∆1(p)/P∆1,ZZ (p), which α ∈ (O∆1/pO∆1)∗

maps to αO∆1 ∈ P∆1(p)/P∆1,ZZ (p), is a well-defined group homomorphism and
surjective.

Proof. This is shown in the more comprehensive proof of Theorem 7.24 in [12]
(page 147). ✷

The ”running time” to compute this map is trivially constant time. Note
that this map cannot be injective, just because there are (depending on (∆1/p))
either p2 − 1 or (p − 1)2 elements in (O∆1/pO∆1)∗ and by Proposition 3 only
p− (∆1/p) = p± 1 elements in Cl(∆p). It would be an isomorphism if we would
restrict it to appropriate subgroups of (O∆1/pO∆1)

∗. The precise relation is
given in Lemma 2.

In the next step we show that there is an isomorphism ψ between the ring
(O∆1/pO∆1)∗ and the multiplicative group of a finite field of degree at most 2,
which can be computed in (expected) O(log3 p) bit operations.
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Lemma 2. We have to distinguish two cases:

1. If (∆1
p ) = −1 then there exists an isomorphism ψ : (O∆1/pO∆1)∗ → IF∗

p2 ,
which can be computed in constant time.

2. If (∆1
p ) = 1 then there exits a surjective homomorphism ψ : (O∆1/pO∆1)∗ →

IF∗
p, which can be computed with (expected) O(log3 p) bit operations.

Proof. From Proposition 4 we know that there is an isomorphism (O∆1/pO∆1)∗

→ IFp[X ]/(f(X)), where f(X) ∈ IFp[X ] is given as in (4). Now we need to
separate the two cases.

(1) (∆1
p ) = −1: In this case the polynomial f(X) is irreducible in IFp[X ]

and therefore we have IFp[X ]/(f(X)) � IFp2 . Therefore we get the bijective map
ψ : (O∆1/pO∆1)∗ → IF∗

p2 as follows: Let α = a + bω ∈ (O∆1/pO∆1)∗. Then
ψ(α) = a + bX ∈ IFp2 . This map can be trivially computed in constant time.
Furthermore it is easy to show that this map is indeed an isomorphism.

(2) (∆1
p ) = 1: In this case the polynomial f(X) is not irreducible, but can

be decomposed as f(X) = (X − ρ)(X − ρ̄) ∈ IFp[X ] where ρ ∈ IFp is a root of
f(X) and ρ̄ is conjugate to ρ. Thus if ∆1 ≡ 0 mod 4 and D = ∆1/4 we have
ρ ∈ IFp such that ρ2 ≡ D mod p and ρ̄ = −ρ. In the other case ∆1 ≡ 1 mod 4 we
have ρ = (1 + b)/2, where b2 ≡ ∆1 mod p and ρ̄ = (1 − b)/2 ∈ IFp. Thus in our
case (∆1/p) = 1 we have IFp[X ]/(f(X)) � IFp[X ]/(X − ρ) ⊗ IFp[X ]/(X − ρ̄). In
both cases (∆1 even or odd) we have to compute a square root in IFp to find ρ
and ρ̄. This takes random polynomial time using the algorithm of Cipolla. More
precisely we know from [1, Theorem 7.2.3, page 158] that this algorithm takes
(expected) time O(log3 p). In this case we have the map between α = a + bω ∈
(O∆1/pO∆1)∗ and ψ(α) = a + bρ ∈ IF∗

p. Finally one can easily show that this
map is indeed a surjective homomorphism. ✷

Now we only have one more minor problem. The DLP in Definition 1 is
formulated for reduced ideals in the standard representation such that a = aZZ+
b+

√
∆1

2 ZZ in Cl(∆p). We have to convert this standard representation in Cl(∆p)
to that in P∆1(p)/P∆1,ZZ(p) using Proposition 2. The following simple lemma
indicates that we can efficiently switch to the desired generator-representation
(and back).

