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Abstract. A periodical multi-secret threshold cryptosystem enables a
sender to encrypt a message by using a cyclical sequence of keys which
are shared by n parties and periodically updated. The same keys appear
in the same order in each cycle, and thus any subset of t + 1 parties
can decrypt the message only in the periodical time-frames, while no
subset of t corrupted parties can control the system (in particular, none
can learn the decryption key). This scheme can be applied to a timed-
release cryptosystem whose release time is determined when the number
of share update phases equals the period of the sequence. The system
is implemented by sharing a pseudo-random sequence generator func-
tion. It realizes n ≥ 3t+1 robustness, and is therefore secure against an
adversary who can corrupt at most one third of the parties.

1 Introduction

The concept of “timed-release crypto” was first introduced by May [May93] and
further studied by Rivest et al. [RSW96]. Its goal is to encrypt a message so
that it cannot be decrypted by anyone, not even the sender, until a predeter-
mined amount of time has passed. According to [RSW96], there are two known
approaches for implementing it:

1. Use trusted agents who promise not to reveal certain information until a
specified time.

2. Use “time-lock puzzles”-computational problems that cannot be solved with-
out running a computer for at least a certain amount of time.

The problem with the first approach is that the user has to totally trust the
agents in all matters from the maintenance of the key to the provision of the
decryption service at the specified time. Moreover, since there is no direct cor-
respondence between the key and the time, the handling of the decryption time
by the agents is purely operational. The second approach is even less practical,
because the decryption time is calculated from the amount of computational
steps. Therefore, the receiver has to start the decryption process as soon as he
receives the encrypted message, and has to use the best computer available, since
the decryption might otherwise be delayed.
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In this paper, we will propose an alternative method for realizing “timed-
release crypto,” using a threshold cryptosystem [Des88] [DF90] that shares a
function (possibly a pseudo-random sequence generator) for generating a se-
quence of random values with some period. Note that in any pseudo-random
number generator, the sequence is repeated after a specific period. Our idea is
to use the period of the sequence as the time needed to obtain a pair of encryp-
tion and decryption keys, so that if the user encrypts the message by using the
public key, the corresponding secret key is available only in a periodical time-
frame. Since the key pairs are periodically available in the same timeframe, this
scheme does not satisfy the original definition of a timed-release key. But it does
if the sender encrypts the message by using the encryption key in some time-
frame and sends the message in the next timeframe. In this case, the receiver
has to wait until one cycle of the period passes to get the decryption key.

Our approach bears some similarity to proactive secret sharing [OY91]
[HJKY95] [FGMY98], in the sense that each party updates its share by multi-
party computation in each time frame. But the difference is that the proactive
scheme aims at maintaining one secret for a long period, whereas in our scheme
the secrets themselves are updated so that different secrets appear in different
timeframes.

Although our scheme maintains multiple secrets, it differs from the (c, d; k, n)-
multi-secret sharing scheme [FY92], in which k different secrets are maintained
among n parties in such a way that at least d parties are necessary to recovery
all k secrets, whereas no subset of c parties can deduce anything. In our system,
the secret (seed) is maintained in a (t, n)−threshold scheme, but it is updated by
a function-sharing scheme that results in the generation of a sequence of secrets.

Our approach is also different from the proactive random number generator
[CH94], because it deals only with the generation of fresh random values that
are computationally independent of the previous states, but cannot maintain the
period of the sequence, which is essential to timed-release key generation.

1.1 Our Results

We define a new class of threshold cryptosystems that can be used for timed-
release crypto, and describe an efficient and robust implementation. More pre-
cisely, in this paper:

1. We define periodical multi-secret threshold cryptosystems as a class of thresh-
old cryptosystems.

2. We implement a periodical multi-secret threshold cryptosystem by sharing
a pseudo-random sequence generation (PRSG) function.

3. We show that our implementations have t-resiliency in n ≥ 3t+ 1, where n
and t are the total number of parties and the number of parties corrupted
by a mobile adversary, respectively.
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1.2 Organization of the Paper

The paper is organized as follows. In section 2, we define our periodical multi-
secret threshold cryptosystem. Since we have to share a pseudo-random sequence
generator function, we give a multiparty protocol for a sequence generator in
section 3. Then, in section 4, we describe periodical multi-secret threshold cryp-
tosystems that we implemented by sharing a linear congruence generator (LCG)
and a Blum-Blum-Shub (BBS) generator based on the ElGamal encryption
scheme. Finally, we present our conclusions in section 5. In appendix A, we
explain some of the cryptographic techniques that are used in our protocols as
basic tools.

