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Abstract. We first show that a Feistel type block cipher is broken if
the round function is approximated by a low degree vectorial Boolean
function. The proposed attack is a generalization of the higher order
differential attack to a probabilistic one. We next introduce a notion of
higher order bent functions in order to prevent our attack. We then show
their explicit constructions.

1 Introduction

Consider a Feistel type block cipher with a round function GK such that

(y1, . . . , yn) = GK(x1, . . . , xn) (1)

where K denotes a key. Then GK can be viewed as a polynomial on GF(2n) or
a set of Boolean functions {f1, . . . , fn} such that

yi = fi(x1, . . . , xn) for i = 1, . . . , n .

¿From a view point of polynomials, Jakobsen and Knudsen showed the interpo-
lation attack which is effective if the degree of GK is small [4]. Jakobsen further
showed that the block cipher is broken even if GK is approximated by a low
degree polynomial [3].
On the other hand, from a view point of Boolean functions, Jakobsen and

Knudsen showed the higher order differential attack [4]. It is effective if each of
the degree of fi is small, where the degree is defined as the degree of a Boolean
function.
In this paper, we first show that the block cipher is broken even if each fi is

approximated by a low degree Boolean function. We call this attack a probabilistic
higher order differential attack because our attack is a generalization of the
higher order differential attack to a probabilistic one. (It can also be considered
as a generalization of the differential attack [1] to a higher order one.)
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We next introduce a notion of higher order bent functions in order to prevent
our attack. Intuitively, an r-th order bent function is a Boolean function f such
that N (r)

f is the maximum, where N (r)
f is defined as a distance from f to the set

of Boolean functions with degree at most r. This means that an r-th order bent
function is not approximated by any Boolean function with degree at most r if
r is small.
We then present some explicit constructions of r-th order bent functions such

that other cryptographic criteria are satisfied as well.
This paper is organized as follows. In Section 3, we review related works.

In Section 4, we propose the probabilistic higher order differential attack. In
Section 5, we introduce a notion of r-th order bent functions and show their
explicit constructions.

2 Preliminaries

2.1 Notation

Consider a Feistel type block cipher with block size 2n and m rounds. Let x =
(xL, xR) denote the plaintext, where xL= (x1, . . . , xn) and xR= (xn+1, . . . , x2n).
Similarly, let y = (yL, yR) denote the ciphertext. Let

CL
0

�
= xL and CR

0
�
= xR .

The round function G operates as follows.{
CL

i = CR
i−1 ,

CR
i = G(ki, C

R
i−1)⊕ CL

i−1 ,

where ki is a key of the i-th round. The ciphertext is given by

y = (yL, yR) = (CR
m, C

L
m) .

Further, we say that
(CL

m−1, C
R
m−1) = EK(xL, xR)

is the reduced cipher, where K is the key of the reduced cipher. Let ỹ = (ỹL, ỹR)
denote the reduced ciphertext. That is,

ỹ = (ỹL, ỹR) = (CR
m−1, C

L
m−1) .

In this paper, we assume that m is not large.

2.2 Degree of Boolean Functions

The degree of a Boolean function f , deg(f), is defined as the degree of the highest
degree term of the algebraic normal form:

f(x1, . . . , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,2,...,nx1x2 · · ·xn .
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The degree of a vectorial Boolean function F (x1, . . . , xn) = (f1, . . . , fn) is defined
as

deg(F )
�
= max

i
deg(fi) .

3 Related Works

3.1 Higher Order Differential Attack

The higher order differential attack [4] is based on the following proposition
shown by Lai [5]. Let Lr denote an r-dimensional subspace of GF(2)n.

Proposition 3.1. [5] Let f be a Boolean function. Then for any w ∈ GF(2)n,⊕
x∈Lr+1

f(x⊕ w) = 0

if and only if deg(f) ≤ r.

In a Feistel type block cipher, let xR be kept constant. Then

ỹR = F (xL) ,

for some vectorial Boolean function F , where ỹR is the right half of the reduced
ciphertext. Suppose that deg(F ) ≤ r for any fixed xR and any fixed key of
the reduced cipher. Then the last round key km can successfully be recovered
by using 2r+1 chosen plaintexts with average time complexity 2r|Km| by using
Proposition 3.1, where Km denotes the set of the last round keys.

3.2 Piling-Up Lemma

Matsui used the following lemma in the analysis of the linear attack [8].

