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Abstract. Problems of secure communication and computation have
been studied extensively in network models. Goldreich, Goldwasser, and
Linial, Franklin and Yung, and Franklin and Wright have initiated the
study of secure communication and secure computation in multi-recipient
(broadcast) models. A “broadcast channel” (such as Ethernet) enables
one processor to send the same message—simultaneously and privately—
to a fixed subset of processors. Franklin and Wright, and Wang and
Desmedt have shown that if there are at most k malicious (Byzantine
style) processors, then there is an efficient protocol for achieving prob-
abilisticly reliable and perfectly private communication in a strongly n-
connected network where n ≥ k + 1. While these results are uncondi-
tional, we will consider these problems in the scenario of conditional
reliability, and then improve the bounds. In this paper, using the re-
sults for hardness of approximation and optimization problems, we will
design communication protocols (with broadcast channels) which could
defeat more faults than possible with the state of the art. Specifically, as-
suming certain approximation hardness result, we will construct strongly
n-connected graphs which could defeat a k-active adversary (whose com-
putation power is polynomially bounded) for k = cn, where c > 1 is
any given constant. This result improves a great deal on the results of
Franklin and Wright, and Wang and Desmedt.

1 Introduction

If two parties are connected by a private and authenticated channel, then se-
cure communication between them is guaranteed. However, in most cases, many
� Research partly supported by DARPA F30602-97-1-0205. However the views and
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parties are only indirectly connected, as elements of an incomplete network of
private and authenticated channels. In other words they need to use intermediate
or internal nodes. Achieving participants cooperation in the presence of faults is
a major problem in distributed networks. The interplay of network connectivity
and secure communication have been studied extensively (see, e.g., [2,4,5,10]).
For example, Dolev [4] and Dolev, Dwork, Waarts, and Yung [5] showed that, in
the case of k Byzantine faults, reliable communication is achievable only if the
system’s network is 2k + 1 connected. Hadzilacos [10] has shown that even in
the absence of malicious failures connectivity k+1 is required to achieve reliable
communication in the presence of k faulty participants.

Goldreich, Goldwasser, and Linial [9], Franklin and Yung [7], and Franklin
and Wright [6] have initiated the study of secure communication and secure
computation in multi-recipient (broadcast) models. A “broadcast channel” (such
as Ethernet) enables one participant to send the same message—simultaneously
and privately—to a fixed subset of participants. Franklin and Yung [7] have given
a necessary and sufficient condition for individuals to exchange private messages
in broadcast models in the presence of passive adversaries (passive gossipers).
For the case of active Byzantine adversaries, many results have been presented
by Franklin and Wright [6]. Note that Goldreich, Goldwasser, and Linial [9] have
also studied the fault-tolerant computation in the public broadcast model in the
presence of active Byzantine adversaries.

There are many examples of broadcast channels. A simple example is a local
area network like an Ethernet bus or a token ring. Another example is a shared
cryptographic key. By publishing an encrypted message, a participant initiates
a broadcast to the subset of participants that is able to decrypt it.

We will abstract away the concrete network structures and consider multicast
graphs. Specifically, a multicast graph is just a graph G(V,E). A vertex A ∈ V
is called a neighbor of another vertex B ∈ V if there is an edge (A,B) ∈ E.
In a multicast graph, we assume that any message sent by a node A will be
received identically by all its neighbors, whether or not A is faulty, and all parties
outside of A’s neighborhood learn nothing about the content of the message. The
neighborhood networks have been studied by Franklin and Yung in [7]. They have
also studied the more general notion of hypergraphs, which we do not need.

As Franklin and Wright [6] have pointed out, unlike the simple channel model,
it is not possible to directly apply protocols over multicast lines to disjoint paths
in a general multicast graph, since disjoint paths may have common neighbors.
Franklin and Wright have shown that in certain cases the change from simple
channel to broadcast channel hurts the adversary more than it helps, because
the adversary suffers from the restriction that an incorrect transmission from a
faulty processor will always be received identically by all of its neighbors.