2 Model and Definition

2.1 Periodical Multi-secret Threshold Cryptosystem

Let E be a public key scheme defined by three protocols: key-pair generation,
encryption, and decryption. Key update is then introduced as an additional
function of key-pair generation to update the key-pair from (EKt, DKt) to
(EKt+1, DKt+1).

A periodical multi-secret threshold cryptosystem T
⋃

TpE
for scheme E dis-

tributes the operation of key generation (update), and decryption among a set of
n parties P1, . . . , Pn. Let DKt and DKi,t be a secret key and its share for party
Pi in timeframe t respectively; then (EKt, DKt) forms a key-pair in timeframe
t. T

⋃
TpE

is defined by two protocols:

T
⋃

Tp
-KeyUpdate, a randomized protocol that takes a previous shareDKi,t−1

as private input for party Pi, and returns as public output the public en-
cryption key EKt for timeframe t and as private output for party Pi a value
DKi,t, such that (1) DK1,t, . . . , DKn,t constitute a k-out-of-n threshold se-
cret sharing of DKt, which is a secret key for timeframe t corresponding
to the public key EKt, and (2) DKt = DKt′ only when t′ = t (mod Tp),
where Tp is the period specified by the system.

T
⋃

Tp
-Decrypt, a protocol in which each party Pi takes as public input a

ciphertext C = EEKt(M) and as secret input his share DKi,t′ and returns
as public output the message M only when t′ = t (mod Tp).

2.2 Communication Model

We assume that all the communication links are secure (i.e., private and authen-
ticated), which allows us to focus on high-level aspects of the protocols.

2.3 Adversary

We assume that an adversary, A, can corrupt up to t out of the n parties in the
network. Since the system changes its internal states by updating the parties’
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shares, the ability to deal with only a static adversary is not sufficient to provide
security. A “mobile malicious adversary” is allowed to move among parties over
time with the limitation that it can only control up to t parties in a timeframe.
Here we assume that the adversary is static within a timeframe and moves to
other parties in the next timeframe.

2.4 Resiliency

The resiliency of a distributed protocol is defined by comparing it with its corre-
sponding centralized protocol: t-resiliency means that the protocol will compute
a correct output even in the presence of a malicious adversary who can corrupt
up to t parties (robustness), and that the adversary cannot obtain any informa-
tion other than what he can obtain from the centralized protocol (privacy).

3 Multiparty Computation for Sequence Generation

In this section, we will describe a multiparty protocol for the sequence genera-
tion, since we want to share a pseudo-random sequence generation function to
update the secret keys. As sequence generators, we will use the linear congruence
generator and the BBS generator (see appendix A.1), because they are simple
(need only one multiplication per next number generation) and the periods can
be determined by the parameters (the coefficients, modulo, and seed).

On the basis of the multiparty protocol [BGW88] [CCD88], every computa-
tion can be distributed in a secure and robust way. The authors of the above
papers proved that the bound of the privacy threshold is k < n/2, where n is
the total number of parties and k is the number of parties colluding to obtain
the secret. They also proved that the robustness threshold is k′ < n/3, where
k′ is the number of parties corrupted by a malicious adversary. Since the above
papers assume a computationally unbounded adversary, the share verification
process is carried out by error-correcting codes.

By accepting the use of encryption (which satisfies only weaker notions of se-
curity), we can employ a more practical non-interactive verification scheme using
homomorphic commitment. In this paper, we will use a verifiable secret-sharing
scheme (VSS) proposed by Feldman [Fel87] as a basic tool (see appendix A.3).
Let a, b ∈ Zp be two secrets that are shared by using polynomials fa(x), fb(x)
of order k, respectively, and let c ∈ Zq, c �= 0 be some constant. The values
a+ b and c · a can be simply computed by having each party perform the same
operation on its shares fa(i) + fb(i) and c · fa(i), respectively; this results in the
sharing of new polynomials fa+b(x) = fa(x)+fb(x) and fca(x) = c ·fa(x), whose
free coefficients are a + b and c · a, respectively. Feldman’s VSS is also easy to
perform, because the correctness of the resulting shares is checked by using the
publicly known values (commitments) computed as follows: gai+bi = gaigbi and
gc·ai = (gai)c.
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3.1 Degree Reduction

To share the multiplication a · b, three computing steps are necessary: (1) share
multiplication, (2) randomization, and (3) degree reduction, because step (1)
generates a new polynomial h(x) = fa(x)fb(x), which is of order 2k and not
irreducible [BGW88].

