Querying Inductive Databases via Logic-Based
User-Defined Aggregates

Fosca Giannotti and Giuseppe Manco

CNUCE CNR
Via S Maria 36 56125 Pisa Italy

{F.Giannotti,G.Manco}@cnuce.cnr.it

Abstract. We show how a logic based database language can support
the various steps of the KDD process by providing: a high degree of ex
pressiveness, the ability to formalize the overall KDD process and the
capability of separating the concerns between the specification level and
the mapping to the underlying databases and datamining tools We gen
eralize the notion of Inductive Data Bases proposed in [4, 12] to the case
of Deductive Databases In our proposal, deductive databases resemble
relational databases while user defined aggregates provided by the de
ductive database language resemble the mining function and results In
the paper we concentrate on association rules and show how the mecha
nism of user defined aggregates allows to specify the mining evaluation
functions and the returned patterns

1 Introduction

The rapid growth and spread of knowledge discovery techniques has highlighted
the need to formalize the notion of knowledge discovery process While it is clear
which are the objectives of the various steps of the knowledge discovery process,
little support is provided to reach such objectives, and to manage the overall
process

The role of domain, or background, knowledge is relevant at each step of
the KDD process: which attributes discriminate best, how can we characterize
a correct/useful profile, what are the interesting exception conditions, etc, are
all examples of domain dependent notions Notably, in the evaluation phase we
need to associate with each inferred knowledge structure some quality function
[HS94] that measures its information content However, while it is possible to
define quantitative measures for certainty (e g, estimated prediction accuracy
on new data) or utility (e g, gain, speed up, etc), notions such as novelty and
understandability are much more subjective to the task, and hence difficult to
define Here, in fact, the specific measurements needed depend on a number of
factors: the business opportunity, the sophistication of the organization, past
history of measurements, and the availability of data

The position that we maintain in this paper is that a coherent formalism, ca
pable of dealing uniformly with induced knowledge and background, or domain,

J.M. Zytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 125-135, 1999.
© Springer—Verlag Berlin Heidelberg 1999

126 F. Giannotti and G. Manco

knowledge, would represent a breakthrough in the design and development of
decision support systems, in several challenging application domains

Other proposal in the current literature have given experimental evidence
that the knowledge discovery process can take great advantage of a powerful
knowledge representation and reasoning formalism [14,11,15,5] In this context,
the notion of inductive database, proposed in [4, 12], is a first attempt to formalize
the notion of interactive mining process An inductive database provides a unified
and transparent view of both inferred (deductive) knowledge, and all the derived
patterns, (the induced knowledge) over the data

The objective of this paper is to demonstrate how a logic based database
language, such as LDL++ [17], can support the various steps of the KDD pro
cess by providing: a high degree of expressiveness, the ability to formalize the
overall KDD process and the capability of separating the concerns between the
specification level and the mapping to the underlying databases and data min
ing tools We generalize the notion of Inductive Databases proposed in [4,12] to
the case of Deductive Databases In our proposal, deductive databases resemble
relational databases while user defined aggregates provided by £LDL++ resem
ble the mining function and results Such mechanism provides a flexible way to
customize, tune and reason on both the evaluation function and the extracted
knowledge In the paper we show how such a mechanism can be exploited in the
task of association rules mining The interested reader is referred to an extended
version [7] of this paper, which covers the bayesian classification data mining
task

2 Logic Database Languages

Deductive databases are database management systems whose query languages
and storage structures are designed around a logical model of data The underly
ing technology is an extension to relational databases that increases the power of
the query language Among the other features, the rule based extensions support
the specification of queries using recursion and negation

We adopt the LDL++ deductive database system, which provides, in addi
tion to the typical deductive features, a highly expressive query language with
advanced mechanisms for non deterministic, non monotonic and temporal rea
soning [9, 18]