It was shown [6] that if the sender and the receiver are strongly n-connected
(that is, there are n paths with disjoint neighborhoods) and the malicious adver-
sary can destroy at most k processors, then the condition n > k is necessary and
sufficient for achieving efficient probabilisticly reliable and probabilisticly private
communication. They also showed that there is an efficient protocol to achieve
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probabilisticly reliable and perfectly private communication when n > �3k/2�.
Recently, Wang and Desmedt [13] have shown that, indeed, the condition n > k
is necessary and sufficient for achieving efficient probabilisticly reliable and per-
fectly private communication in broadcast channels.

Definition 1. Let A and B be two vertices on a multicast graph G(V,E). We
say that A and B are strongly n-connected if there are n neighborhood disjoint
paths p1, . . . , pn between A and B, that is, for any i �= j(≤ n), pi and pj have
no common neighbor (except A and B). In other words, for any vertex v ∈
V \ {A,B}, if there is a vertex u1 on pi such that (v, u1) ∈ E, then there is no
u2 on pj such that (v, u2) ∈ E.

However, all these results are concerned with malicious adversaries with un-
limited computational power. In this paper, we will consider the situation when
the adversary’s computational power is polynomial time bounded. Specifically,
assuming certain approximation hardness result, we will construct strongly n-
connected multicast graphs which could defeat a k-active adversary (whose com-
putation power is polynomial time bounded) for k = cn, where c > 1 is any given
constant. This result improves a great deal on the results of Franklin and Wright
[6] (which are for unconditional reliability). To achieve this improvement we use
some of the hardness results of Burmester, Desmedt, and Wang in [3].

The idea underlying our construction is that we will design strongly n-
connected communication graphs in such a way that it is hard for the adversary
to find the neighborhood disjoint n paths which is a witness to the strong n-
connectivity. Hence the adversary does not know which processors to block (or
control).

There have been many results (see, e.g., [1,12] for a survey) for hardness of
approximating an NP-hard optimization problem within a factor c from “be-
low”. For example, it is hard to compute an independent set1 V ′ of a graph
G(V,E) with the property that |V ′| ≥ n

c for some given factor c, where n is the
size of the maximum independent set of G. But for our problem, we are more
concerned with approximating an NP-hard optimization problem from “above”.
For example, given a graph G(V,E), how hard is it to compute a vertex set V ′

of G with |V ′| ≤ cn such that V ′ contains an optimal independent set of G,
where n is the size of the optimal independent set of G? Burmester, Desmedt,
and Wang have shown that this kind of approximation problem is also NP-hard.
We will use this result to design strongly n-connected multicast graphs which is
secure against an active adversary who can control cn vertices where c > 1 is
some constant.

The organization of this paper is as follows. We first present in Section 2
some graph theoretic result which we will need in this paper. Section 3 surveys
the model for commutation in broadcast channels. In Section 4 we demonstrate
how to use strongly n-connected graphs with trapdoors to achieve reliable and
private communication against active adversaries. In Section 5 we outline an
1 An independent set in a graph G(V, E) is a subset V ′ of V such that no two vertices
in V ′ are joined by an edge in E.
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approach to build strongly n-connected graphs with trapdoors. We conclude in
Section 6 with remarks towards theoretical improvements and we present some
open problems.

2 Optimization and Approximation

In this section we survey and introduce some graph theoretic results which will
be used in later sections.

Definition 2. The independent set problem is:

Instance: A graph G(V,E) and a number n.
Question: Does there exist a vertex set V1 ⊆ V of size n such that any two nodes
in V1 are not connected by an edge in E?

Definition 3. Given a graph G(V,E), a vertex subset V ′ ⊆ V is called neigh-
borhood independent if for any u, v ∈ V ′ there is no w ∈ V such that both (u,w)
and (v, w) are edges in E.

Definition 4. A vertex v in a graph G(V,E) is isolated if there is no edge
adjacent to v, i.e., for all w ∈ V , (v, w) /∈ E.

Theorem 1. Given a graph G(V,E) and a number n, it is NP-complete to
decide whether there exists a neighborhood independent set V1 ⊆ V of size n.

Proof. It is clear that the specified problem is in NP. Whence it suffices to
reduce the NP-complete problem IS (Independent Set) to our problem.

The input G(V,E), to IS, consists of a set of vertices V = {v1, . . . , vm} and
a set of edges E. In the following we construct a graph f(G) = GNI(VG, EG)
such that there is an independent set of size n in G if and only if there is a
neighborhood independent set of size n in GNI.