Lemma 3. Let ∆1 < 0 and ∆1 ≡ 0, 1 mod 4 such that h(∆1) = 1 and p prime.
Then

1. there is a deterministic algorithm which computes ideal αO∆1 = ϕ−1(a) ∈
P∆1(p) for a given reduced ideal a ∈ Cl(∆p) prime to p in O(log2 p) bit
operations and

2. there is a deterministic algorithm which computes reduced ideal a which is
equivalent to ϕ(αO∆1 ) ∈ Cl(∆p) for a given ideal αO∆1 ∈ P∆1(p)/P∆1,ZZ (p)
in O(log2 p) bit operations.

Proof. Note that algorithm ϕ and ϕ−1 can be computed in O(log2 p) bit op-

erations [26]. We denote by a = aZZ +
b+
√

∆q

2 ZZ a reduced ideal in Cl(∆p).
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From Proposition 1 all reduced ideals a ∈ Cl(∆p) prime to p are of the form
a = ϕ(αO∆1 ) for some α ∈ O∆1 . We can find the generator α by reducing
ϕ−1(a). Let A = ϕ−1(a) = AZZ + B+

√
∆1

2 ZZ. From [2] one can reduce ideal
A of O∆1 and find element α ∈ O∆1 such that αO∆1 ∼ A in O((logA)2) bit
operations. The norm of ideal a ∈ Cl(∆p) is a. Because a is reduced we have
a <

√|∆p|/3 and a = O(p). Note that the norm a of ideals does not change while
switching the orders by map ϕ, thus A = a holds. Therefore one can compute
the generator αO∆1 = ϕ−1(a) in O(log2 p) bit operations. On the contrary, let
A be the standard representation of ideal αO∆1 ∈ P∆1(p)/P∆1,ZZ(p). From [21]
one can compute ideal A in O((log∆1)2) bit operations. Then to compute the
reduced ideal equivalent to ϕ(A) in Cl(∆p) requires map ϕ and one reduction
algorithm, and they are in O(log2 p) bit operations. This proofs the assertion of
Lemma 3. ✷

Thus we are now able to put together our auxiliary lemma to prove the main
result of this work.

Proof (Proof of Theorem 1). If one is given g, a as given in Definition 1 to
compute the discrete logarithm in the class group Cl(∆p) then one can compute
the corresponding generators γ, α ∈ O∆1 such that γO∆1 = ϕ−1(g), αO∆1 =
ϕ−1(a) by Lemma 1 and Lemma 3. Using the isomorphism ψ from Lemma 2
one can compute the corresponding elements a = ψ(α) and g = ψ(γ) in the
finite field IF∗

p (if (∆1/p) = 1) or IF∗
p2 (if (∆1/p) = −1) respectively. Then one

is able to compute the discrete logarithm there or determine that it does not
exist. It is clear that the entire reduction does only take (expected) O(log3 p) bit
operations. ✷

5 Conclusion

In this work we have shown that the discrete logarithm problem in the class group
Cl(∆p) of a totally non-maximal imaginary quadratic order can be reduced to
the discrete logarithm problem in finite fields using (expected) O(log3 p) bit-
operations. This result clearly implies that the formerly proposed bitlength of
800 for∆p does not provide sufficient security, because one could simply compute
discrete logarithms in IF∗

pk , where k ∈ {1, 2} which should be possible in the near
future if p ≈ 2400. The algorithm which is used in IF∗

pk is the number field sieve
with L[13 ]. This would imply that p (at least in the case that (∆1/p) = 1) should
be about 1024 bit to yield (expected) long term security. Hence cryptosystems
based on totally non-maximal imaginary quadratic orders seem to lose much of
their attractiveness.

Analogous to the situation for Elliptic Curves, where the DLP in supersin-
gular curves can efficiently be solved in finite fields with small extension de-
gree, we discovered that there is also a weak class for class groups of imaginary
quadratic orders. It remains an open question whether it is possible to find an
L[13 ] algorithm to compute discrete logarithms in arbitrary class groups. Another
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interesting question is whether these results have any relevance to the elliptic
curves discrete logarithm problem for elliptic curves whose endomorphism ring is
a totally non-maximal order. These issues will be subject of further research. To
avoid miss-interpretation of these result it should be noted that non-maximal
orders, such as those applied in [19,26], where the factorization of ∆p is kept
secret, are not effected by this result.
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14. S. Düllmann: Ein Algorithmus zur Bestimmung der Klassenzahl positiv definiter
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