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Abstract

Many viewers simultaneously observe events in a common, but
remote, environment in applications ranging from scientifbserva-
tion, journalism, distance education, security, and intipa to enter-
tainment. Such “collaborative observation” can be acldewith an
emerging class of networked robotic cameras. A primarylehge is
to resolve contention for control of camera motion. In thésper we
describe a series of prototype systems and algorithms wevelop-

ing.

I. INTRODUCTION

Scientific study of animals in situ requires vigilant obseivatof de-
tailed animal behavior over weeks or months. When animatdhi remote
and/or inhospitable locations, observation can be an asjuexpensive,
dangerous, and lonely experience for scientists. Emergitvgraces in
robot cameras, long-range wireless networking, and digkd sensors
make feasible a new class of portable robotic “observatbtileat can
allow groups of scientists, via the internet, to remotelgeve, record,
and index detailed animal activity. As a shorthand for sutimatrument,
we propose the acrony@ONE: Collaborative Observatory for Natural
Environments.

One challenge is to develop a mathematical framework fdalotative
observation. Collaborative observation includes (1)atmration between
humans of different backgrounds, skill sets, and authfpeémission lev-
els and (2) collaboration between humans and automatedsagdiose
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behavior arises from sensor inputs and/or computation.llAstriated in
Figure 4, our framework uses anoramic imageand set ofactivity
framesto provide a unified representation for output and for inpatrfr
both human observers and sensors.

Il. RELATED WORK

Since Nikola Tesla demonstrated the first radio-controlleat o 1898
and Goertz demonstrated a bilateral manipulator in 1954 rgthotely
operated machines have been widely desired for use in iitabipenvi-
ronments such as radiation sites, undersea [1] and spataratiqn [3],
[24], [33]. Today, teleoperation is being developed for maddiagnosis
[2], manufacturing [6] and micromanipulation [27]. See Stian [28]
for an excellent review of the extensive literature on tpkration and
telerobotics. Most of these systems require fairly compiaxdware at
the human interface: exoskeleton master linkages are t&geby highly
trained specialists. In contrast, the Internet can proyidielic access by
using only the interface available in standard browsers.

The hypertext transfer protocol developed at CERN in 1992 g4);
vides a low-cost and publicly available network interfaiethe Spring
of 1994, we conjectured that we could use it to offer publicess to a
teleoperated robot via the Internet.
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Fig. 1. Mercury Project (1994-1995). Above: Robot, camera andhezzle above
sandbox filled with buried artifacts. Below: Browser Interface usinglaaRTTP 1.0.

As illustrated in Figure 1, we set up an IBM SCARA robot arm over a
semi-annular workspace containing sand and buried agiféide attached
a CCD camera to the end of the arm along with a nozzle to direct a
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bursts into the sand. We then developed a HTTP 1.0 (Mosaic)daow
interface to the hardware. The Mercury Project was operatedvey
10,000 people and is widely regarded as the first Internettr{iid,
[10].

Our subsequent project, the Telegarden, allowed usersetw and
interact with a remote garden filled with living plants. We dnporated
a much faster Adept-1 industrial robot arm and allowed tHmtdo be
multi-tasked to eliminate the user queue. The Telegardenivgtalled at
a museum in Austria where it operated around the clock foe ymars
was operated by over 100,000 people online.

Fig. 2. The Tele-Garden (1995-2004). (with Joseph Santarron@emge Bekey, Steven
Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Bergad, Bhomas Steindl).

In 1994, working independently, a team led by K. Taylor antrdvelyan
at the University of Western Australia demonstrated a reiyatontrolled
six-axis telerobot in September 1994 [5], [17]. There are nazeds
of Internet robots online, a book from MIT Press [12], and an IEEE
Technical Committee on Networked Robots that has over 20@ees.
See [18], [26], [20], [19], [21], [23], [15], [25], [22] exanips of recent
projects.

[11. THE TELE-ACTOR AND SHARECAM

In 1999 we began exploring other models of access controkrevh
user inputs are combined rather than sequenced. In [9]w@]¢describe
an Internet-based Multiple Operator Single Robot systerhutka vector
averaging to combine multiple mouse inputs to simultankgoasntrol
a single industrial robot arm. In [13], [14], we describe aalhased
“Spatial Dynamic Voting” (SDV) interface that collects, diaps, and
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Fig. 3. Spatial Dynamic Voting Interface and the Tele-Actor (2001-2004

analyzes a sequence of spatial votes from multiple onlineradprs at
their Internet browsers. The votes can drive the motion ohgleimobile
robot or, for increased mobility and agility, a human “Téletor”.

IV. THE COLLABORATIVE FRAME SELECTION PROBLEM

We are now developing systems based on robotic pan, tilgnzocam-
eras controllable by many simultaneous viewers over thertiet. Since
there is one camera and many viewers, the challenge is ttveeson-
tention about where to point the camera.

Camera
frame

Requested
frames

Fig. 4. Panoramic image and user or machine-requested “activityeffam

Collaborative observation includes (1) collaborationwsstn humans
of different backgrounds, skill sets, and authority/pession levels and
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(2) collaboration between humans and automated agentsewbeisav-
ior arises from sensor inputs and/or computation. We pmpgsng a
panoramic imagend set ofactivity frameso provide a unified represen-
tation for output and for input from both human observers sedsors.
On the output (display) side, the wide-field panoramic imageides a
relative spatial context for close-up camera views.

On the input side, each activity frame is a rectangular regidgth
the aspect ratio of the camera. As illustrated in Figure 4, dumsers
specify activity frames of interest by drawing them withratard mouse
over the panoramic image; the boundaries of the frame iljt match
each desired camera view. Below we review algorithms weéxebbped
that efficiently process a set of activity frames to computénogd frames
for the camera.

