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Abstract. Similarity measures play an important role in many data mining algo-
rithms. To allow the use of such algorithms on non-standard databases, such as
databases of financial time series, their similarity measure has to be defined. We
present a simple and powerful technique which allows for the rapid evaluation of
similarity between time series in large data bases. It is based on the orthonormal
decomposition of the time series into the Haar basis. We demonstrate that this
approach is capable of providing estimates of the local slope of the time series
in the sequence of multi-resolution steps. The Haar representation and a number
of related represenations derived from it are suitable for direct comparison, e.g.
evaluation of the correlation product. We demonstrate that the distance between
such representations closely corresponds to the subjective feeling of similarity
between the time series. In order to test the validity of subjective criteria, we test
the records of currency exchanges, finding convincing levels of correlation.

1 Introduction

Explicitly or implicitly, record similarity is a fundamental aspect of most data mining
algorithms. For traditional, tabular data the similarity is often measured by attribute-
value similarity or even attribute-value equality. For more complex data, e.g., financial
time series, such simple similarity measures do not perform very well. For example,
assume we have three time series A, B, and C, where B is constantly 5 points below A,
whereas C is randomly 2 points below or above A. Such a simple similarity measure
would rate C as far more similar to A than B, whereas a human expert would rate A and
B as very similar because they have the same shape.

This example illustrates that the similarity of time series data should be based on
certain characteristics of the data rather than on the raw data itself. Ideally, these charac-
teristics are such that the similarity of the time series is simply given by the (traditional)
similarity of the characteristics. In that case, mining a database of time series is re-
duced to mining the database of characteristics using the traditional algorithms. This
observation is not new, but can also (implicitly) be found in papers such as [1-7].

Which characteristics are computed depends very much on the application one has
in mind. For example, many models and paradigms of similarity introduced to date
are unnecesarily complex because they are designed to suit too large a spectrum of
applications. The context of data mining applications in which matching time series
are required often involves a smaller number of degrees of freedom than assumed. For
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example, in comparing simultanous financial time series, the time variable is explicitly
known and time and scale shift are not applicable. In addition, there are strong heuristics
which can be applied to these time series. For example, the concern in trading is usually
to reach a certain level of index or currency exchange within a certain time. This is
nothing else than increase rate or simply slope of the time series in question.

Consider a financial record over one year which we would like to compare with
another such record from another source. The values of both are unrelated, the sampling
density may be different or vary with time. Nevertheless, it ought to be possible to state
how closely the two are related. If we were to do it in as few steps as possible, the first to
ask would probably be about the increase/decrease in (log)value over the year. In fact,
just a sign of a change over the year may be sufficient, showing whether there has been
a decrease or an increase in the stock value. Given this information the next question
might be what the increase/decrease was in the first half of the year and what it was
in the second half. The reader will not be surprised if we suggest that perhaps the next
question might be related to the increase/decrease in each quarter of the year.

This is exactly the strategy we are going to follow. The wavelet transform using
the Haar wavelet (the Haar WT for short) will provide exactly the kind of information
we have used in the above example, through the decomposition of the time series in the
Haar basis. In section 2, we will focus on the relevant aspects of the wavelet transforma-
tion with the Haar wavelet. From the hierarchical scale-wise decomposition provided
by the wavelet transform, we will next select a number of interesting representations
of the time series in section 3. In section 4, these time series’ representations will be
subject to evaluation of their correlation products. Section 5 gives a few details on the
computational efficiency of the convolution product. This is followed by several test
cases of correlating examples of currency exchange rates in section 6. Section 7 closes
the paper with conclusions and suggestions for future developments.

2 The Haar Wavelet Transform

As already mentioned above, the recently introduced Wavelet Transform (WT), see
e.g. Ref. [9, 10], provides a way of analysing local behaviour of functions. In this, it
fundamentally differs from global transforms like the Fourier Transform. In addition
to locality, it possesses the often very desirable ability of filtering the polynomial be-
haviour to some predefined degree. Therefore, correct characterisation of time series is
possible, in particular in the presence of non-stationarities like global or local trends or
biases.

Conceptually, the wavelet transform is an inner product of the time series with the
scaled and translated wavelet ��x�, usually a n-th derivative of a smoothing kernel
��x�. The scaling and translation actions are performed by two parameters; the scale
parameter s ‘adapts’ the width of the wavelet to the microscopic resolution required,
thus changing its frequency contents, and the location of the analysing wavelet is deter-
mined by the parameter b:

Wf�s� b� �� f� � � �s� b� �
�

s

Z
�

dx f�x� ��
x� b

s
� � (1)
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where s� b � R and s � � for the continuous version (CWT), or are taken on a discrete,
usually hierarchical (e.g. dyadic) grid of values si� bj for discrete version (DWT, or just
WT). � is the support of the f�x� or the length of the time series.