Here, we show a VSS-based robust degree reduction protocol. Let f(x) be a
polynomial of order k to share the secret s. The share si = f(i) was distributed by
a dealer to party i by means of Feldman’s VSS. Now, the parties want to reduce
the threshold from k to k′ (k′ < k) (without relying on the dealer, of course).
First, each party i generates a random polynomial f (i)(x) of order k′ whose free
coefficient is set to si, and shares the polynomial by using Feldman’s VSS. Then,
other parties verify their shares sent from party i and announce whether they are
correct or not. If party i has more than k correct announcements, it is qualified.
Finally, after k + 1 qualified parties are determined, each party j computes
his new share using the Lagrange interpolation s′j =

∑
i∈Λ λif

(i)(j), where Λi

denotes a set of qualified parties and λi denotes the coefficient computed by the
Lagrange interpolation. Note that the coefficients are constant when the set is
determined. The protocol is given below:

3.2 Protocol for Robust Degree Reduction

Input of Party i: f(i) of a polynomial f(x) of order k representing a secret s.

Public Input: αi = gfi for 0 ≤ i ≤ k, where fi is the i-th coefficient of the f(x).
Note that α0 = gs.

Protocol

1. Party i shares the value of f(i) by means of a random polynomial f (i)(x) of

order k′(k′ < k) such that f (i)(0) = f(i). Then she broadcasts β(i)
j = gf

(i)
j

for 0 ≤ j ≤ k, where f
(i)
j is the j-th coefficient of the f (i)(x), as public

checking parts for VSS. Note that β(i)
0 = gf(i)(0) = gf(i), which is publicly

computable from the initial input of αj for 0 ≤ j ≤ k.
2. Party j receives the share f (i)(j) from i, and then announces i-correct or

i-wrong according to whether the equation

gf(i)(j) ?=
k∏

m=0

β(i)
m

jm

(mod p)

holds or not.
3. A set Λ of good parties of cardinality k + 1 is defined as one in which
the parties have more than k i-corrects. (If more than k + 1 parties have
more than k i-corrects, those with smaller id numbers are chosen.) Party j
then computes

∑
i∈Λ λif

(i)(j), which results in the sharing of a polynomial
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f ′(x) =
∑

i∈Λ λif
(i)(x) of order k′. Public values for VSS checking are also

computed as follows:

α′
j = g

∑
i∈Λ

λif
(i)
j =

∏

i∈Λ

(β(i)
j )λi , for 0 ≤ j ≤ k′.

Lemma 3.2 The protocol 3.2 has the following properties:
(Robustness) The new shares computed at the end of the protocol correspond
to the secret s. (That is, any subset of k′ + 1 of the new shares can reconstruct
the secret s, and an adversary who can control up to k′ parties cannot alter the
result.)
(Privacy) Apart from the value gs, an adversary who can control up to k′ cannot
learn anything about the secret.
(Freshness) The new share of each party is independent of its old share.

Sketch of Proof (Robustness) We can assume that there are k + 1 > k′ honest
parties. Thus at least k + 1 parties are announced as i-correct by k + 1 parties.
Thus the honest parties can compute the new share. By VSS, the party i can
check that the share from party j lies on a polynomial which represents party i’s
original share. It can also confirm that the new secret is the same as the original
secret by comparing α0 and α′

0.
(Privacy) We can construct a simulator that, given the input of the corrupted
parties, simulates the process of local secret sharing by party j. We can assume
that party j is honest and that parties i for 1 ≤ i ≤ k′ are corrupted. Using the
k′ shares f (j)(i) for 1 ≤ i ≤ k′, together with the secret s, the simulator can set
k′+1 equations and determine the polynomial of order k′+1. It then distributes
the shares and VSS checking parts that have the same distribution as in the real
protocol.
(Freshness) Party j’s new share is computed as

∑
i∈Λ λif

(i)(j), where f (i)(j) is
generated by party i by using random coefficients.

