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Abstract. Numerical value range partitioning is an inherent part of in-
ductive learning. In classification problems, a common partition ranking
method is to use an attribute evaluation function to assign a goodness
score to each candidate. Optimal cut point selection constitutes a poten-
tial efficiency bottleneck, which is often circumvented by using heuristic
methods.
This paper aims at improving the efficiency of optimal multisplitting.
We analyze convex and cumulative evaluation functions, which account
for the majority of commonly used goodness criteria. We derive an ana-
lytical bound, which lets us filter out—when searching for the optimal
multisplit—all partitions containing a specific subpartition as their pre-
fix. Thus, the search space of the algorithm can be restricted without
losing optimality.
We compare the partition candidate pruning algorithm with the best
existing optimization algorithms for multisplitting. For it the numbers
of evaluated partition candidates are, on the average, only approximately
25% and 50% of those performed by the comparison methods. In time
saving that amounts up to 50% less evaluation time per attribute.

1 Introduction

In inductive processes numerical attribute domains often need to be discretized,
which may be time consuming if the domain at hand has a very high number
of candidate cut points. This affects both binarization [4,14] methods and, in
particular, algorithms that need to partition numerical ranges into more than two
subsets; e.g., off-line discretization algorithms [5] and optimal [8,11] or greedy
[5,10] multisplitters in decision tree learning, rule induction, and nearest neighbor
methods. In data mining applications numerical attributes may constitute a
significant time consumption bottleneck.

In this paper we continue to explore ways to enhance the efficiency of nume-
rical attribute handling in classification learning. Previous work has shown that
the class of well-behaved evaluation functions, for which only a part of the po-
tential cut points needs to be examined in optimal partition selection, contains
all the most commonly used attribute evaluation functions [8].

In this paper we analyze convex attribute evaluation functions. The analysis
brings out new opportunities for pruning the set of candidate partitions. Empi-
rical evaluation shows that the speed-up obtained is substantial; on the average,
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the evaluation of half of the partition candidates can be omitted without sacri-
ficing the optimality of the resulting partition.

2 Preliminaries and an Overview

The processing of a numerical attribute begins by sorting the training data by
the value of the attribute. We consider a categorized version of the data, where
all examples with an equal value constitute a bin of examples.

In supervised learning, the task in numerical value range discretization is to
find a set of cut points to partition the range into a small number of intervals that
have good class coherence. The coherence is usually measured by an evaluation
function.

Many, though not all [6,8], of the most widely used attribute evaluation
functions are either convex (upwards) or concave (i.e. convex downwards), both
are usually referred to as convex functions.

Definition 1. A function f(x) is said to be convex over an interval (a, b) if for
every x1, x2 ∈ (a, b) and 0 ≤ ρ ≤ 1,

f (ρx1 + (1− ρ)x2) ≤ ρf(x1) + (1− ρ)f(x2).

A function f is said to be strictly convex if equality holds only if ρ = 0 or ρ = 1.
A function f is concave if −f is convex.

Fayyad and Irani’s [9] analysis of the binarization technique proved that for
the information gain function [13,14] only boundary points need to be considered
as potential cut points due to the convexity of the function.

Definition 2. Let a sequence S of examples be sorted by the value of a numerical
attribute A. The set of boundary points is defined as follows: A value T ∈
Dom(A) is a boundary point if and only if there exists a pair of examples s1, s2 ∈
S, having different classes, such that valA(s1) = T < valA(s2); and there does
not exist another example s ∈ S such that valA(s1) < valA(s) < valA(s2).

A block of examples is the sequence of examples in between two consecutive
boundary points. Blocks can be obtained from bins by merging adjacent class
uniform bins with the same class label.

A well-behaved function always has an optimal multisplit on boundary points.
All the most commonly used attribute evaluation functions fall into this category
[8], including all convex evaluation functions and some non-convex such as the
gain ratio, GR [13,14] and the normalized distance measure, ND [12].

Table 1 summarizes the current knowledge of optimization algorithms for
families of evaluation functions. Brute-force exhaustive search can be used to
optimize any evaluation function, but the search method is exponential in the
(maximum) arity, k, of the partition for each attribute. With well-behaved fun-
ctions like GR and ND, only boundary points need to be examined, which leads
to slightly better efficiency.
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Table 1. Types of functions, their optimization algorithms, asymptotic time and space
requirements for these algorithms, and examples of functions in these categories.