The choice of the smoothing kernel ��x� and the related wavelet ��x� depends on
the application and on the desired properties of the wavelet transform. In [6, 7, 11],
we used the Gaussian as the smoothing kernel. The reason for this was the optimal
localisation both in frequency and position of the related wavelets, and the existence of
derivatives of any degree n. In this paper, for the reasons which will become apparent
later, see section 3, we will use a different smoothing function, namely a simple block
function:

��x� �

�
� for � � x � �
� otherwise �

(2)

The wavelets obtained from this kernel are defined on finite support and go by the name
of their inventor Haar:

��x� �

��
�

� for � � x � �

�

�� for �

�
� x � �

� otherwise �
(3)

For a particular choice of rescaling and position shift parameters (dyadic pyramidal
scheme), the Haar system constitutes an orthonormal basis:

�m�n�x� � ��m����mx� n�� m � �� n � � � � � �m � (4)

Assume an arbitrary time series f � ffig� i � � � � � �N on the normalised support
��f� � ��� ��. Using the orthonormal basis just described, the function f can be repre-
sented with the linear combination of Haar wavelets:

f � f� �

NX
m��

�
mX

l��

cm�l �m�l� (5)

where f� is the most coarse approximation of the time series; f� �� f� � �, and each
coefficient cm�l of the representation can be obtained as cm�l �� f� �m�l �.
In particular, the approximations f j of the time series f with the smoothing kernel �j�k
form a ‘ladder’ of multi-resolution approximations:

f j�� � f j �

�
jX

k��

� f� �j�k � �j�k� (6)

where f j �� f� �j�k � and �j�k � ��j����jx� k�.
It is thus possible to ‘move’ from one approximation level j � � to another level j
by simply adding (subtracting for j to j � � direction), the detail contained in the
corresponding wavelet coefficients cj�k� k � � � � � �j .

In figure 1, we show an example decomposition and reconstruction with the Haar
wavelet. The time series analysed is f���� � f	� 
� �� �g.
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Fig. 1. Decomposition of the example time series into Haar components. Right: reconstruction of
the time series from the Haar components.

Note that the set of wavelet coefficients can be represented in a hierarchical (dyadic)
tree structure, through which it is obtained. In particular, the reconstruction of each
single point fi of the time series is possible (without reconstructing all the fj �� fi), by
following a single path along the tree, converging to the point fi in question. This path
determines a unique ‘binary address’ of the point fi.

3 Time Series Representations with Haar Family

Note that the Haar wavelet implements the operation of derivation at the particular scale
at which it operates. From the definition of the Haar wavelet �, (eq. 3, see also figure 2)
we have:

��x� �� D�� x�� ��� x� � �

where D is the derivative operator

D�x� �

��
�

� for x � �
�� for x � �
� otherwise �

(7)

For the wavelet transform of f , we have the following:
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� f�x�� �l�n�x� � �

� � f�x�� � Dl�n�� x�� �l�n�� x� ��

� � f�x�� ��� � Dl���n�x�� �l���n�x� ��

� �� ���Dm�n�x�� f�x� �� �m�n�x� �

� ��� � Dfm�n�x�� �m�n�x� � � (8)

where Df is the derivative of the function f and � is the smoothing kernel. The wavelet
coefficients obtained with the Haar wavelet � are, therefore, proportional to the local
averages of the derivative of the time series f at a given resolution. This is a particularly
interesting property of our representation, which makes us think that the representations
derived from the Haar representation will be quite useful in time series mining. Indeed,
in the analysis of patterns in time series, local slope is probably the most appealing
feature for many applications.

= x −> x/2*
Fig. 2. Convolution of the block function with the derivative operator gives the Haar wavelet after
rescaling the time axis x� x��. � stands for the convolution product.