In deductive databases, the extension of a relation is viewed as a set of facts,
where each fact corresponds to a tuple For example, let us consider the predicate
assembly(Part, Subpart) containing parts and their immediate subparts The
predicate partCost(BasicPart, Supplier,Cost) describes the basic parts, ie,
parts bought from external suppliers rather than assembled internally Moreover,
for each part the predicate describes the supplier, and for each supplier the price
charged for it Examples of facts are:

assembly(bike, frame) partCost(top tube, reed, 20)
assembly(bike, wheel) partCost(fork, smith, 10)
assembly(wheel, nipple)

Querying Inductive Databases via Logic—-Based User—Defined Aggregates 127

Rules constitute the main construct of LDL++ programs For instance, the
rule

multipleSupp(S) + partCost(P1,S,),partCost(P2,S,),P1 # P2

describes suppliers that sell more than one part The rule corresponds to the
SQL join query

SELECT P1.Supplier
FROM partCost P1, partCost P2
WHERE P1.Supplier = P2.Supplier
AND P1.BasicPart <> P2.BasicPart

In addition to the standard relational features, LDL++ provides recursion and
negation For example, the rule

allSubparts(P,S) + assembly(P,S)
allSubparts(P,S) + allSubparts(P,S1),assembly(S1,S)

computes the transitive closure of the relation assembly The following rule com
putes the least cost for each basic part by exploiting negation:

cheapest (P, C) «+ partCost(P, ,C), ~cheaper(P,C)
cheaper(P, C) « partCost(P, ,C1),C1 < C

2.1 Aggregates

A remarkable capability is that of expressing distributive aggregates (i e , aggre
gates computable by means of a distributive and associative operator), which
are definable by the user [18] For example, the following rule illustrates the use
of a sum aggregate, which aggregates the values of the relation sales along the
dimension Dealer:

supplierTot(Date,Place, sum(Sales)) < sales(Date,Place,Dealer, Sales)

Such rule corresponds to the SQL statement

SELECT Date, Place, SUM(Sales)
FROM sales
GROUP BY Date, Place

From a semantic viewpoint, the above rule is a syntactic sugar for a program
that exploits the notions of nondeterministic choice and XY stratification [6, 17,
9] In order to compute the following aggregation predicate

q(Y, aggr(X)) < p(X,Y)
we exploit the capability of imposing a nondeterministic order among the tuples
of the relation p,

ordP(Y,nil,nil) < p(X,Y)
ordP(Z,X,Y) « ordP(Z, ,X),p(Y,Z), choice(X,Y), choice(Y,X)

128 F. Giannotti and G. Manco

Here nil is a fresh constant, conveniently used to simplify the program If the
base relation p is formed by & tuples for a given value s of Y, then there are k!
possible outcomes for the query ordP(X,Y), namely a set:

{ordP(s,nil,nil), ordP(s,nil, t;),ordP(s,t1,ts), ,ordP(s,tx 1,tx)}

for each permutation {(ti,s), ,(tx,s)} of the tuples of P Therefore, in each
possible outcome of the mentioned query, the relation ordP is a total (intransi
tive) ordering of the tuples of p The double choice constraint in the recursive
rule specifies that the successor and predecessor of each tuple of p is unique

As shown in [17], we can then exploit such an ordering to define distributive
aggregates, inductively defined as f({z}) = g(z) and f(S U {z}) = h(f(S),z)
By defining the base and inductive cases by means of ad hoc user defined predi
cates single and multi, we can then obtain an incremental computation of the
aggregation function:

aggrP(Aggr,Z,nil,C) < ordP(Z,nil,X),X # nil, single(Aggr,X,C)
aggrP(Aggr,Z,Y,C) < ordP(Z,X,Y), aggrP(Aggr, X, Cy), multi(Aggr,Y,Cy,C)
Finally, the originary rule can be translated into
q(Y,C) « ordP(Y, ,X),ordP(Y,X,),aggrP(aggr,Y,X,C)