Let VG = V ∪V ′ where V ′ = {vi,j : (vi, vj) ∈ E, i < j}∪{vi,i : vi is an isolated
vertex} and EG ={(vi, vi,j), (vi,j , vj) : vi,j ∈ V ′, i ≤ j}∪{(vi,j, vi′,j′) : vi,j , vi′,j′ ∈
V ′, i ≤ j, i′ ≤ j′}. It is straightforward to check that, for any neighborhood in-
dependent set V1 ⊆ VG, if V1 ∩ V ′ �= ∅ then |V1| = 1. It is also clear that for any
two vertex u, v ∈ V , u and v have no common neighbor in f(G) if and only if
(u, v) /∈ E. Hence there is a neighborhood independent set of size n in GNI if
and only if there is an independent set of size n in G. ��

The following results follow directly from the corresponding results for inde-
pendent sets in Burmester, Desmedt, and Wang [3].

Theorem 2. ([3]) There is a constant ε > 0 such that it is NP-hard to compute
a vertex set V ′ ⊆ V of a graph G(V,E), with the following properties:

1. |V ′| ≤ nmε, where n is the size of the maximum neighborhood independent
set of G and m = |V |.

2. V ′ contains a neighborhood independent vertex set V ′′ such that |V ′′| ≥ n
2 .
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Corollary 1. ([3]) There is a constant ε > 0 such that it is NP-hard to compute
a vertex set V ′ ⊆ V of a graph G(V,E), with the following properties:

1. |V ′| ≤ nmε, where n is the size of the maximum neighborhood independent
set of G and m = |V |.

2. V ′ contains a neighborhood independent vertex set V ′′ such that |V ′′| = n.

3 Models

Following Franklin and Wright [6], we consider multicast as our only communica-
tion primitive. A message that is multicast by any node in a multicast neighbor
network is received by all its neighbors with privacy (that is, non-neighbors
learn nothing about what was sent) and authentication (that is, neighbors are
guaranteed to receive the value that was multicast and to know which neighbor
multicast it). In our models, we assume that all nodes in the multicast graph
know the complete protocol specification and the complete structure of the mul-
ticast graph. In a message transmission protocol, the sender A starts with a
message MA drawn from a message space M with respect to a certain proba-
bility distribution. At the end of the protocol, the receiver B outputs a message
MB. We consider a synchronous system in which messages are sent via multicast
in rounds. During each round of the protocol, each node receives any messages
that were multicast by its neighbors at the end of the previous round, flips coins
and perform local computations, and then possibly multicast a message.

Generally there are two kinds of adversaries. A passive adversary (or gos-
siper adversary) is an adversary who can only observe the traffics through k
internal nodes. An active adversary (or Byzantine adversary) is an adversary
with polynomial-time bounded computational power who can control k internal
nodes. That is, an active adversary will not only listen to the traffics through the
controlled nodes, but also control the message sent by those controlled nodes.
Both kinds of adversaries are assumed to know the complete protocol specifi-
cation, message space, and the complete structure of the multicast graph. At
the start of the protocol, the adversary chooses the k faulty nodes. A passive
adversary can view the behavior (coin flips, computations, message received) of
all the faulty nodes. An active adversary can view all the behavior of the faulty
nodes and, in addition, control the message that they multicast. We allow for
the strongest adversary. Throughout this paper, unless specified otherwise, we
will use k to denote the number of nodes that the adversary can control and use
n to denote the connectivity of the network.

For any execution of the protocol, let adv be the adversary’s view of the entire
protocol. We write adv(M, r) to denote the adversary’s view whenMA =M and
when the sequence of coin flips used by the adversary is r.

Definition 5. (see Franklin and Wright [6])

1. A message transmission protocol is δ-reliable if, with probability at least 1−δ,
B terminates with MB = MA. The probability is over the choices of MA

and the coin flips of all nodes.
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2. A message transmission protocol is ε-private if, for every two messages
M0,M1 and every r,

∑
c |Pr[adv(M0, r) = c] − Pr[adv(M1, r) = c]| ≤ 2ε.

The probabilities are taken over the coin flips of the honest parties, and the
sum is over all possible values of the adversary’s view.