Lemma 3.1 (Piling-up Lemma). For ai ∈ GF(2) with i = 1, . . . , l, suppose
that ⊕

1≤i≤l

ai = 0 .

Let a′i be an independent random element of GF(2) such that Pr(ai = a′i) ≥ µ
for i = 1, . . . , l. Then

Pr(
⊕

1≤i≤l a
′
i = 0) ≥ 1/2 + 2l−1(µ− 1/2)l .

4 Proposed Attack

In this section, we show that a Feistel type block cipher is broken even if the
round function G is approximated by a low degree vectorial Boolean function.
We call this attack the probabilistic higher order differential attack because our
attack is a generalization of the higher order differential attack to a probabilistic
one.
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4.1 Algorithm of Our Attack

In a Feistel type block cipher with block size 2n, let xR be kept constant. Then

ỹR = F (xL) (2)

for some vectorial Boolean function F , where ỹR is the right half of the reduced
ciphertext. On the other hand, let G be the round function. Then

ỹR = yL ⊕G(km, yR) ,

where km ∈ Km is the last round key and (yL, yR) is the ciphertext. Therefore,

ỹR = F (xL) = yL ⊕G(km, yR) . (3)

Definition 4.1. We say that a vectorial Boolean function F (x) is (r, µ)-expres-
sible if there exists a vectorial Boolean function F ′(x) such that deg(F ′(x)) ≤ r
and

Pr
x
(F (x) = F ′(x)) ≥ µ .

Now suppose that F (xL) of eq.(2) is (r, µ)-expressible for any fixed xR and
any fixed key of the reduced cipher. Then the last round key km ∈ Km can be
found by the proposed attack as shown below, where Algorithm 1 is used as a
subroutine in Algorithm 2. Let Km denote the set of the last round keys.

Step 1: Choose xR ∈ GF(2)n randomly. Choose w ∈ GF(2)n
and a full rank (r+1)×n matrix L over GF(2) randomly.

Step 2: For all a ∈ GF(2)r+1, compute the ciphertext y(a) =
(yL(a), yR(a)) of a plaintext (aL⊕ w, xR).

Step 3: For each ki ∈ Km, compute

σ =
⊕

a∈GF(2)r+1

yL(a)⊕G(ki, yR(a)) .

If σ = (0, . . . , 0), then let ui = 1. Otherwise, let ui = 0.

Fig.1. Algorithm 1

Step 1: Let Ti = 0 for 1 ≤ i ≤ |Km|.
Step 2: For j = 1, . . . , N , do:
(a) Run Algorithm 1.
(b) For each ki ∈ K, let Ti = Ti + ui.

Step 3: Output kc such that Tc is the maximum.

Fig.2. Algorithm 2



66 Tetsu Iwata and Kaoru Kurosawa

4.2 Analysis of Our Attack

The complexity of our attack is analyzed as follows.

Lemma 4.1. For ai ∈ GF(2)n with i = 1, . . . , l, suppose that⊕
1≤i≤l

ai = (0, . . . , 0) .

Let a′i be an independent random element of GF(2)n such that Pr(ai = a′i) ≥ µ
for i = 1, . . . , l. Then

Pr(
⊕

1≤i≤l a
′
i = (0, . . . , 0)) ≥

(
1/2 + 2l−1(µ− 1/2)l)n

.

Proof. Denote the j-th bit of ai as ai,j and the j-th bit of a′i as a
′
i,j for i = 1, . . . , l

and j = 1, . . . , n. The equation
⊕

1≤i≤l a
′
i = (0, . . . , 0) holds if and only if⊕

1≤i≤l

a′i,j = 0

holds for j = 1, . . . , n. On the other hand, Pr(ai = a′i) ≥ µ implies that

Pr(ai,j = a′i,j) ≥ µ

for j = 1, . . . , n. Then from Lemma 3.1, the result follows. ��
We assume that {F (aL⊕w) | a = (0, . . . , 0), . . . , (1, . . . , 1)} behaves as inde-

pendent random 2r+1 vectors if L and w are chosen randomly, where L is a full
rank (r + 1)× n matrix over GF(2).