Ezample 1 ([18]) The aggregate sum can be easily defined by means of the
following rules:
single(sum, X, X)
multi(sum, X, SO, SN) < SN = SO + X
O
In [18], a further extension to the approach is proposed, in order to deal with
more complex aggregation functions Practically, we can manipulate the results

of the aggregation function by means of two predicates freturn and ereturn
The rule definining the aggregation predicate is translated into the following;:

q(Z,R) « ordP(Z,X,Y), aggrP(aggr, Z,X, C), ereturn(aggr, Y,C,R)
q(Z,R) « ordP(Z,X,Y),ordP(Z,Y,),aggrP(aggr,Z,Y,C), freturn(aggr, C,R)

where the first rule defines early returns (i e , results of intermediate computa
tions), and the second rule defines final returns, i e , final results

Ezample 2 ([18]) The aggregate maxpair considers tuples (¢;,n;), where n; is a
real number, and returns the value ¢; with the greater value of n; The aggregate
can be defined by means of single, multi and freturn:

single(maxpair, (C,P), (C,P))

multi(maxpair, (C,P),(CO,P0),(C,P)) + P > PO
multi(maxpair, (C,P), (CO,P0), (C0O,P0)) + P < PO

freturn(maxpair, (CO,P0),CO)

Querying Inductive Databases via Logic—Based User—Defined Aggregates 129

3 Logic-Based Inductive Databases

In [4], an inductive database schema is defined as a pair R = (R, (Qr,e,V)),
where R is a database schema, Qg is a collection of patterns, V is a set of result
values and e is an evaluation function mapping each instance r of R and each
pattern # € Qgr in V An inductive database instance is then defined as a pair
(r,s), where r is an instance of R and s C Qg

A typical KDD process operates on both the components of an inductive
database, by querying both components of the pair (assuming that s is mate
rialized as a table, and that the value e(r,#) is available for each value 6 of
5)

A simple yet powerful way of formalizing such ideas in a query language
is that of exploiting user defined aggregates Practically, we can formalize the
inductive part of an inductive database (i e, the triple (Qgr,e,))) by means of
rules that instantiate the following general schema:

S(U d aggr<e:X17 :Xn>) « r(}fla aYm) (1)

Intuitively, this rule defines the format of any subset s of Or The patterns in s
are obtained from a rearranged subset X1, ,X, of the tuples Yy, ,Y,inr The
structure of s is defined by the formal specification of the aggregate u d aggr,
in particular by the freturn rule

The tuples resulting from the evaluation of such rule, represent patterns in
Or and depend by the evaluation function e The computation of the evaluation
function must be specified by u d aggr as well

Ezample 8 Consider the patterns “the items in the corresponding column of the
relation transaction(Tid,Item,Price,Qty) with the average value more than
a given threshold” The inductive database has R = transaction, Qr = {i|i €
dom(R[Item])}, V = IR and e(r,i) = avg({p X q|(t,i,p,q) € r} The above
inductive schema is formalized, according to (1) with the following rule:

s(avgTh{(o, Itm,Val))) + transaction(,Itm,Prc,Qty),Val =Prc x Qty
Where the aggregate avgThres is defined, as usual, by means of the predicates

single(avgThres, (T, I,V), (T,I,V, 1))

multi(avgThres, (T, I,VN), (T, I,V0,N0), (T,I,V,N)) < V = VN + VO,N = NO + 1
multi(avgThres, (T, I,VN), (T, I,V0,N0),(T,I,V0,NO))

multi(avgThres, (T, I, VN), (T, I0,V0,NO),(T,I,VN,1)) < I # I0

freturn(avgThres, (T,I,V,N), (I,A))+ A=V/N,A>T
For each item, both the sum and the count of the occurrences is computed When

all the tuples have been considered, the average value of each item is computed,
and returned as answer if and only if it is greater than the given threshold O