Each activity frame is a rectangular region with the aspeb &t the
camera. As illustrated in Figure 4, human users specify iacframes of
interest by drawing them with standard mouse over the pamorianage;
the boundaries of the frame intuitively match each desiaadeara view.

Let ¢ = [z,y, ] define a rectangular camera frame (the camera has
a fixed aspect ratio of 4:3). Usérrequests a desired frameg. Given
requests fromn users, the system must compute a single global frame
¢* that will best satisfy the set of requests. Clearly simpleraging will
work poorly as it can produce centered camera frames thiafysabne
of the users.

We define the “Coverage-Resolution Ratio (CRR)” as a reward, o
“satisfaction” metrics(c, ;) based on how closely the requested frame
r; compares with a candidate camera fram&®ne sample CRR metric
is described below,

_ Area(r;Nec) .z
si(c) = Wrﬂm(;, 1). (1)

Equation 1 characterizes the intuition that satisfactioa ttabe an in-
creasing function of coverage rat%. In our definition, larger
z or z; means larger in frame size but lower in resolution. Therefore
an extremely large camera frame can increase coverage lratiovill
decrease the resolution ratf.

Each ofn users submits a request. In the collaborative camera dpntro
we want to findc*, the value ofc that maximizes overall satisfaction

based only on the current set of requests:

- " Area(r;Ne) .,z
mcaxiz; si(ri,c) = 2 “Area(r) min (=, 1). (2)

z



In each motion cycle, we servo the camera to the computedigrosind

zoom level.
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(c) 3D view of objective functions

Fig. 5. Shape of reward metric for a fixed camera zoom level. For each usar, th
specified activity frame gives rise to an objective function that is plateau-like atdtad
in (c). The function consists of 5 planar and 4 quadratic surfaces at theecs. The
overall objective function is the summation of plateaus generated by activiteefrdrom

all users.

Since the reward metric is non-concave and non-differelatjadsffi-
ciently computing the optimal solution for Equation 2 is riomial as
illustrated in Figure 5. In [31], we show that the shape of thgative
function for a single user has a plateau-like shape. To dffigi€ompute
the summation of a set of plateaus, we developedOgmn?) exact
algorithm based on idea of sweeping and incremental cortipntesince
the camera may have a continuously variable zoom and useestxare



No. Type Zoom Request Solution Complexity Pub.
1 Centralized m levels Rectangle Exact O(mnz) [31]
3

2 Centralized m levels Rectangle | Approximation O(mn?2 logn) [16]
I Server:O(mn)

3 Distributed m levels Rectangle Exact Client: O(n) [32]

4 Centralized | Continuous | Rectangle Exact O(n3) [30]

5 Centralized | Continuous | Polygon | Approximation O((n + 1/€%)log? n) [30]
I - L Sever:O(n)

6 Distributed Continuous Polygon Approximation Client O(1 53) [29]

TABLE |
Algorithms developed for Collaborative Frame Selection, wheie number of activity
frames specified, andh is the number of camera zoom levels.

not necessarily rectangular, we have developed a seriglgaithms as
summarized in Table I.

Activity frames can also provide a natural representat@nrfput from
sensors. For example, pyroelectric motion sensors resporattivity
within a convex spatial region that can be projected ontdrttege plane
and conservatively bounded by a rectangular activity fraffe same is
true for optical beam sensors, pressure pads, and dirattiinrophones.

For example, consider a set of commercial pyroelectric omoiensors
configured to detect animal motion (eg. motion of warm bodie$0
Ibs). Each sensor has an associated field of view and resporids
different quantitative levels based on mass and velocitynovement.
When several sensors go off simultaneously, a series of reapusitions
may be selected as proposed above. It is also important figtiaive” any
sensor that may indicate a crucial observation. Similarvstaeffect can
also happen to a minority user, whose observing interesyshmalifferent
from the majority.

wi

We can augment the frame selection model in Equation 2 by-intro

ducing time variablet and, for each sensor, a linear gain function
The gain is a function of camera motion history, sensor riligband
scientific observation priorities.

)

olt) = p Area(ri(t))

‘ ' Z ) Area(r;(t) Ne(t))
3)

We propose a gain function based on camera history as falldvies
define a “dissatisfaction” value for each user (in this caseh esensor)
based on how poorly the last camera frame was aligned witkghgor’s
last activity frame requesti;(t) = 1 — s;(r;(t), c(t)). This “dissatisfac-
tion” gain can accumulate over timej;(t) = ’,;;10 Q?i(fi)k, so that when
other sensors are satisfied with consistent camera motiemejlected




sensor gradually gains in influence. This can be defined in ageeur
format,

wi(t) = Ui(t - 1) + wi(t - 1)/2

Effectively, the weight of the un-observed region will ingse until it is
observed. Preliminary experiments suggest that this appr@arobust,
insuring that all sensors contribute and preventing theegy$rom having
observation driven by only a small number of dominating sengor
users!).

V. CONCLUSION AND FUTURE WORK

This paper reviews a series of prototype networked robostesys and
associated algorithms for collaborative observation.

We are currently extending our framework to consider resouim-
ited observation, heterogenous user groups, optimizingeca trajectory,
temporal modeling, sensor modeling, sensor monitoringfaoll detec-
tion, and robotic actuation. We will develop automated agdrased on
sensors, robotic calibration for rapid deployment, and deeidatabase
for archiving, indexing, and query of observed scientificadat
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