Theorem 4.1. Suppose that F (xL) of eq.(2) is (r, µ)-expressible for any fixed
xR and any fixed key of the reduced cipher. If µ is close to one, then the last
round key can be found by using N2r+1 chosen plaintexts with average time
complexity 2rN |Km| and the success probability

∑
1≤i≤N

(
N

i

)
pi(1− p)N−i


 ∑

0≤j≤i−1

(
N

j

)
2−nj(1− 2−n)N−j




|Km|−1

,

where
p = 1− 2r+1n(1 − µ) .

Proof. Since F (xL) is (r, µ)-expressible, there exists a vectorial Boolean function
F ′(x) such that deg(F ′(x)) ≤ r and

Pr
L,w
(F (aL ⊕ w) = F ′(aL ⊕ w)) ≥ µ . (4)

First, from Proposition 3.1, it holds that⊕
a

F ′(aL⊕ w) = (0, . . . , 0) . (5)
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On the other hand, at step 3 of Algorithm 1,

σ =
⊕

a

F (aL⊕ w)

from eq.(3). Therefore, from eq.(4), eq.(5) and Lemma 4.1, we obtain that

Pr
L,w
(σ = (0, . . . , 0)) = Pr

L,w
(
⊕

a F (aL⊕ w) = (0, . . . , 0))

≥
(
1/2 + 22

r+1−1(µ− 1/2)2r+1
)n

. (6)

Let µ = 1 − ε, where ε is sufficiently small. Then the right hand side of eq.(6)
can be approximated as(

1/2 + 22
r+1−1(µ− 1/2)2r+1

)n

≈ (
1/2 + 1/2(1− 2× 2r+1ε)

)n

≈ 1− 2r+1nε

= p .

That is,
Pr
L,w
(σ = (0, . . . , 0)) ≈ p .

Hence, in Algorithm 2, if kc is the correct key,

Pr
L,w
(Tc = i) ≈

(
N

i

)
pi(1 − p)N−i .

On the other hand, if kw is a wrong key,

Pr
L,w
(Tw = j) =

(
N

j

)
2−nj(1− 2−n)N−j

because
Pr
L,w
(σ = (0, . . . , 0)) = 2−n .

Consequently,

Pr
L,w
(Tc = i and 0 ≤ Tw ≤ i− 1 for all w �= c)

= Pr
L,w
(Tc = i) Pr

L,w
(0 ≤ Tw ≤ i− 1 for all w �= c)

≈
(
N

i

)
pi(1− p)N−i


 ∑

0≤j≤i−1

(
N

j

)
2−nj(1− 2−n)N−j




|Km|−1

.

Since i ranges from 1 to N , the result follows. ��
Our experiment shows that if N = �p−2�, then the success probability is

larger than 90 %.
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4.3 Example

We show a block cipher such that it is broken by the proposed attack, but not
broken by the higher order differential attack.

KN cipher developed by Knudsen and Nyberg is provably secure against the
differential attack and the linear attack [6]. It is a 6 round Feistel cipher such
that n = 32 and the round function G is given by

G(k, x) = d(f(e(x) ⊕ k)) ,

where f(x) = x3 over GF(233), d : {0, 1}33 → {0, 1}32 discards one bit from its
argument and

e(x1, . . . , x32) = (x1, . . . , x32, a1x1 ⊕ · · · ⊕ a32x32)

for some a1, . . . , a32. Since deg(G) = 2, KN cipher is broken with 512 chosen
plaintext and 241 complexity by the higher order differential attack [4].
Now consider a slight modification of KN cipher. Let the round function be

G′(k, x) = d(f(e′(x) ⊕ k)) ,

where
e′(x1, . . . , x32) = (x1, . . . , x32, x1 · · ·x32) .

We call this cipher KN ′ cipher. Then KN ′ cipher cannot be broken by the higher
order differential attack because deg(G′) = 32 which is very large.
However, it is broken by the proposed attack as follows. First, G′ is (2, 1 −

2−32)-expressible. Therefore, F of eq.(2) is (23, (1 − 2−32)3)-expressible. Now
from Theorem 4.1, for N = 2, the last round key can be found with 210 cho-
sen plaintexts, 242 complexity and the success probability almost 100%, where
p ≈ 0.99.

5 Higher Order Bent Function

In this section, we introduce a notion of higher order bent functions in order to
prevent our attack. We then present their explicit constructions which satisfy
some other cryptographic criteria as well.