130 F. Giannotti and G. Manco

The advantage of such an approach is twofold First, we can directly exploit the
schema (1) to define the evaluation function e Second, the “inductive” predi
cate s itself can be used in the definition of more complex queries This defines
a uniform way of providing support for both the deductive and the inductive
components

4 Association Rules

As shown in [2], the problem of finding association rules consist of two problems:
the problem of finding frequent itemsets and consequently the problem to find
rules from frequent itemsets Frequent itemsets are itemsets that appear in the
database with a given frequency So, from a conceptual point of view, they can
be seen as the results of an aggregation function over the set possible values of
an attribute Hence, we can refine the idea explained in the previous section, by
defining a predicate p by means of the rule

p(X17 » Xn, patterns((min supp, [Yla ;Ym])>) < q(Z1, 3 Zm)

In this rule, the variables Xy, ,X,,Y;, Y, are a rearranged subset of the
variables Z;, ,Zy of q The aggregate patterns computes the set of predicates
p(s, f) where:

1 s={li, ,l;}is arearranged subset of the values of Yy, ,Y, in a tuple
resulting from the evaluation of q
2 f is the support of the set s, such that f > min supp

Tt is easy to provide a (naive) definition of the patterns aggregate:

single(patterns, (Sp, Set), (SSet, Sp, 1)) + subset(SSet, Set)

multi(patterns, (Sp,SetN), (SSet0,Sp, N), (SSet0,Sp,N))
—subset(SSet0, SetN)
multi(patterns, (Sp,SetN), (SSet0,Sp, N), (SSet0,Sp,N+ 1)) «+
subset(SSet0, SetN)
multi(patterns, (Sp, SetN), (SSet0,Sp,N), (SSet,Sp, 1)) +
—subset(SSet0, SetN), subset(SSet, SetN),
—subset(SSet, SSet0)

freturn(patterns, (SSet, Sp,N), (SSet,N)) <~ N > Sp

For each tuple, the set of possible subsets are generated The single predicate
initializes the first subset that can be computed from the first tuple, by setting
their frequency to 1 As soon as following tuples are examined (with the multi
predicate), the frequency of the subsets computed before the tuple under con
sideration is incremented (provided that it is a subset of the current tuple), and
the frequency of new subsets obtained from the current tuple are preset to 1

Querying Inductive Databases via Logic—-Based User—Defined Aggregates 131

The freturn predicate defines the output format and conditions for the
aggregation predicate: a suitable answer is a pair (SubSet,N) such that SubSet
is an itemset of frequency N > Sp, where Sp is the minimal support required

A typical example application consists in the computation of the frequent
itemsets of a basket relation:

frequentPatterns(patterns((m,S))) + basketSet(S)
basketSet((E)) + basket(T,E)

where the predicate basketSet collects the baskets in a set structure! Rules
can be easily generated from frequent patterns by means of rules like

rules(L,R, S, C) + frequentPatterns(A, S), frequentPatterns(R, S1), (1)
subset(R,A),difference(A,R,L),C =S/S1 '

Notice, however, that such an approach, though semantically clean, is very
inefficient, because of the large amount of computations needed at each step?
In [10] we propose a technique which allows a compromise between loose and
tight coupling, by adopting external specialized algorithms (and hence special
ized data structures), but preserving the integration with the features of the
language In such proposal, inductive computations may be considered as aggre
gates, so that the proposed representation formalism is unaffected However, the
inductive task is performed by an external ad hoc computational engine Such
an approach has the main advantage of ensuring ad hoc optimizations concern
ing the mining task transparently and independently from the deductive engine
In our case the patterns aggregate is implemented with some typical algorithm
for the computation of the association rules (e g, Apriori algorithm [2]) The
aggregation specification can hence be seen as a middleware between the core
algorithm and the data set (defined by the body of the rule) against which the
algorithm is applied

