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Summary. This paper introduces the haptic communication robots we developed
and proposes a method for detecting human positions and postures based on haptic
interaction between humanoid robots and humans. We have developed two types of
humanoid robots that have tactile sensors embedded in a soft skin that covers the
robot’s entire body as tools for studying haptic communication. Tactile sensation
could be used to detect a communication partner’s position and posture even if the
vision sensor did not observe the person. In the proposed method, the robot obtains
a map that statistically describes relationships between its tactile information and
human positions/postures from the records of haptic interaction taken by tactile
sensors and a motion capturing system during communication. The robot can then
estimate its communication partner’s position/posture based on the tactile sensor
outputs and the map. To verify the method’s performance, we implemented it in
the haptic communication robot. Results of experiments show that the robot can
estimate a communication partner’s position/posture statistically.

1 Introduction

Haptic communication is as important as vision and voice. It allows blind
people to acquire a certain autonomy in their everyday life, since it is largely
redundant with vision for the acquisition of spatial knowledge of the environ-
ment and object properties [1]. Moreover, people who are familiar with each
other often pat each other’s back or hug each other; such haptic interaction
reinforces their familiarity.

If a communication robot equipped with tactile sensors over its entire body
could have the same capability of haptic interaction as human do, we would
feel greater familiarity with the robot, thus shortening its communicative dis-
tance from people. There has been much research on developing tactile sensors
that cover the entire body of a robot [2, 3, 4, 5, 6]. Pan et al. [2] and Inaba
et al. [4] proposed tactile sensor suits made of electrically conductive fabric.
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Hakozaki et al. [5] proposed telemetric robot skin based on sensor chips that
consist of an LC resonance circuit. In particular, Inaba et al. developed a
full-body sensor suit to detect binary touching information for their remote-
brained small humanoid robot. Iwata et al. [3] also proposed force-detectable
surface-cover systems for humanoid robots and developed an actual humanoid
robot, named WENDY, with the systems. Their systems are based on a six-
axis force torque sensor and force sensing registers (FSR sensors) used to
measure the external force vector and contact positions on the cover accu-
rately. Regarding haptic communication, Naya et al. collected data of tactile
information from a pet-like robot and proposed a method that could classify
several human touching motions based on the tactile sensor values [7]. By
using that method, a robot can classify human touching motion and establish
a relationship with a person by giving appropriate responses to the person.

Let us consider some other aspects of haptic interaction. An infant is
hugged by or plays with a caretaker. During that interaction, the caretaker
acquires the infant’s body geometry information in order to carefully control
his or her motions. People often pat a communication partner on his/her body
instead of calling him/her. In this case, since the partner is able to easily turn
his/her face to the patting person directly, the partner can roughly estimate
the position and the posture of the patting person without looking. This esti-
mation makes human haptic interaction natural and safe. If we could realize
such estimation for humanoid robots, the haptic interaction between humans
and the robots would thus become more natural and safer. The previous re-
searches, however, have focused on sensing the contact locations on the robot,
and no method has been proposed to estimate position and posture by using
only tactile information. In the field of computer vision, several methods have
been developed to estimate position and posture [8, 9]. Under the situation
of haptic interaction between a human and a robot, however, the distance
between the human and the robot will be short, and images taken from the
robot’s cameras will only include a part of the human’s body. Thus, it is
difficult to use these methods for haptic interaction.

This paper proposes a method for a robot to detect human positions and
postures by using tactile sensor data while the person is touching the robot.
The key idea for handling tactile information is that the possible combina-
tions of tactile information and human position/posture are quite limited
in the above situations. In this method, the robot acquires a map that de-
scribes the correspondences between the tactile information and human po-
sitions/postures from the records of haptic interaction taken in situations of
communication with humans. Using the map, it is possible to estimate po-
sition and posture based only on the information provided from the tactile
sensors. We demonstrate the validity of the method in experiments on a robot
covered with tactile sensors.
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2 Tactile Sensors Covering an Entire Robot Body

2.1 Robovie-1IS

This section introduces the architecture of the tactile communication robot
named Robovie-IIS. We have been developing communication robots, each
named Robovie, for the study of communication between individual humans
as well as between humans and robots. Robovie-11S is designed to study tactile
communication used in friendly relationships. This robot is based on Robovie-
II [10], with tactile sensor elements embedded in a soft skin that covers the
robot’s entire body. Figure 1 shows overall views of two types of Robovie-IIS
and scenes of its communication with a human.