5.1 Higher Order Nonlinearity

The truth table of a Boolean function f(x) is defined as (f(α0), . . . , f(α2n−1)),
where αi is a vector of length n representing i in binary. For two Boolean func-
tions f(x) and g(x), let d(f(x), g(x)) denote the Hamming distance between
(f(α0), . . . , f(α2n−1)) and (g(α0), . . . , g(α2n−1)).
Let B(r)(x) denote the set of Boolean functions with degree at most r for

0 ≤ r ≤ n. That is,

B(r)(x) = {a0 ⊕
⊕

1≤i≤n

aixi ⊕ · · · ⊕
⊕

1≤i1<···<ir≤n

ai1,...,irxi1 · · ·xir} .
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Now we define the r-th order nonlinearity of a Boolean function f(x) as
follows.

Definition 5.1. Let

N
(r)
f

�
= min

g(x)∈B(r)(x)
d(f(x), g(x))

for 0 ≤ r ≤ n. We say that N (r)
f is the r-th order nonlinearity of f(x).

Note that the well known nonlinearity of f(x) is equivalent to N (1)
f .

We next show that N (r)
f is closely related to the covering radius of the r-th

order Reed-Muller code.

Definition 5.2. [7] The r-th order Reed-Muller code R(r, n) of length 2n, for
0 ≤ r ≤ n, is the set of the truth table of a Boolean function f(x) such that
deg(f) ≤ r.

The covering radius of R(r, n) is defined as

ρ(r, n)
�
= max

v∈{0,1}2n
min

u∈R(r,n)
d(v, u) .

Proposition 5.1. [2] If 0 ≤ r ≤ n− 3, then

ρ(r, n) ≥
{
2n−r−3(r + 4) if r is even ,
2n−r−3(r + 5) if r is odd .

Theorem 5.1.

max
f(x)

N
(r)
f = ρ(r, n) .

Proof. From the definition of the r-th order nonlinearity N (r)
f ,

max
f(x)

N
(r)
f = max

f(x)
min

g(x)∈B(r)(x)
d(f(x), g(x)) .

Since B(r) = {u | u ∈ R(r, n)}, we have

max
f(x)

min
g(x)∈B(r)(x)

d(f(x), g(x)) = max
v∈{0,1}2n

min
u∈R(r,n)

d(v, u)

= ρ(r, n) .

��
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5.2 Higher Order Bent Function

We then define r-th order bent functions based on Theorem 5.1 and Proposition
5.1 as follows.

Definition 5.3. We say that f(x) is an r-th order bent function if

N
(r)
f ≥

{
2n−r−3(r + 4) if r is even ,
2n−r−3(r + 5) if r is odd .

for 0 ≤ r ≤ n− 3.

(A well known bent function is also a 1-st order bent function. However, the
converse is not true.)

5.3 Basic Construction

In what follows, let x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1). For a Boolean
function f(x), let

f1(x′)
�
= f(x′, 0) and f2(x′)

�
= f(x′, 1) .

Lemma 5.1.

N
(r)
f ≥ N

(r)
f1
+N

(r)
f2

.

Proof.

N
(r)
f = min

g(x)∈B(r)(x)
d(f(x), g(x))

= min
g(x)∈B(r)(x)

d(f(x′, 0), g(x′, 0)) + d(f(x′, 1), g(x′, 1))

≥ min
g1(x′)∈B(r)(x′)

d(f1(x′), g1(x′)) + min
g2(x′)∈B(r)(x′)

d(f2(x′), g2(x′))

= N
(r)
f1
+N

(r)
f2

.

��

Lemma 5.2. If f1(x′) = f2(x′), then

N
(r)
f = 2N (r)

f1
.

Proof. First N (r)
f ≥ 2N (r)

f1
from Lemma 5.1. Next choose g′(x′) ∈ B(r)(x′) such

that
d(f1(x′), g′(x′)) = N

(r)
f1
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arbitrarily. Define g(x) as g(x) = g′(x′). Then

2N (r)
f1
= N

(r)
f1
+N

(r)
f2

= d(f1(x′), g′(x′)) + d(f2(x′), g′(x′))
= d(f(x′, 0), g(x′, 0)) + d(f(x′, 1), g(x′, 1))
= d(f(x), g(x))
≥ min

g(x)∈B(r)(x)
d(f(x), g(x))

= N
(r)
f

because g(x) ∈ B(r)(x). Therefore, N (r)
f = 2N (r)

f ′ . ��
Let

σ(r)(x) =
⊕

1≤i1<···<ir≤n

xi1 · · ·xir .

for 0 ≤ r ≤ n. Then McLoughlin showed a lower bound on ρ(n− 3, 3) by using
σ(r)(x) [9]. It can be restated as follows.