The most direct representation of the time series with the Haar decomposition
scheme would be encoding a certain predefined, highest, i.e. most coarse, resolution
level smax, say one year resolution, and the details at the lower scales: half (a year),
quarter (of a year) etc., down to the minimal (finest) resolution of interest smin, which
would often be defined by the lowest sampling rate of the signals. � The coefficients of
the Haar decomposition between scales smax��smin will be used for the representation:

Haar�f� � fci�j � i � smax��smin� j � ����i g �

The Haar representation is directly suitable to serve for comparison purposes when
the absolute (i.e. not relative) values of the time series (and the local slope) are relevant.
In many applications one would, however, rather work with value independent, scale
invariant representations. For that purpose, we will use a number of different, special
representations derived from the Haar decomposition WT. To begin with, we will use
the sign based representation. It uses only the sign of the wavelet coefficient and it has
been shown to work in the CWT based decomposition, see [6].

si�j � sgn�ci�j�

� In practice one may need to interpolate and re-sample signals in order to arrive at a certain
common or uniform sampling rate. This is, however, a problem of the implementation and not
of the representation and it is related to how the convolution operation is implemented.
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where

sgn�x� �

�
� for x � �

�� for x � � �

The sign representation is an extreme case of discretisation representation since it
reduces the range of coefficients in the representation to two discrete levels. For some
purposes this may be too coarse. Another possibility to arrive at a scale invariant rep-
resentation is to use the difference of the logarithms (DOL) of values of the wavelet
coefficient at the highest scale and at the working scale:

vDOL
i�j � log�jci�j j�� log�jc���j� �

where i� j are working scale and position respectively, and c��� is the first coefficient of
the corresponding Haar representation. Note that the sign representation si�j of the time
series is complementary/orthogonal to the DOL representation.

The DOL representation can be conveniently normalised to give the rate of increase
of vDOL with scale:

hi�j � vDOL
i�j � log���i�� for i � � �

This representation resembles the Hölder exponent approximation of time series local
roughness at the particular scale of resolution i as introduced in [7].

4 Distance Evaluation with Haar Representations

The measure of the correlation between the components ci�jg and ck�lg of two respective
time series f and g can be put as:

C�f� g� �

m�nX
fi�j�k�lg��

wic
i�j
f wkc

k�l
g �i�j�k�l

where

�i�j�k�l � � i� i � k � j � l

and the (optional) weights wi and wk depend on their respective scales i and k. In our
experience the orthogonality of the coefficients is best employed without weighting.

Normalisation is necessary in order to arrive at the correlation product between
��� �	 and will simply take the form of

Cnormalised�f� g� �
C�f� g�p

C�f� f� C�g� g�
�

The distance of two representations can be easily obtained as

Distance�f� g� � � log�jCnormalised�f� g�j� �
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Fig. 3. Top plot contains the input signal. The top colour (gray-scale) panel contains the Haar
decomposition with six scale levels from i � � to i � �, the smoothed component is not shown.
The colour (gray shade) encodes the value of the decomposition from dark blue (white) for ��
to dark red (black) for �. The centre panel shows the sign of the decomposition coefficients, i.e.
dark blue (white) for ci�j � � and dark red (black) for ci�j � �. The bottom colour (gray-scale)
panel contains the Hölder decomposition with five scale levels i � � � � � �.
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5 Incremental Calculation of the Decomposition Coefficients and
the Correlation Product

One of the severe disadvantages of the Haar WT is the lack of translation invariance;
when the input signal shifts by �t (e.g. as the result of acquiring some additional input
samples), the coefficients of the Haar wavelet transform need to be recalculated. This
is rather impractical when one considers systematically updated inputs like financial
records.

When the representation is to be updated on each new sample, little can be done
other than to recalculate the coefficients. The cost of this resides mainly in the cost of
calculating the inner product. Direct calculation is of nm complexity, where n � �N is
the length of time series and m is the length of the wavelet. The cost of calculating the
inner product therefore grows quickly with the length of the wavelet and for the largest
scale it is n�. The standard way to deal with this problem is to use the Fast Fourier
Transform for calculating the inner product of two time series, which in case of equal
length reduces the complexity to n log�n�.

Additional savings can be obtained if the update of the WT does not have to be
performed on every new input sample, but it can be done periodically on each new n

samples ( corresponding with some�t time period). In this case, when the�t coincides
with the working scale of the wavelet at a given resolution, particular a situation arrises:

– only the coefficients at scales larger than �t scale have to be recalculated;
– coefficients of f jx���xx�

must be calculated anew;
– other coefficients have to be re-indexed or removed.

This is also illustrated in figure 4.

recalculate

reindex

x0 + delta tx0

scale = delta t

scale

remove

time

calculate anew

Fig. 4. Representation update scheme in the case of the shift of the input time series by �t �

working scale of the wavelet.