Type Algorithm Time Space Functions
Any Brute-force (bins) O(mV k) O(mV )
Well-behaved Brute-force (blocks) O(mBk) O(mB) GR, ND
Cumulative Bin-Opt O((k + m)V 2) O((k + m)V )

+ Well-behaved Block-Opt O((k + m)B2) O((k + m)B)
+ Convex Block-Opt-P O((k + m)B2) O((k + m)B) ACE, IG, GI

Monotonic One-pass O(kmn) O(km) TSE

Cumulative evaluation functions, i.e., functions that compute a (weighted)
sum of goodness scores of the subsets, can be optimized in time quadratic in the
number of bins using the general algorithm which uses dynamic programming
[11,8]. Subsequently we refer to this algorithm as Bin-Opt. If the evaluation
function, additionally, is well-behaved, then an algorithm called Block-Opt [8]
can be used to optimize it in time quadratic in the number of blocks.

This paper introduces a pruning method for minimization of concave and
cumulative evaluation functions, which improves the efficiency of the Block-Opt
algorithm. The asymptotic time requirement does not change, but as demon-
strated in the subsequent experiments, the practical speed-up is substantial.

Examples of concave and cumulative evaluation functions include the gini
index (of diversity), GI [4] and the average class entropy, ACE. For a partition⊎

i Si of the data set S, ACE is defined to be

ACE (
⊎

i Si) = (1/|S|) ∑
i |Si|H(Si) = (1/n)

∑
i |Si|H(Si),

where H is the entropy function: H(S) = −∑m
j=1 P (Cj , S) log2 P (Cj , S), in

which m denotes the number of classes and P (C, S) stands for the proportion
of examples in S that have class C.

Many other evaluation functions use ACE as their building block. Such fun-
ctions include, e.g., the information gain function, IG [13,14], GR, and ND. In
the experiments of Section 5 we use IG, which is defined as

IG (
⊎

i Si) = H(S)−ACE (
⊎

i Si) .

Finally, there is only one concave and cumulative evaluation function that is
known to be optimizable in linear time by one-pass evaluation [1,2,11]: training
set error, TSE. Unfortunately, the function has many defects, which disqualify
it from application in multi-class induction.

3 Pruning Partition Candidates

The algorithm Block-Opt uses dynamic programming to efficiently search all
boundary point combinations in order to find the best partition [8]. It uses a
left-to-right scan over the blocks and tabulates the goodness scores of prefix
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partitions to avoid repetitive calculation of the scores. Although the algorithm
works well when there is a moderate amount of boundary points in the range, its
efficiency suffers when they are more frequent. This section studies how the se-
arch space of the algorithm can be restricted by utilizing the convexity properties
of the evaluation functions.

Let X be a variable with domain X . Let E denote the expectation. In the
discrete case EX =

∑
x∈X p(x)x, where p(x) = Pr{X = x}.

Theorem 1 (Jensen’s inequality [7, pp. 25–26]). If f is a convex function
and X is a random variable, then

Ef(X) ≥ f(EX).

Jensen’s inequality does not restrict the probability distribution underlying
the expectation. Hence, for a concave function f it holds that

∑
i αif(ti) ≤ f (

∑
i αiti) (1)

for αi ≥ 0,
∑

i αi = 1.
Typically, partition ranking functions give each interval a score using an

other function, which tries to estimate the class coherence of the interval. A
common class of such functions are the impurity functions [4]. The interval
scores are weighted relative to the sizes of the intervals. Thus, a common form
of an evaluation function F is

F (
⊎

i Si) =
∑

i(|Si|/|S|)I(Si), (2)

where I is an impurity function. Now, |Si|/|S| ≥ 0 and
∑

i(|Si|/|S|) = 1. If the
impurity function I is concave, then by Eq. 1:

∑
i(|Si|/|S|)I(Si) ≤ I (

∑
i(|Si|/|S|)Si)⇔ F (

⊎
i Si) ≤ F (S), (3)

in which F (S) is the score of the unpartitioned data. Observe that, since I
is concave, any splitting of the data can only decrease the value of F . Thus
splitting on all cut points will lead to best score. Hence, in practice, the arity of
the partition needs to be bounded, either a priori or by using some penalizing
term.

For example, the evaluation function ACE fulfills the requirements of the
function F above; the entropy function, H, is concave, because function x log x
is convex [7].

Theorem 2. Let F be the evaluation function defined in Eq. 2 and let I be a
concave impurity function. Let S be a sequence of examples consisting of consecu-
tive intervals S1, S2, . . . , Sm. Let P1 be, for some fixed k ≥ 2, a (k−1)-partition
for the interval S1 and P2 be a (k − 1)-partition for S1 ∪ S2. If

|S1 ∪ S2|F (P2)− |S1|F (P1)− |S2|I(S2) ≤ 0, (4)

then for any example set S∗

F (P2 ] S∗) ≤ F (P1 ] {S2 ∪ S∗}).
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P 1
∗ S2 ∪ S∗

︷ ︸︸ ︷S1

|P1| = k − 1

P 2
∗ S∗

Fig. 1. P1 and P2 are two (k−1)-partitions of the prefixes of the data set. They can be
extended into k-partitions P 1

∗ and P 2
∗ , respectively, for a larger sample by augmenting

a new interval to them.