Proposition 5.2. σ(n−2)(x) is an (n− 3)-th order bent function for n ≥ 3.
Now we show our basic construction of r-th order bent functions.

Theorem 5.2. Let

f(x1, . . . , xn) = σ(r+1)(x1, . . . , xr+3) .

Then f(x) is an r-th order bent function for 0 ≤ r ≤ n− 3.
Proof. By using Lemma 5.2 repeatedly n− r − 3 times, we have

N
(r)
f = 2n−r−3N

(r)

σ(r+1) .

Then from Proposition 5.2, we see that

N
(r)
f ≥

{
2n−r−3(r + 4) if r is even ,
2n−r−3(r + 5) if r is odd .

��

5.4 Improved Construction (I)

The r-th order bent function obtained from Theorem 5.2 is cryptographically
weak since it is not balanced and xr+4, . . . , xn do not appear in f(x). In what
follows, we show some improved constructions.

Definition 5.4. A Boolean function f(x) is balanced if

|{x | f(x) = 0}| = |{x | f(x) = 1}| .
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Definition 5.5. A Boolean function f(x) satisfies SAC if

f(x)⊕ f(x⊕ α)

is balanced for any α such that the Hamming weight of α is equal to 1.

Lemma 5.3. If deg(f(x)) > r and deg(h(x)) ≤ r, then

N
(r)
f = N

(r)
f⊕h .

Proof.

N
(r)
f⊕h = min

g(x)∈B(r)(x)
d(f(x) ⊕ h(x), g(x))

= min
g(x)∈B(r)(x)

d(f(x), g(x) ⊕ h(x))

= min
g(x)∈B(r)(x)

d(f(x), g(x))

= N
(r)
f .

��
By using Lemma 5.3, we can prove the following theorems. The proofs will

be given in the final paper.

Theorem 5.3. Suppose that r + 3 < n. Let

f(x1, . . . , xn) = σ(r+1)(x1, . . . , xr+3)⊕ xr+4 ⊕ · · · ⊕ xn .

Then f(x) is a balanced r-th order bent function.

Theorem 5.4. Suppose 2 ≤ r ≤ n− 3. Let

f(x1, . . . , xn) = σ(r+1)(x1, . . . , xr+3)⊕ (x1 ⊕ · · · ⊕ xr+3)(xr+4 ⊕ · · · ⊕ xn) .

Then f(x) is an r-th order bent function which satisfies SAC.

Theorem 5.5. There exist r-th order bent functions which satisfy PC(l) of or-
der k.

5.5 Improved Construction (II)

Next we show r-th order bent functions such that each xi is involved in a large
degree term.

Lemma 5.4. For any r, let{
sn(x1, . . . , xn)

�
= σ(r+1)(x1, . . . , xn) ,

sn−1(x1, . . . , xn−1)
�
= σ(r+1)(x1, . . . , xn−1) .

Then,
N (r)

sn
≥ 2N (r)

sn−1
.
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Proof. Note that

σ(r+1)(x′, 0) = σ(r+1)(x′)
= sn−1(x′) ,

σ(r+1)(x′, 1) = σ(r+1)(x′)⊕ σ(r)(x′)
= sn−1(x′)⊕ σ(r)(x′) .

Then from Lemma 5.1 and Lemma 5.3,

N (r)
sn

≥ N (r)
sn−1

+N (r)
sn−1

= 2N (r)
sn−1

.

��
Theorem 5.6. Let

f(x1, . . . , xn)
�
= σ(r+1)(x1, . . . , xn) .

Then f(x) is an r-th order bent function for 0 ≤ r ≤ n− 3.
Proof. Let

sr+3(x1, . . . , xr+3)
�
= σ(r+1)(x1, . . . , xr+3) .

Then by using Lemma 5.4 repeatedly n− r − 3 times, we have

N
(r)
f ≥ 2n−r−3N (r)

sr+3
.

Finally from Proposition 5.2, we see that

N
(r)
f ≥

{
2n−r−3(r + 4) if r is even ,
2n−r−3(r + 5) if r is odd .

Therefore, f(x) is an r-th order bent function. ��
Note that each xi is involved in a term of degree (r + 1) in the above f .
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