The rest of the section shows some examples of complex queries whithin the
resulting logic language In the following we shall refer to the table with schema
and contents exemplified in 1

Ezxample 4 “Find patterns with at least 3 occurrences from the daily transactions
of each customer”:

frequentPatterns(patterns((3,S))) + transSet(D,C,S)
transSet(D,C, (I)) < transaction(D,C, I,P,Q)

By querying frequentPatterns(F,S) we obtain, among the answers, the tuples
({pasta},3) and ({pasta, wine}, 3) O

! Again, in LDL++ the capability of defining set structures (and related operations)
is guaranteed by the choice construct and by XY stratification

2 Practically, the aggregate computation generates 2!/ sets of items, where I is the
set of different items appearing in the tuples considered during the computation
Pruning of unfrequent subsets is made at the end of the computation of all subsets
Notice, however, that clever strategies can be defined (e g, computation of frequent
maximal patterns [3])

132 F. Giannotti and G. Manco

transaction(12 2 97, custl, beer, 10, 10) transaction(16 2 97, custl,jackets,120,1)
transaction(12 2 97, custl, chips, 3, 20) transaction(16 2 97, cust2,wine,20,1)
transaction(12 2 97, custl, wine, 20, 2) transaction(16 2 97, cust2,pasta,4,8)
transaction(12 2 97, cust2, wine, 20, 2) transaction(16 2 97, cust3, chips, 3, 20)
transaction(12 2 97, cust2, beer, 10, 10) transaction(16 2 97, cust3,col shirts,25,3)
transaction(12 2 97, cust2, pasta, 2, 10) transaction(16 2 97, cust3,brown shirts,40,2)
transaction(12 2 97, cust2, chips, 3, 20) transaction(18 2 97, cust2,beer,8,12)
transaction(13 2 97, cust2, jackets, 100, 1) transaction(18 2 97, cust2,beer,10,10)
transaction(13 2 97, cust2, col shirts, 30, 3) transaction(18 2 97, cust2,chips,3,20)
transaction(13 2 97, cust3, wine, 20, 1) transaction(18 2 97, cust2,chips,3,20)
transaction(13 2 97, cust3, beer, 10, 5) transaction(18 2 97, cust3,pasta,2,10)
transaction(13 2 97, custl, chips, 3, 20) transaction(18 2 97, custl,pasta,3,5)
transaction(13 2 97, custl, beer,10,2) transaction(18 2 97, custl,wine,25,1)
transaction(15 2 97, custl,pasta,2,10) transaction(18 2 97, custl, chips, 3, 20)
transaction(15 2 97, custl,chips,3,10) transaction(18 2 97, custl, beer, 10, 10)

Table 1. A sample transaction table

Example 5 “Find patterns with at least 3 occurrences from the transactions of
each customers”:

frequentPatterns(patterns((3,S))) < transSet(C,S)

transSet(C, (I)) «+ transaction(D,C,I,P,Q)

Differently from the previous example, where transactions were grouped by cus
tomer and by date, the previous rules group transactions by customer We then
compute the frequent patterns on the restructured transactions

transSet(custl, {beer, chips, jackets, pasta,wine})
transSet(cust2, {beer, chips, col shirts, jackets, pasta, wine})
transSet(cust3, {beer, brown shirts, chips, col shirts, pasta, wine})

obtaining, e g , the pattern ({beer, chips, pasta,wine}, 3) O

Ezample 6 “Find association rules with a minimum support 3 from daily trans
actions of each customer” This can be formalized by rule (r1) Hence, by query
ing rules(L,R,S,C), we obtain the association rule ({pasta}, {wine},3,0 75)
We can further postprocess the results of the aggregation query For example,
the query rules({A,B}, {beer},S,C) computes “two to one” those rules where
the consequent is the beer item An answer is ({chips,wine}, {beer},3,1) O