3.3 Robust Sequential Multiplication

The difficulty in applying Feldman’s VSS to multiplication is that we cannot
compute ga·b from ga and gb. Thus, in some protocol [GRR98], the parties
need to prove that the new published commitment gai·bi is really obtained from
(gai)bi (or (gbi)ai), by using the zero-knowledge proof of equality of discrete-logs
[Cha90], which proves that DLg(gbi) = DLgai (gai·bi) without requiring any in-
formation about bi to be provided. However, the above ZKIP requires a verifier
and interaction between the parties and a verifier, which reduces the advantages
of non-interactive verification by Feldman’s VSS.

Cerecedo et al. [CMI93] showed that VSS can be applied in a special case
of multiplication where one of the multipliers is generated by the joint-shared-
secret protocol. We will first review this protocol before proposing the general
multiplication protocol:
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Let f(x) = a0+ · · ·+akx
k be a polynomial of order k used to share the value

a = a0. Party i holds the value f(i) mod q, and the values αm = gam mod p for
0 ≤ m ≤ k are publicly known. She then generates r(i)(x) = r

(i)
0 + · · · + r

(i)
k xk

of order k and z(i)(x) = z
(i)
1 x+ · · ·+ z

(i)
2k x

2k of order 2k for Joint-Random-VSS
and Joint-Zero-VSS (see appendix A.4), respectively, which means that party j

holds values r(i)(j), z(i)(j) and the values βm = gr(i)
m , (0 ≤ m ≤ k) and γm =

gz(i)
m , (0 ≤ m ≤ 2k) are publicly known. Now let y(i)(x) = f(x)r(i)(x) + z(i)(x)

be a polynomial of order 2k that is used to share the value a · r(i)
0 .

The problem is how party i can validate the shares y(i)(j) that she distributes
to party j. Let y(i)(x) = y

(i)
0 + y

(i)
1 x + · · · + y

(i)
2kx

2k; then public commitment
values for VSS checking are:

δ
(i)
0 = gy

(i)
0 = ga0·r(i)

0 = α
r
(i)
0

0 (mod p),

δ
(i)
1 = gy

(i)
1 = ga0·r(i)

1 +a1·r(i)
0 +z

(i)
1 = α

r
(i)
1

0 α
r
(i)
0

1 gz
(i)
1 (mod p),

...

δ
(i)
2k = gy

(i)
2k = gak·r(i)

k
+z2k(i)

= α
r
(i)
k

k gz
(i)
2k (mod p),

all of which can be locally computed by i and published. Thus party j can verify
his share y(i)(j) = f(j)r(i)(j) + z(i)(j) by computing

g(f(j)r(i)(j)+z(i)(j)) ?=
2k∏

m=0

δ(i)
m

jm

(mod p).

All the verified parties’ shares are then summed up to share the product r · a =∑
i∈Λ r(i) · a, where Λ denotes the set of qualified parties, and its public VSS

commitment values are computed as follows:

δj = g
∑

i∈Λ
y
(i)
j =

∏

i∈Λ

δ
(i)
j , for 0 ≤ j ≤ 2k.

Now, note that the result is a product of a and r =
∑

i∈Λ r(i), where r(i) is a
random number generated by party i. But suppose that r(i) is the share of the
polynomial h(x) of order 2k whose free coefficient is another secret s. Then s is
recovered by Lagrange interpolation: s =

∑
i∈Λ λir

(i). This means that we can
apply the above scheme to the multiplication of two jointly shared (not random)
values. The protocol is defined as follows:

3.4 Protocol for Robust Sequential Multiplication

Input of Party i: f(i) of a polynomial f(x) of order k representing a secret a,
and h(i) of a polynomial h(x) of order 2k representing a secret s.

Public Input: αi = gfi for 0 ≤ i ≤ k, and δi = ghi for 0 ≤ i ≤ 2k, where fi and
hi denote the i-th coefficients of f(x) and h(x), respectively.
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Protocol

1. Using VSS, party i shares the value of h(i) by means of a random polynomial
h(i)(x) of order k such that h(i)(0) = h(i). Note that gh(i) is already publicly
computable from the public input δ.

2. Using VSS, party i shares 0 by means of a random polynomial z(i)(x) of
order 2k such that z(i)(0) = 0.

3. Party i broadcasts δ(i)
j = gh

(i)
j for 0 ≤ j ≤ 2k, where h

(i)
j denotes the j-th

coefficient of a polynomial computed by h(i)(x) = f(x)h(i)(x) + z(i)(x).
4. Party j first checks the shares h(i)(j), z(i)(j) received from i, then checks the
multiplication f(j)h(i)(j) + z(i)(j) by confirming that g(f(j)h(i)(j)+z(i)(j)) ?=
∏2k

m=0 δ
(i)
m

jm

(mod p). If all the checks are validated, she announces i-
correct; otherwise, she announces i-wrong.