3. A message transmission protocol is perfectly private if it is 0-private.
4. A message transmission protocol is (ε, δ)-secure if it is ε-private and δ-

reliable.
5. An (ε, δ)-secure message transmission protocol is efficient if its round com-

plexity and bit complexity are polynomial in the size of the network, log 1
ε (if

ε > 0) and log 1
δ (if δ > 0).

In order for an adversary to attack the broadcast communication system
which is modeled by a strongly n-connected graph, s/he does not need to find
all of the n neighborhood disjoint paths {p1, . . . , pn} in the graph. S/he can
choose to control one neighbor vertex on each of the n paths. We therefore give
the following definition.

Definition 6. Let G be a strongly n-connected graph, and P = {p1, . . . , pn}
be a witness to the strong n-connectivity of the graph. A set S = {v1, . . . , vk}
of vertices in G is called an eavesdropping vertex set of P if for each path
pi ∈ P (i = 1, . . . , n), there is a vj ∈ S which is a neighbor of (at least one of
the vertices in) pi.

Note that in the above definition, k could be larger than or smaller than n.

Remark 1. The problem of finding an eavesdropping vertex set in a strongly
k-connected graph is NP-hard which will be proved in Section 5.

The following theorem follows straightforwardly from the corresponding theo-
rems in Franklin and Wright [6], and Wang and Desmedt [13].

Theorem 3. (Franklin and Wright [6], Wang and Desmedt [13]) If A and B are
strongly n-connected, and the adversary does not control an eavesdropping vertex
between A and B, then there is an efficient (0, δ)-secure message transmission
protocol between A and B.

4 Reliable and Private Communication with Trapdoors

In this section, we show how to design reliable and private communication sys-
tems with trapdoors such that the following condition is satisfied:

– The broadcast communication system modeled by a strongly n-connected
graph is robust against a polynomial time bounded k-active adversary where
k ≤ cn and c > 1 is any given constant.

The idea is to use the fact that it is NP-hard to find an eavesdropping
vertex set of a strongly n-connected graph. It follows that if one designs the
graph in such a way that the trusted participants can easily find a witness to the
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strong n-connectivity of the graph, and the sender and receiver always initiate
a communication through this witness, then reliable and private communication
is possible. The benefit from using trapdoors in a communication system with
broadcast channels is obvious. If we do not use trapdoors then, Franklin and
Wright [6]’s results show that a strongly n-connected graph is only robust against
k-active adversaries when k < n. However, if we use trapdoors in the design
of graphs, then with high probability, a strongly n-connected graph is robust
against k-active adversaries where k ≤ cn and c > 1 is any given constant. The
reason is that even though the adversary has the power to jam or control k > n
vertices in the graph, he does not know which vertices to corrupt such that each
path pi will have a corrupted neighbor (which can eavesdrop on the messages
sent through the path pi).

Definition 7. Let {Gn}n∈N be an ensemble of graphs with the property that each
graph in Gn is strongly n-connected but not strongly n + 1-connected, where N
is the set of positive integers, and let kn (n = 1, 2, . . .) be a sequence of positive
integers. The ensemble {Gn}n∈N is called polynomial-time robust against kn-
active adversaries if for every probabilistic polynomial-time algorithm D with
the property that for each G ∈ Gn, D(G) is a kn-element vertex subset of G, and
for every polynomial p(·) and all sufficiently large n, the following condition is
satisfied:

If Gn is not empty then the following inequality holds:
∣∣∣∣∣

∑

G∈Gn

Prob (D(G) is an eavesdropping vertex set of G)

∣∣∣∣∣ <
1
p(n)

.

The probabilities in the above definition are taken over the corresponding
random variables Gn and the internal coin tosses of the algorithm D.

Indeed, for the kn and n in Definition 7, if kn < n, then every ensemble
{Gn}n∈N is polynomial-time robust against kn-active adversaries. So one of the
main problems is to design graph ensembles {Gn}n∈N which are polynomial-time
robust against kn-active adversaries for kn ≥ n, that is, to design strongly n-
connected graphs in which it is hard on the average case to find an eavesdropping
vertex set of size kn ≥ n. In Section 5, we will outline an approach to generate
such kind of graphs. In the remaining part of this section we will demonstrate
how to use these graphs to achieve reliability and privacy in broadcast channels.