(c) Haptic Interaction between
(a) Fisrt version (b) Second version Robovie-IIS and chidren

Fig. 1. Two types of tactile communication robot “Robovie-I1IS”

2.2 Tactile Sensor Elements embedded in Soft Skin

Figure 2 shows the hardware architecture of a tactile sensor element embedded
in the soft skin. As the figure clearly illustrates, the soft skin consists of three
layers. The outside layer is made of thin silicone rubber (thickness: 5 mm), and
the middle layer is made of thick silicone rubber (thickness: 10 mm). We use
these silicone rubber layers to achieve human-like softness. Moreover, the sense
of touch and friction of the surface of the silicone rubber are similar to that
of human skin. The thickness of the silicone rubber also absorbs the physical
noise made by the robot’s actuators. The inner layer is made of urethane foam,
which insulates against heat from inside the robot and has a different surface
friction from human skin. Its density is lower than that of the silicone rubber;
the densities of the urethane foam and the silicone rubber are 0.03 g/cm?® and
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1.1 g/cm?, respectively. The total density of the soft skin consisting of all layers
is 0.6 g/cm3. The tactile sensor elements are film-type piezoelectric polymer
sensors inserted between the thin and thick silicone rubber layers. The film-
type sensor, consisting of polyvinylidene fluoride (PVDF) and sputtered silver,
outputs a high voltage proportionate to changes in applied pressure. Figure 3

< Thinsilicone rubber (5 mm)

<« Thick silicone rubber (10 mm)
< Urethane foam (15 mm)

Piezo film sheet (PVDF)

Fig. 2. Architecture of Soft Skin Sensor

shows the arrangement of the sensor elements for the first type of Robovie-1IS,
of which there are 48 in its soft skin. The second type of Robovie-IIS has 276
sensor elements in the skin.

Although the sensor element outputs a high voltage, the signal is weak
compared to electric noise disturbance since its electric current is weak. There-
fore, we distribute A/D converters (ADCs) with sensor-signal amplifiers to
each body part. The ADCs are installed next to the sensor elements to con-
vert the analog sensor signals to digital data. We developed two types of
ADC, which are shown in Fig. 4. The dimensions of the first type of ADC are
23 x 137 x 8 mm. On this board, there are four A/D converters (each channel
has six bits) to obtain the outputs of four sensor elements. We also use a
microcomputer (PIC) to convert the digital data to a serial signal (RS-232c).
By adding other boards’ serial signals to it, we can realize a daisy-chain con-
nection between the boards, as shown in Fig. 5 (a). These boards allow us to
sense all sensor elements embedded in the soft skin from a serial port of the
host computer.

As for the second type of ADC, its dimensions are 22 x 76 x 10.2 mm. This
board has 16 A/D converters (each channel has 16 bits) and a micro-processor
(SH2, Renesas Technology Corp.). We can connect 16 sensor elements to the
board and preprocess the raw data of tactile sensor outputs, such as low-
pass-filtering on the processor. The preprocessed data are converted to serial
signals and sent to the host computer via a serial bus (RS-485), as shown in
Fig. 5 (b).



Haptic Communication between Humans and Robots 5

Fig. 3. Arrangement of sensor elements on Robovie-IIS

First type

Fig. 4. Distributed A/D Converters

3 Human Position and Posture Detection

In this section, we describe a method to estimate human position and posture
from the tactile sensor outputs.
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Fig. 5. Architecture of A/D Converters

3.1 Measuring Position and Posture of Humans

We employed an optical motion capturing system (VICON, Vicon Motion
Systems Ltd.) to measure body movements. The motion capturing system
consists of 12 pairs of infrared cameras and infrared lights and markers that
reflect infrared signals. These cameras were set around the environment of
the experiment as shown in Figure 6 (a). The system calculates each marker’s
3-D position from all of the camera images, and it features high resolution in
both time (60 Hz) and space (accuracy is 1 mm in the room). In this paper,
we use three markers to describe the position and the posture of humans with
respect to the coordinates fixed to the robot. These markers are attached to
the waist and the left and right fingertips of the human.