5. Party i is included in a good set of parties Λ if more than 2k parties an-
nounced i-correct. Then, party j computes her share as

∑
i∈Λ λih

(i)(j), which
results in sharing of a polynomial h′(x) =

∑
i∈Λ λih

(i)(x) of order 2k that
carries the secret h′(0) = a · s. Public values are also computed as follows:

δj = g
(
∑

i∈Λ
λih

(i)
j

) =
∏

i∈Λ

(δ(i)
j )λi , for 0 ≤ j ≤ 2k.

Lemma 3.4 The above protocol is t-resilient for a malicious adversary when the
total number of parties is n ≥ 3t + 1. After the protocol has been carried out,
each party’s new share is independent of its old share.

Sketch of Proof (Robustness) We can assume that there are 2k+1 honest parties.
Thus at least 2k+1 parties are announced to be i-correct by 2k+1 parties, and
therefore the honest parties can compute the product.
(Privacy) We can construct a simulator that, given the input of the corrupted
parties, simulates the process of local secret sharing. And the outputs have the
same distribution as in the real protocol.
(Freshness) The proof is similar to that of Lemma 3.2.

4 T
⋃
TpEG

Based on PRSG and the ElGamal Encryption
Scheme

Our goal is to implement function sharing of a pseudo-random sequence gener-
ator to obtain a periodical sequence of secrets, and to form a threshold cryp-
tosystem using the secrets. We will use polynomial-based secret sharing over the
ring ZN , where N is the product of large primes. We assume that the number
of parties n is smaller than any prime divisors of N , in order to apply the La-
grange interpolation formula. This assumption is not always satisfied in a linear
congruence generator (LCG), and is thus an additional constraint.
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4.1 T
⋃

Tp
EG Protocol Based on LCG

Here we give an implementation of the periodical multi-secret threshold cryp-
tosystem based on LCG-based key sequence generation (see appendix A.1) and
the ElGamal encryption scheme.

It is well known that using an LCG as PRSG for the secret key is very
dangerous, because it is possible to predict when some part of the sequence
will become available. But in our application, the sequence is hidden in the
exponent of the public key. Thus, because of the difficulty of calculating a discrete
logarithm, the secret key is not predictable. Recently, the LCG used in the DSS
has been attacked by solving the simultaneous modular linear equations obtained
from two sets of DSS signatures [BGM97]. But such an attack cannot be used
with our application.

Protocol for T
⋃

Tp(LCG) EG-KeyUpdate

Input to Party i y[0](i) of polynomial y[0](x) of order 2k representing a seed s[0],
f(i) of polynomial f(x) of order k representing a, and h(i) of polynomial h(x)
or order 2k representing b. A dealer is necessary to select an appropriate a, b,
and seed (s[0]), because the period of LCG depends on N , a, b, and s[0].

Public Input A composite number N and an element g ∈ Z∗
p of order N , where

all divisors of N are larger than the number of the parties (n). α = gfi for
0 ≤ i ≤ k, where fi denotes the i-th coefficient of f(x). βi = ghi and δ

[0]
i = gy

[0]
i

for 0 ≤ i ≤ 2k, where hi and y
[0]
i denote the i-th coefficients of h(x) and y[0](x),

respectively.

Protocol

1. First, parties perform the robust sequential multiplication protocol (section
3.4) to multiply the polynomials y[m](x) and f(x). Then they replace their
share y[m](i) by the result share of s[m] · a, which is represented by a poly-
nomial of order 2k.

2. Then parties add h(i) to their intermediate results to obtain the shares of
a · s[m] + b.

3. Finally, parties erase all the previous shares and intermediate results. The
shares are carried by a polynomial y[m+1](x) of order 2k. which represents a

secret of s[m+1] def
= s[m] · a+ b (mod N).

Protocol for EG-Encrypt This protocol is common to all ElGamal-based
encryption schemes: Since the public key Y [m+1] = gy

[m+1]
0 mod p is publicly

known, the user can encrypt his message without informing the key-generating
parties. The message M is encrypted, by using random K ∈ Zp, as (A,B)

def
=

(gK , Y [m+1]KM) (mod p).
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Protocol for T
⋃

Tp(LCG) EG-Decrypt

Input for all parties A ciphertext (A,B).