Protocol I

1. Alice generates a strongly n-connected graph G such that finding a size
k(= cn) eavesdropping vertex set is hard, where c > 1 is any given constant.
(The details will be presented in Section 5).

2. Using a secure channel, Alice sends to the sender and the receiver the n
neighborhood disjoint paths P = {p1, . . . , pn} which is a witness to the
strong n-connectivity of G.
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3. In order to carry out one communication, the sender and the receiver initiate
the communication protocol in Theorem 3 through the n paths in P .

Note that our above protocol is not proactive, that is, it is not secure against
a dynamic adversary who after observing one communication will change the
vertices he controls. Indeed, it is an interesting open problem to design protocols
which are secure against dynamic adversaries.

First assume that Mallory is a k-active adversary where k = cn for some
constant c > 1, and P = {p1, . . . , pn} is the set of neighborhood disjoint paths
used in Protocol I. Since Mallory does not know how to find a size k eavesdrop-
ping vertex set for P (finding such a set is very hard, e.g., as hard as factoring,
let say a 1024-bit integer), she does not know which vertices to corrupt so that
she can corrupt the system even though she has the power to corrupt k = cn
vertices. It follows that the system is robust against a k-active adversary.

5 Strongly n-connected Graphs with Trapdoors

In this section, we consider the problem of designing strongly n-connected graphs
with trapdoors. By using Corollary 1, we will construct practical, average-case
hard, strongly n-connected, graphs which are robust against k-active adversaries
for k = n+c, where c is some given constant. Our following construction is based
on the hardness of factoring a large integer and we will not use the approximation
hardness results (which will be used to prove theoretical results in the next
section).

Construction Let N be a large number which is a product of two primes p and
q. We will construct a strongly n-connected graph G with the following property:
given the number N and an eavesdropping vertex set for G, one can compute
efficiently the two factors p and q. Let x1, . . . , xt and y1, . . . , yt be variables which
take values 0 and 1, where t = �logN�. And let (xt . . . x1)2 and (yt . . . y1)2 denote
the binary representations of

∑
xi2i−1 and

∑
yi2i−1 respectively. Then use the

relation
(xt . . . x1)2 × (yt . . . y1)2 = N (1)

to construct a 3SAT formula C with the following properties (the details of
the construction are omitted. Indeed, one can use the constructive proof that
3SAT is NP-complete (see, e.g., [8, pp. 48-49]) to construct the 3SAT formula
C though there are more efficient ways for our construction):

1. C has at most O(t2) clauses.
2. C is satisfiable and, from a satisfying assignment of C, one can compute in

linear time an assignment of x1, . . . , xt, y1, . . . , yt such that the equation (1)
is satisfied. That is, from a satisfying assignment of C, one can factor N
easily.
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Now, by combining the construction in [8, pp. 48-49] (which constructs a graph
GI for each 3SAT formula C with the property that GI has an independent
set of size l for some constant l = O(t2) if and only if C is satisfiable) and the
reduction in the proof of Theorem 1, construct a graph G′(V ′, E′) and a number
n = O(t2) with the property that: from a size n neighborhood independent
set of G′, one can compute in linear time a satisfying assignment of C. Lastly,
the following procedure will generate a strongly n-connected graph G with the
property that, from a size n+ c eavesdropping vertex set of G, one can compute
in linear time a size n neighborhood independent set of G′. Whence from any
size n + c eavesdropping vertex set of G, one can compute in polynomial time
the primes p and q. As a summary, our construction proceeds as follows.

(N, p, q) → graph G′ → strongly n-connected graph G

Procedure for generating G from G′(V ′, E′): In the following we construct a
multicast graph f(G′) = G(V,E) and two nodes A,B ∈ V (where A denotes the
sender andB denotes the receiver) such that there is a neighborhood independent
set of size n in G′ if and only if A and B are strongly n-connected.

Let V = {A,B} ∪ V ′, and E = E′ ∪ {(A, v), (v,B) : v ∈ V ′}. It is clear
that two paths P1 = (A, vi, B) and P2 = (A, vj , B) are vertex disjoint and have
no common neighbor (except A and B) in G if and only if vi and vj have no
common neighbor in G′(V ′, E′). Hence there is a neighborhood independent set
of size n in G′ if and only if A and B are strongly n-connected in G. It is now
sufficient to show that from each size n+ c eavesdropping vertex set S′ of G, one
can compute in polynomial time a size n neighborhood independent set of G′.