As expected, the larger the time shift�t, the fewer the number of the coefficients which
have to be recalculated and the larger the number of coefficients which have to be re-
indexed (plus, of course, the number of coefficients which have to be calculated from
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f jx���tx�
). For the full details of incremental calculation of coefficients the reader may

wish to consult [8].

6 Experimental Results

We took the records of the exchange rate with respect to USD over the period 01/06/73
- 21/05/87. It contains daily records of the exchange rates of five currencies with re-
spect to USD: Pound Sterling, Canadian Dollar, German Mark, Japanese Yen and Swiss
Franc. (Some records were missing - we used the last known value to interpolate miss-
ing values.) Below, in figure 5 we show the plots of the records.

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3) German Mark

1) Pound Sterling

5) Swiss Franc

2) Canadian Dollar

4) Japanese Yen

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1) Pound Sterling

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2) Canadian Dollar

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5) Swiss Franc

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

0.0075

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4) Japanese Yen

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3) German Mark

Fig. 5. Left above, all the records of the exchange rate used, with respect to USD over the period
01/06/73 - 21/05/87. In small inserts, single exchange rates renormalised, from top right to bottom
left (clockwise), Pound Sterling, Canadian Dollar, German Mark, Japanese Yen and Swiss Franc,
all with respect to USD.

All three representation types were made for each of the time series: the Haar, sign
and Hölder representation. Only six scale levels (64 values) of the representation (five
for Hölder, 63 points) were retained. These were next compared for each pair to give
the correlation product.
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In figure 6, we plot the values of the correlation for each of the pairs compared. The
reader can visually compare the Haar representation results with his/her own ‘visual
estimate’ of the degree of (anti-)correlation for pairs of plots in figure 5.
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Fig. 6. The values of the correlation products for each of the pairs compared, obtained with the
Haar representation, the sign representation, and the Hölder representation.

One can verify that the results obtained with the sign representation follow those ob-
tained with the Haar representation but are weaker in their discriminating power (more
flat plot). Also, the Hölder representation is practically independent of the sign repre-
sentation. In terms of correlation product, its distance to sign representation approxi-
mately equals the distance of Haar represenation to the sign representation but with the
oposite sign. This confirms the fact that the correlation in the Hölder exponent captures
the value oriented, sign independent features (roughness exponent) of the time series.

7 Conclusions

We have demonstrated that the Haar representation and a number of related represen-
ations derived from it are suitable for providing estimates of similarity between time
series in a hierarchical fashion. In particular, the correlation obtained with the local
slope of the time series (or its sign) in the sequence of multi-resolution steps closely
corresponds to the subjective feeling of similarity between the example financial time
series. Larger scale experiments with one of the major Dutch banks confirm these find-
ings. The next step is the design and development of a module which will compute and
update these representations for the 2.5 million time series which this bank maintains.
Once this module is running, mining on the database of time series representations will
be the next step.
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Conference, Zürich, (1995).

3. G. Das, D. Gunopulos, H. Mannila, Finding Similar Time Series, In Principles of Data
Mining and Knowledge Discovery, Lecture Notes in Artificial intelligence 1263, Springer,
(1997).

4. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, Eds., Advances in Knowledge
Discovery and Data Mining, AAAI Press/MIT Press, (1996).

5. C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast Subsequence Matching in Time-Series
Databases”, in Proc. ACM SIGMOD Int. Conf. on Management of Data, (1994).

6. Z.R. Struzik, A. Siebes, Wavelet Transform in Similarity Paradigm I, CWI Report, INS-
R9802, (1998), also in Research and Development in Knowledge Discovery and Data Min-
ing, Xindong Wu, Ramamohanarao Kotagiri, Kevin B. Korb, Eds, Lecture Notes in Artificial
Intelligence 1394, 295-309, Springer (1998).

7. Z.R. Struzik, A. Siebes, Wavelet Transform in Similarity Paradigm II, CWI Report, INS-
R9815, CWI, Amsterdam (1998), also in Proc. 10th Int. Conf. on Database and Expert
System Applications (DEXA’99), Florence, (1999).

8. Z.R. Struzik, A. Siebes, The Haar Wavelet Transform in Similarity Paradigm, CWI Report,
INS-R99xx, CWI, Amsterdam (1999). http://www.cwi.nl/htbin/ins1/publications

9. I. Daubechies, Ten Lectures on Wavelets, S.I.A.M. (1992).
10. M. Holschneider, Wavelets - An Analysis Tool, Oxford Science Publications, (1995).
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