Proof. Let us now consider different k-partitions of S1 ∪ S2 ∪ S∗, where S∗ is a
combination of any number of bins immediately following S2. P 1

∗ = P1](S2∪S∗)
and P 2

∗ = P2 ] S∗ are two k-partitions of S1 ∪ S2 ∪ S∗ (see Fig. 1). Assume that
the inequality 4 holds.

According to the inequality of Eq. 3

|S|F (P 1
∗ ) = |S1|F (P1) + |S2 ∪ S∗|I(S2 ∪ S∗)
≥ |S1|F (P1) + |S2|I(S2) + |S∗|I(S∗) and

|S|F (P 2
∗ ) = |S1 ∪ S2|F (P2) + |S∗|I(S∗).

The difference of these two candidates can be bound from above by the
inequality 4

|S|F (P 2
∗ )− |S|F (P 1

∗ ) ≤ |S1 ∪ S2|F (P2)− |S1|F (P1)− |S2|I(S2) ≤ 0,

from where the claim follows by dividing by |S|.
The theorem gives us a possibility of pruning the search space significantly:

we can test the bound for empty S∗ and, if the pruning condition is satisfied,
subsequently drop all partitions containing P1 from further consideration.

4 The Algorithm for Finding Optimal Partitions

We incorporate the candidate pruning method to algorithm Block-Opt, which
uses a dynamic programming scheme similar to that suggested by Fulton et al.
[11]. The main modification is that the algorithm works on blocks of examples
rather than on individual examples. The blocks are extracted in two-pass pre-
processing. That entails bin construction from the sorted example sequence and
merging of adjacent class uniform bins (of the same class) into blocks. The time
and space complexity of preprocessing is O(n + mV ).

The search algorithm inputs a sequence µ of class distributions of the blocks
b1, . . . , bB , an upper limit for the arity of the partition and an evaluation fun-
ction of the form g(µ) = |S|I(S), where I is a concave function, µ is the class
distribution of the set S.
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Table 2. The search algorithm for multisplits. After executing the algorithm, for each
i and k, Pi,k is the cost of the optimal k-split of first i blocks and Li,k is the index to
the block which is situated immediately left from the rightmost cut point.

procedure Search(µ, g, aritymax)
/* µ = {µ1,...,µB} contains the class frequency distributions of blocks

b1,...,bB, g(µj) = |Sj|I(Sj), where I is a concave function */
method:
1. for i ← 1 to B do
2. for j ← 1 to i-1 do µj ← µj + µi; costj ← g(µj) od;
3. Pi,1 ← cost1; Ni,1 ← i-1;
4. if i = B then limit ← aritymax else limit ← aritymax-1 fi;

/* Compute the best k-split of b1∪...∪ bi for each k */
5. for k ← 2 to min(i,limit) do
6. minimum ←∞; rejectlevel ← Pi,k−1;
7. l ← i; j ← Nl,k−1;
8. while j ≥ k do /* Scan the remaining candidate (k-1)-splits */
9. current ← Pj,k−1 + costj+1;
10. if current ≥ rejectlevel then Nl,k−1 ← Nj,k−1 /* prune */
11. else /* This candidate could be the optimal one */
12. if current < minimum then
13. minimum ← current; indexofmin ← j fi;
14. l ← j fi;
15. j ← Nj,k−1 od;
16. Pi,k ← minimum; Li,k ← indexofmin; Ni,k ← i-1 od od

The search algorithm (Table 2) scans the blocks b1, . . . , bB from left to right.
Array P stores the costs of the best multisplits: Pi,k is the minimum cost obtained
when the i first intervals are split optimally into k subsets.

At step i, array P is updated according to the formula:

Pi,k ← min
j∈Ni,k−1

{Pj,k−1 + g(µj+1)},

which denotes that the optimal partitioning of b1, . . . , bi into k subsets is the
minimum cost over all combinations—remaining in the search space—of fixing
the last interval

⋃i
l=j+1 bl and adding the cost of the best (k − 1)-split of b1 ∪

· · · ∪ bj .
As the scan proceeds, the distributions of blocks are merged, so that at

point i, each µj , j ≤ i, represents the class distribution of bj ∪ · · · ∪ bi. The
corresponding evaluation function score is stored in array cost.

Array L stores the corresponding cut points: Li,k is an index to the block
that contains the rightmost cut point of the multisplit having the cost Pi,k.