Ezample 7 The query “find patterns from daily transactions of high spending
customers (i e , customers with at least 70 of total expense ad at most 3 items
brought), such that each pattern has at least 8 occurrences” can be formalized as
follows:

frequentPatterns(patterns((3,S))) + transSet(D,C,S,I,V),V>70,I1<3
transSet(D, C, (I), count(I), sum(V)) + transaction(D,C,I,P,Q),V=P*Q

The query frequentPatterns(F,S) returns the patterns (beer,3), (chips,4)
and (beer, chips, 3) that characterize the class of high spending customers O

Querying Inductive Databases via Logic—-Based User—Defined Aggregates 133

Ezxample 8 ([10]) The query “find patterns from daily transactions of each cus
tomer, at each generalization level, such that each pattern has a given occurrency
depending from the generalization level” is formalized as follows:

itemsGeneralization(0,D,C,I,P,Q) < transaction(D,C,I,P,Q)
itemsGeneralization(I+ 1,D,C,AI,P,Q) +
itemsGeneralization(I,D,C,S,P,Q), category(S,AI)

itemsGeneralization(I,D,C,(S)) + itemsGeneralization(I,D,C,S,P,Q)

freqAtLevel(I, patterns((Supp,S))) <
itemsGeneralization(I,D,C,S), suppAtLevel(I,S)

where the suppAtLevel predicate tunes the support threshold at a given item
hierarchy The query is the result of a tighter coupling of data preprocessing
and result interpretation and postprocessing: we investigate the behaviour of
rules over an item hierarchy Suppose that the following tuples define a part of
hierarchy:

category(beer, drinks) category(wine, drinks)
category(pasta, food) category(chips, food)
category(jackets, wear) category(col shirts, wear)
category(brown shirts, wear)

Then, by querying freqAtLevel(I,F,S) we obtain, e g , (0, beer, chips, wine, 3),
(1,f00d,9), (1,drinks,7) and (1,drinks,food, 6) O

Example 9 The query “find rules that are interestingly preserved by drilling
down an item hierarchy” is formalized as follows:

rulesAtLevel(I,L,R,S,C) + freqAtLevel(I,A,S), freqAtLevel(I,R,S;),
subset(R,A),difference(A,R,L),C = S/S;

preservedRules(L,R,S,C) + rulesAtLevel(I+ 1,Ls,R4,S;,Cy),
rulesAtLevel(I,L,R,S,C), setPart0f(L,L,),
setPart0f(R,R;),C > C1

Preserved rules are defined as those rules valid at any generalization level, such
that their confidence is greater than their generalization® O

5 Final Remark

We have shown that the mechanism of user defined aggregates is powerful enough
to model the notion of inductive database, and to specify flexible query answering
capabilities

3 The choice for such an interest measure is clearly arbitrary and subjective Other sig
nificant interest measures can be specified (e g, the interest measure defined in [16])

134 F. Giannotti and G. Manco

A major limitation in the proposal is efficiency: it has been experimentally
shown that specialized algorithms (on specialized data structures) have a better
performance than database oriented approaches (see, e g, [1]) Hence, in order
to improve performance considerably, a thorough modification of the underlying
database abstract machine should be investigated Notice in fact that, with re
spect to ad hoc algorithms, when the programs specified in the previous sections
are executed on a Datalog++ abstract machine, the only available optimizations
for such programs are the traditional deductive databases optimizations [8] Such
optimizations techniques, however, need to be further improved by adding ad hoc
optimizations For the purpose of this paper, we have been assuming to accept
a reasonable worsening in performance, by describing the aggregation formalism
as a semantically clean representation formalism, and demanding the compu
tational effort to external ad hoc engines [10] This, however, is only a partial
solution to the problem, in that more refined optimization techniques can be
adopted For example, in example 6, we can optimize the query by observing
that directly computing rules with three items (even by counting the transac
tions with at least three items) is less expensive than computing the whole set
of association rules, and then selecting those with three items Some interesting
steps in this direction have been made: e g, [13] proposes an approach to the
optimization of datalog aggregation based queries, and in [13] a detailed discus
sion of the problem of the optimized computation of optimized computation of
constrained association rules is made However, the computational feasibility of
the proposed approach to more general cases is an open problem