3.2 Mapping between Tactile Sensor Outputs and Probability
Distribution of Human Positions/Postures

We calculate probability distributions of positions/postures of humans that
correspond to tactile sensor outputs and build a map between them. The
mapping process is carried out as follows. Figure 6 shows an outline of the
process.

(i) Record time series data of the robot’s tactile sensor outputs and posi-
tions/postures of subjects simultaneously while they communicate with
each other. In this paper, we used 46 tactile sensors along with three
markers that were attached to the waist and both hands of the sub-
ject for the motion capture system as positions/postures of the sub-
ject. Hence, the tactile sensor outputs and the marker positions of the
waist, the left hand, and the right hand are described as t; € RS,
praeist pfﬁh“"d, pfﬁh“"d € N3, respectively, where i denotes time.

(i) From all tactile sensor data {t;}, select the tactile sensor data {t;} that
are greater than a threshold for use while touching. The threshold is de-
termined by preliminary experiments.
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(iii) Classify selected data {t;} into typical clusters {Cx} by using the ISO-

DATA clustering method [12].

(iv) Calculate distributions of marker positions {’“p;} that correspond to the
tactile sensor data {¥t;} at each cluster Cj by the following steps.

a) Classify the marker position data {kp;‘} into clusters {¥D;} by us-
ing the ISO-DATA. We first classify the waist marker position data
{Fpyeist} into clusters {¥Dj*@’s'}. At each "D}, we assume that
the distribution of the marker position data conforms to a normal
distribution N(u,0?). Under this assumption, we calculate a mean p
and a standard deviation o of {fp}”‘”“} which are the elements of
the cluster * Dpaist,

b) Calculate probabilities for the existence of the marker position at each
cluster {¥D;} when the tactile sensor data belong to the cluster Cj.
If the number of the elements {fp}”“i‘“t} is m, and the total number
of the waist marker positions that correspond to the tactile sensor
outputs in the cluster Cj is n, we obtain the probability, P« ppaist; a8
m

c) Label the cluster kD effective if Pp, becomes greater than threshold
t, and o becomes less than threshold ¢,; t, and t, are determined by
premliminary experiments.

d) Iterate these steps from (iv)-a) to (iv)-c) for the data of the left-
and right-hand marker positions, {kp;“*h“"d} and {kpffh“"d}, re-
spectively.

(v) Label the cluster Cy, effective if the clusters {¥D;} that corresponded to

C have more than one effective cluster.

3.3 Using the map

Once the map is obtained, the robot can use it as follows.

(i) Obtain tactile sensor data vector t € R4¢ during communication with a
human.

(ii) Calculate the distance between ¢ and each cluster {Cj} in the map, and
select the cluster C for which the distance is shortest. Abandon the esti-
mation if the distance is longer than a threshold.

(iii) Obtain the probability distributions of the waist, the left- and right-hand
positions that correspond to Cy if the cluster is effective.

4 Experiment

4.1 Acquiring Human Position and Posture

Figure 6(a) illustrates the system used to acquire the data of tactile sensor
outputs and positions of the markers. The tactile sensor outputs were recorded
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Fig. 6. Outline of Mapping process

on a hard-disk drive mounted on the robot’s body. In this experiment, we used
the first type of ADC described in Section 2.2 to obtain the outputs. The
markers were attached to the waist and left/right fingertips of both the robot
and a human subject. The motion capturing system was arranged to measure
their motions representing haptic interaction. The sampling rate of the tactile
sensor was 20 Hz, and the sampling rate of the positions of the markers was
60 Hz. In the experiments, Robovie-IIS continuously moved its joints, aside
from its wheels, and communicated with the subject. The program used for
its communication behavior was almost the same as that of Robovie-II [10],
consisting of a behavior network based on situated modules that describe
communication behaviors according to the situation. There are approximately
100 communication behaviors in Robovie’s present behavior network.