Protocol

1. Each party Pi sends to the receiver who is requesting decryption of the mes-
sage the partial decryption Ai = Ay[m](i) mod p and proves to the receiver
that DLogAAi = DLoggg

y[m](i) by using ZKIP [Cha90].
2. The receiver reconstructs the message by computing

M =
B

∏
i∈Λ Aλi

i

mod p,

where Λ is a qualified set of parties of cardinality 2k + 1.

Theorem 4.1 The above protocols are t-resilient for a mobile malicious adversary
when the number of parties is n ≥ 3t+ 1.

Sketch of Proof We can assume that there are 2k + 1 honest parties.
(Robustness) The protocol for KeyUpdate consists of multiplication and addi-
tion of two shares. Lemma 3.4 is used for the VSS-supported multiplication,
and the result is verifiably shared by 2k + 1 honest parties. The robustness of
the decryption protocol is obvious: unless a bad party passes the ZKIP with an
incorrect partial decryption, the message is correctly decrypted.
(Privacy) Given the input of the corrupted parties as an adversary’s view, we
can construct a simulator that simulates the key update process and outputs an
arbitrary Y as a public key with the same distribution as in the real protocol.

4.2 T
⋃

Tp
EG Protocol Based on BBS-PRSG

Here we give another implementation of the periodical multi-secret threshold
cryptosystem based on BBS-based key sequence generation (see appendix A.1)
and the ElGamal encryption scheme.

The BBS is a secure bit generator when used as the PRSG, but here we
will use the whole value, which like LCGs, is also predictable if some part of
the sequence is available. But again, in our application, the values are hidden
in the exponent of the public key. Now the question is, when an adversary sees
the sequence: gy, gy2

, . . . , gy2i

, can he predict the next sequence? The decisional
Diffie-Helman (DDH) assumption says that, given < P,Q, g, ga, gb >, there is
no efficient algorithm that distinguishes gc and ga·b. Thus, applying the DDH
assumption where a = b(= y), the adversary cannot have any information about
the next sequence.
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Protocol for T
⋃

Tp(BBS) EG-KeyUpdate

Input to Party i y[0](i) of polynomial y[0](x) of order 2k representing a seed s[0].
A dealer is necessary to select an appropriate seed (s[0]), because the period of
BBS depends on N and s[0].

Public Input A composite number N that is a product of two primes and an
element g ∈ Z∗

p of orderN , where any divisors ofN are larger than the number of

the parties (n). δ[0]
i = gy

[0]
i for 0 ≤ i ≤ 2k, where y[0]

i denotes the i-th coefficient
of y[0](x).

Protocol

1. The parties first perform the robust degree reduction protocol (section 3.2)
to reduce the degree of y[m](x) from 2k to k. The resulting polynomial is set
to y′[m](x).

2. The parties then perform the robust sequential multiplication protocol (sec-
tion 3.4) for multiplying the polynomials y′[m](x) and y[m](x) in order to
share s[m]2 mod N .

3. The parties finally erase all the previous shares and intermediate results. The
shares are carried by a polynomial y[m+1](x) of order 2k. which represents a

secret of s[m+1] def
= s[m]2 (mod N).

Protocol for T
⋃

Tp(BBS) EG-Decrypt The protocol is the same as
T

⋃
Tp(LCG) EG-Decrypt (section 4.1).

Theorem 4.2 The above protocols are t-resilient for a mobile malicious adversary
when the number of parties is n ≥ 3t+ 1.
The proof is similar to that for Theorem 4.1.

5 Conclusions

In this paper we have defined the periodical multi-secret threshold cryptosystem
and given an implementation that consists of (1) a t-resilient key sequence gen-
eration and (2) a t-resilient encryption/decryption scheme. For (1), we designed
a protocol for sharing a pseudo-random sequence generation function based on
Feldman’s VSS. We also gave a robust protocol for sequential multiplication. For
(2), we used the ElGamal encryption scheme, which makes it easy to collectively
generate a public key while the private key is implicitly maintained.

There is an opinion that from the viewpoint of trust relationships, once the
user relies on distributed servers to enforce the timing of a decryption, timing can
be also operationally maintained by the servers. But we argue that there is a big
difference between the operationally maintained timing and the timing kept by
the key refreshment process, because we can apply security theory (resiliency and
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proactiveness) to the latter, while for the former the security is also maintained
operationally.