The search space is pruned incrementally by comparing the best (k − 1)-
split of the intervals processed so far with each remaining candidate k-split of
the same range: if Pi,k−1 ≤ Pj,k−1 + costj+1, the candidate is eliminated. The
connection to Theorem 2 is the following: Pi,k−1 corresponds to P2, Pj,k−1 to
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P1, bj+1 ∪ · · · ∪ bi to S2, and an empty set to S∗. The array N stores the search
space of remaining partition candidates in linked lists: j = Ni,k−1 denotes that
the next (k − 1)-partition to be considered as the prefix of an optimal k-split,
after the best (k− 1)-split of the blocks b1 ∪ · · · ∪ bi, is the optimal (k− 1)-split
of the blocks b1, . . . , bj .

Note that testing against the best candidate so far is conditioned on passing
the pruning test. The reason for this is that by convexity there is always a k-split
that is at least as good as the best (k − 1)-split. Hence, the optimal k-split will
always pass the first test.

The asymptotic time and space complexities of the algorithm are the same as
the algorithm Block-Opt [8]. The algorithm takes the time O((k+m)B2) because
the incremental merging of the class distributions take the time O(mB2) and
scanning the table P takes the time O(kB2) in the worst case. The tables P , L
and N are of size O(kB) and the class distributions of the blocks allocate the
space O(mB), which leads to the total space complexity of O((k + m)B).

5 Empirical Evaluation

We contrast the multisplitting algorithms Bin-Opt and Block-Opt with and
without the new candidate pruning technique. The pruning version is called
Block-Opt-P. As baseline we use a breadth-first implementation of Fayyad and
Irani’s [10] widely used heuristic greedy multisplitting method. Keep in mind
that this method does not produce optimal partitions, even though the scores
of the resulting partitions often are very close to optimal [8]. As the evaluation
function we use information gain [13], which is convex (thus also well-behaved)
and cumulative.

In the experiment we partition the numerical dimensions of 31 test domains,
which come mainly from the UCI repository [3], using all four partitioning stra-
tegies. For each domain we record the number of candidate partitions evaluated
in processing each numerical attribute.

Fig. 2 depicts the results of this experiment. The figures on the top are
the average number of evaluations per numerical attribute performed by the
algorithm Bin-Opt, which operates on example bins, the white bars represent
the relative number of evaluations per attribute for the algorithm Block-Opt
operating on blocks, the gray bars are those of Block-Opt-P, where the new
candidate pruning is employed, and the black ones correspond to those of the
greedy heuristic selection.

We can see that the average reduction in the number of examined partitions
between Block-Opt and Bin-Opt is close to 50%. An average reduction of the
same size is obtained when pruning is employed. Hence, the total average saving
in candidate evaluations between Bin-Opt and Block-Opt-P is approximately
75%. These reductions do not correspond linearly to the search times. For in-
stance, in the domain Adult pruning only filters 15% of the candidate partitions
examined by Block-Opt, but in time that amounts to a relative saving of 32%.
The time consumption of Block-Opt-P is only 14% of that of Bin-Opt. As ano-
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Fig. 2. The relative average numbers of partition candidate evaluations per attribute
performed by the the algorithms Block-Opt(white bars), Block-Opt-P(gray bars), and
the greedy approach (black bars). The figures on the top are the absolute averages for
the algorithm Bin-Opt.

ther example, in the domain Vowel the filtering leaves unevaluated 43% of the
partitions examined by Block-Opt, but the relative time saving is only 5%.

Pruning attains only small savings in domains with the least numbers of
initial comparisons (e.g., Breast W and Robot). In these domains the time con-
sumption is low to begin with. On other domains better pruning results are
observed. Unfortunately, the relative reduction in the number of examined par-
tition candidates is small also for some of the hardest domains to evaluate (Aba-
lone and Adult). The actual time saving, though, can be larger as demonstrated
above.

Only in some domains, those where the number of comparisons per attribute
is the least, is the pruning technique’s efficiency comparable with that of the
O(kB) time greedy multisplitting method. However, the greedy method is not
guaranteed to find the optimal partition.

6 Conclusion

Multipartition optimization lacks an efficient general solution. However, speci-
fic subclasses of attribute evaluation functions can be optimized in polynomial
time. In particular, cumulative and well-behaved evaluation functions can be
optimized in time quadratic in the number of blocks in the numerical domain. It
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seems unlikely that this asymptotic bound could be improved without trading
off generality. Linear-time optimization would seem to require that the goodness
score of the best partition changes monotonically during the search procedure,
as happens with TSE.

The class of convex evaluation functions is a large one, including many of the
commonly used functions. In this paper we bound the value that can be obtained
by a partition determined by a convex evaluation function. With the analytical
bound we were able to reduce the number of partition candidates that need to
be evaluated in optimizing any convex evaluation function. The pruning techni-
que does not improve the asymptotic time requirement of optimizing a convex
function, but it does have a great impact on the practical time consumption of
the search algorithm.
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