Since S′ is an eavesdropping vertex set of G and G is strongly n-connected,
there is at least one size n subset S of S′ such that

– S itself is an eavesdropping vertex set of G;
– S is a neighborhood independent set of G′.

There are
(
n+c

n

)
=

(
n+c

c

)
(which is a polynomial in n) many different size n

subsets of S′. Whence by considering all these different size n subset of S′ we
can compute in polynomial time a size n vertex set S with the above properties.

It is straightforward to see that the above constructed strongly n-connected
graph G is robust against k-active adversaries for k = n + c if factoring N is
hard, where c is any given constant.

In order to state our main theorem, we need the following assumption of
average hardness of factoring.
Hardness Assumption of Factoring: There exists an ensemble {Xn}n∈N
(where Xn is a subset of composite numbers of length n) such that for every
probabilistic polynomial-time algorithm D from positive integers to positive in-
tegers, every polynomial p(·), and all sufficiently large n, the following condition
is satisfied:

∣∣∣∣∣
∑

x∈Xn

Prob (D(x) is a non-trivial factor of x)

∣∣∣∣∣ <
1
p(n)

.
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Now it is clear that our above discussion implies the following result:

Theorem 4. Assume the average hardness of factoring, then we can construct
a graph ensemble {Gn}n∈N which is polynomial-time robust against kn-active
adversaries, where kn = n+ c for some constant c > 1.

Proof. It follows from the preceding discussions. ��

6 Towards Theoretical Improvements

In the previous section, we outlined a “practical” approach for constructing
strongly n-connected graphs which are robust against k-active adversaries for
k = n + c. In this section we consider theoretical improvements. That is, we
will construct strongly n-connected graphs which are robust against k-active
adversaries for k = cn.

Construction First generate a graph G′(V ′, E′) and a number n which satisfy
the conditions of Corollary 1. Secondly, using the method from the previous sec-
tion of constructing the strongly n-connected graph G(V,E) from G′(V ′, E′), we
construct the strongly n-connected graph G(V,E) with the following properties:

1. Two paths P1 and P2 in G which go through ui and uj respectively are
neighborhood disjoint if and only if ui and uj have no common neighbor in
G′ (see the previous section for details).

2. There is a size n neighborhood independent set in G′ if and only if there are
n neighborhood disjoint paths in G. And from n neighborhood disjoint paths
in G one can compute in linear time a size n neighborhood independent set
in G′.

From the construction of G from G′, it is straightforward that for any size cn
eavesdropping vertex set S′ of G, S′ contains a size n neighborhood independent
set of G′.

By Corollary 1, the graph G is robust against cn-active adversaries.

Remark 2. The above construction shows that, with some reasonable assumption
(for example, assume the existence of a probabilistic polynomial time algorithm
to generate hard strongly n-connected graphs needed in the above construction,
it is possible to construct an ensemble {Gn}n∈N of strongly n-connected graphs
which is robust against polynomial-time kn-active adversaries, where kn = cn
for some constant c > 1.

In this section, we constructed strongly n-connected graphs which are robust
against cn-active adversaries. However, these constructions are inefficient and
are only of theoretical interests, since the size of the graph G in Corollary 1 will
be enormous if we want to make the security of the system to be at least as hard
as an exhaustive search of a 1024-bit space. One of the most interesting open
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questions is how to efficiently generate hard instances of strongly n-connected
graphs, especially, for arbitrary number n.

We should also note that, in order to construct the strongly n-connected
graphs in this section, we need to construct standard graphs which satisfy the
conditions of Corollary 1. That is, we need an algorithm to build graphs whose
neighborhood independent sets are hard to approximate in the average case.
Whence it is interesting (and open) to prove some average-case hardness results
for the corresponding problems.

Our protocols in this paper are not proactive, that is, not robust against
a dynamic adversary who after observing one communication will change the
vertices he controls. It is an interesting open problem to design protocols which
are secure against dynamic adversaries.
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