References

1 R Agrawal, S Sarawagi, and S Thomas Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications In Procs of
ACM SIGMOD’98, 1998

2 R Agrawal and R Srikant Fast Algorithms for Mining Association Rules In
Proc of the 20th Int’l Conference on Very Large Databases, 1994

3 R Bayardo Efficiently Mining Long Patterns from Databases In Proc ACM
Conf on Management of Data (Sigmod98), pages 85 93, 1998

4 JF Boulicaut, M Klemettinen, and H Mannila Querying Inductive Databases:
A Case Study on the MINE RULE Operator In Proc 2nd European Conf on
Principles and Practice of Knowledge Discovery in Databases (PKDD98), volume
1510 of Lecture Notes in Computer Science, pages 194 202, 1998

5 UM Fayyad, G Piatesky Shapiro, P Smyth, and R Uthurusamy Advances in
Knowledge Discovery and Data Mining AAAT Press/the MIT Press, 1996

6 F Giannotti, D Pedreschi, and C Zaniolo Semantics and Expressive Power of
Non Deterministic Constructs for Deductive Databases To appear in Journal of
Logic Programming

7 F Giannotti and G Manco Querying inductive databases via logic based user
defined aggregates Technical report, CNUCE CNR, June 1999 Available at
http://www kdd.di.unipi.it

8 F Giannotti, G[iuseppe Manco, M Nanni, and D Pedreschi Nondeterminis
tic, Nonmonotonic Logic Databases Technical report, Department of Computer
Science Univ Pisa, September 1998 Submitted for publication

9

10

11

12

13

14

15

16

17

18

Querying Inductive Databases via Logic—-Based User—Defined Aggregates 135

F Giannotti, G Manco, M Nanni, and D Pedreschi Query Answering in
Nondeterministic, Nonmonotonic, Logic Databases In Procs of the Workshop on
Flexible Query Answering, number 1395 in Lecture Notes in Artificial Intelligence,
march 1998

F Giannotti, G Manco, M Nanni, D Pedreschi, and F Turini Integration
of deduction and induction for mining supermarket sales data In Proceedings
of the International Conference on Practical Applications of Knowledge Discovery
(PADDY9), April 1999

J Han Towards On Line Analytical Mining in Large Databases Sigmod Records,
27(1):97 107, 1998

H Mannila Inductive databases and condensed representations for data mining
In International Logic Programming Symposium, pages 21 30, 1997

R Ng, L V S Lakshmanan, J Han, and A Pang Exploratory Mining and
Pruning Optimizations of Constrained Associations Rules In Proc ACM Conf
on Management of Data (Sigmod98), June 1998

S Ceri R Meo, G Psaila A New SQL Like Operator for Mining Association
Rules In Proceedings of The Conference on Very Large Databases, pages 122 133,
1996

W Shen, K Ong, B Mitbander, and C Zaniolo Metaqueries for Data Min
ing In Advances in Knowledge Discovery and Data Mining, pages 375 398 AAAI
Press/The MIT Press, 1996

R Srikant and R Agrawal Mining Generalized Association Rules In Proc of the
21th Int’l Conference on Very Large Databases, 1995

C Zaniolo, N Arni, and K Ong Negation and Aggregates in Recursive Rules:
The LDL++ Approach In Proc 3rd Int Conf on Deductive and Object Oriented
Databases (DOODYS), volume 760 of Lecture Notes in Computer Science, 1993

C Zaniolo and H Wang Logic Based User Defined Aggregates for the Next Gener
ation of Database Systems In The Logic Programming Paradigm: Current Trends
and Future Directions Springer Verlag, 1998

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