By using different schemes for (1) and (2) and combining them, we can define
various types of cryptographic system. For example, if we replace the encryption
scheme by a signature scheme in (2), we can construct a time-restricted signature
scheme, where the user has to visit more than k servers in a timeframe to get a
signature. This might be used for contents metering.

We can also replace the PR-sequence generator with another sequence gener-
ator to control the period more easily. Actually, the BBS and linear congruential
generators have a problem in that their period is too long, since it is dependent
on the modulus, which should be large in order to maintain security. Thus we
need to find an appropriate sequence generator whose period is relatively short
and easy to control, yet whose sequence cannot be predicted by a malicious
adversary.

Although we assume that the parameters and seed for the PRSG are fed by
a dealer, we can eliminate the dealer by using Joint-Random-VSS to generate
such values. But to realize this, we should consider the distributed checking
mechanism for the period of the sequence.
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A Basic Tools

Here, we describe some of the existing tools that we use in our protocol.

A.1 Pseudo-random Sequence Generators (PRSG)

A random number sequence generator is defined by the form

Xn = f(Xn−1).

Here we will consider two well-known types of generators, linear congruential
generators and BBS generators.
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Linear Congruential Generators (LCG) A linear congruential generator is
defined by the form

Xi = (aXi−1 + b) mod N,

where the parameters a, b, and N are constants. If they are properly chosen, the
generator has an (N − 1) period, which we call the maximal period generator.

Blum-Blum-Shub (BBS) Generators [BBS86] A BBS generator is defined
by the form

Xi = X2
i−1 mod N,

where modulus N is the product of two large prime numbers, p and q, that
are congruent to 3 mod 4 (N is a Blum integer). If we specify the additional
properties that p1 = (p−1)/2, p2 = (p−3)/4, q1 = (q−1)/2, and q2 = (q−3)/4
are all primes, then the period is a divisor of 2p2q2.

A.2 Secret Sharing by Polynomial Interpolation [Sha79]

Shamir’s secret sharing realized a (k, n)−threshold scheme according to which
any k − 1 parties have no information about the secret, while k can recover
the secret. Suppose the secret to be shared is s ∈ Zq. The dealer generates a
polynomial of order k − 1 by randomly choosing its coefficients a1, . . . , an and
sets the secret to its free coefficient a0 = s:

f(x) = a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1.

The dealer then distributes the share si = f(i) mod q to the party Pi, (1 ≤ i ≤ n)
via a secure channel. By using Lagrange interpolation, the set of shareholders Λ
of cardinality k determines

f(x) =
∑

i∈Λ

λif(i), where λi =
∏

j∈Λ,j �=i

(x − j)(i− j)−1

thus reconstructing the secret s = a0 = f(0).

A.3 Verifiable Secret Sharing by Feldman [Fel87]

The verifiable secret sharing (VSS) scheme enables the receivers of shares to
check whether the dealer has distributed the correct shares. Feldman proposed
an efficient non-interactive VSS scheme that uses a homomorphic encryption
function: Assume that a secret space is defined over a prime field Zq. When
a dealer generates a polynomial of order k − 1, he broadcasts the values αi =
gai mod p, for 0 ≤ i ≤ n, where p is a prime such that q|p− 1 and g ∈ Z∗

p is an
element of order q. The receiver i can check that his/her share si is really the
value of f(i) by calculating

gsi
?=

k−1∏

j=0

αij

j mod p
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If the number of corrupt parties (t) is less than a half of the total (n), where
n ≥ 2t + 1, then the incorrect shares are recoverable in a (t + 1, n)−threshold
VSS scheme.

A.4 Joint Random/Zero Secret Sharing
[BGW88][Ped91a][Ped91b]

Sometimes it is convenient to generate and share a random value without a
dealer. This can be done by means of the following protocol. A zero secret can
also be shared in the same way. First, each party acts as a dealer of a random
local secret or zero: the party i randomly generates a polynomial fi(x) of order
k−1 whose free coefficient is set to a random value ri or zero, and distributes the
value fi(j) to party Pj . Then, each party sums up its shares in order to share
a new function g(x) =

∑
i fi(x) whose free coefficient is

∑
i ri or zero. This

protocol can be assisted by Feldman’s VSS, which enables every party to verify
that its share is correct. We will refer to these protocols as Joint-Random-VSS
and Joint-Zero-VSS.
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