The subjects of our experiment were 40 university students (males: 12,
females: 28). An experimenter explained the purpose of the experiments as
collecting haptic interaction data from the subjects and asked each of them
to communicate with the robot for three minutes.
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4.2 Results of mapping between tactile sensor outputs and
probability distribution of human positions/postures

Table 1 shows the results of clustering the tactile sensor outputs and the
evaluation of each cluster. The total number of data from the tactile sensor
output, which was described as t; € 15 in section II-B, was 247,622. We used
the first half of the data (123,811 data) for building the map between tactile
sensor outputs and positions/postures of humans. The latter half of the data
were used to verify the map.

First, we selected 14,265 touching data from the first-half data by employ-
ing the threshold of each tactile sensor. We then obtained 150 clusters using
ISO-DATA. In this experiment, we set the threshold ¢, to 0.1, ¢, for waist to
300 mm, and ¢, for both hands to 150 mm. Finally, we obtained 137 effective
clusters for use in estimating human position and posture. Figure 7 describes
in detail the number of effective clusters in a Venn diagram. We obtained 110
clusters for the waist position estimation, 90 clusters for left-hand position
estimation, and 88 clusters for right-hand position estimation. As the figure
shows, the robot can also estimate all positions, i.e. waist and both hand
positions, from 54 clusters.

Table 1. Results of Clustering and Evaluation of each cluster

total # of skin sensor data|123,811
# of touching data 14,265

total # of clusters 150
# of effective clusters 137
waist

\/

left hand right hand

Fig. 7. Venn diagram of effective clusters

To verify the performance of the map, we used tactile sensor outputs of
the latter-half data (123,811 data) as inputs of the robot and compared the
estimation results of marker positions and the actual positions taken from the
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motion capturing system. In this paper, we decided that the estimation would
be successful if the actual marker position fell within the area from u — 20
to p + 20 at the estimated distribution conforming to a normal distribution,
N(u,0?). We obtained 14,314 touching data from the latter-half data, and
there were 12,711 data (89%) that belonged to the tactile sensor cluster in
the map. Success rates of the estimations for the waist, the left hand, and the
right hand were 87%, 63%, and 72%, respectively.

To verify the effectiveness of the estimation based on the map, we applied
reflexive behaviors to the robot so that it would look at the subject’s face based
only on the tactile sensor outputs and the map. This behavior is difficult to
achieve for robots that do not have such a map. The photographs in Figs.
8 (a) and (b) show these reflexive behaviors. In these figures, the bar charts
denote the tactile sensor outputs obtained during the haptic interaction shown
in the photographs. The figures of the robot model show the distributions of
waist and hand positions that correspond to the bar chart. As can be seen in
these figures, the robot is able to estimate the positions of waist and hands
statistically as information on human position and posture. The robot can look
at the subject’s face by utilizing the tactile sensor outputs, as the photographs
indicate.
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Fig. 8. Estimation results of human position and posture

5 Discussion and Conclusion

We proposed a method to estimate human position and posture by utilizing
tactile information. In our method, the robot first acquires a relationship
between its tactile information and human positions and postures from the
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history of haptic interaction. In our experiments, we obtained the success
rates of the estimation for the waist, the left hand, and the right hand as
marker positions. The success rate for the left hand turned out to be the
lowest because almost all of the subjects were right-handed persons. They
used mainly their right hand for touching the robot. Thus the position of the
left hand became unstable while touching with the right hand. If the robot
obtained more data of haptic interaction with left-handed persons, the success
rate of the estimation for the left hand would increase. This implies that the
success rates depend on the robot’s experiences of haptic communications.
In this paper, we used the communication partner’s position and posture
based on a 3-D motion capture system. If the robot could sense more infor-
mation from the partner by accessing its passive-type sensors and correlating
their data to tactile information, it would estimate the partner’s state more
precisely based only on the tactile information. In future work, we will use the
information described above to estimate the partner’s state more precisely.
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