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91405 - Orsay Cedex (France)
{alphonse,celine}@lri.fr �

Abstract. A number of Inductive Logic Programming (ILP) systems
have addressed the problem of learning First Order Logic (FOL) discrim-
inant definitions by first reformulating the problem expressed in a FOL
framework into a attribute-value problem and then applying efficient al-
gebraic learning techniques. The complexity of such propositionalization
methods is now in the size of the reformulated problem which can be
exponential. We propose a method that selectively propositionalizes the
FOL training set by interleaving boolean reformulation and algebraic
resolution. It avoids, as much as possible, the generation of redundant
boolean examples, and still ensures that explicit correct and complete
definitions are learned.

1 Introduction

Learning relational concepts from examples stored in a multi-relational database
has been identified as a challenge for Inductive Logic Programming (ILP) tech-
niques by both KDD and ILP communities [3]. However, it is a well-known fact
that the counterpart of learning in restrictions of FOL, even relational ones,
is the dramatic complexity of the coverage test between a hypothesis and an
example.

Here, we address discriminant concept learning in Datalog target concept
languages1. In such languages, the exponential complexity of subsumption (clas-
sically θ-subsumption [9]) is inherent to the non determinacy of the computa-
tion of “matching” substitutions between a hypothesis and an example. This can
happen when the Entity-Relationship schema of the target relational database
contains 1-n or n-n associations.

While a number of specific biases have been developed directly in an FOL
framework to control this indeterminacy by restricting the target concept lan-
guage (see for instance, ij-determination [8]), a family of ILP methods (among
others, LINUS [6], STILL [13], REPART [15], SP [5]) have addressed this prob-
lem by propositionalizing the ILP problem, i.e., by reformulating the ILP learn-
ing problem into an attribute value or even boolean one, which can then be
� This work has been partially supported by ESPRIT through LTR ILP 2 n. 20237.
1 Horn clause languages without function symbols other than constants.

J.M. Zytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 271−276, 1999.
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handled by learning techniques dedicated to this simpler formalism. Once the
representation change has been performed, robust and efficient algorithms can be
successfully applied, provided that the discriminant features of the FOL learning
problem are preserved by propositionalization.

Propositionalizations in those systems all adopt the same schema: given a pat-
tern P , FOL examples are reformulated into their (potentially multiple) match-
ings with P , yielding a tabular representation. Of course, the subsumption test
being of exponential complexity in an unrestricted Datalog language, the size of
the reformulated problem can be exponential [1] as well as highly redundant, and
cannot be directly addressed as such for complex relational learning problems.

This paper presents a selective propositionalization that controls the size of
the reformulated problem: instead of generating the whole boolean reformulation
of the FOL problem before resolution, this method interleaves boolean reformu-
lation and algebraic resolution. Information gathered during algebraic resolution
is used to constrain the generation of the reformulated boolean problem to the
boolean vectors that are useful for next refinement step(s) only. In doing so,
it avoids, as much as possible, the generation of redundant boolean examples,
enables partial storing of positive boolean instances only and still ensures that
correct and complete definitions are learned.

2 Background

After [12, 15, 11], a learning problem can be decomposed into two subproblems, a
relational (or structural) one and a functional one. To illustrate this decomposi-
tion, consider learning from examples stored in a multi-relational database. Here,
learning from litterals representing the multiple foreign key links [14] among tu-
ples of different relations is a structural learning problem, whereas learning on
the other (mono-valued) attributes of those relations is a functional one.

Consequently, this paper focuses on relational learning, which is typically a
non-determinate learning problem, within Datalog target concept language with-
out constants and without restriction on the depth or level of “indeterminacy”
of existential variables [8]. In such a language, the propositionalization process
is described as follow:

Definition 1. The pattern P is built from a seed positive example e, as the
maximal generalization of e plus equality constraints between pairs of variables in
the pattern which are satisfied by e (see example below). Each training example is
then translated into a set of boolean vectors. For each matching σi of P variables
onto constants of e, the attributes of the boolean vector associated to a FOL
example indicate which constraints of the pattern (presence/absence of a literal,
links between variables of the pattern) are satisfied by σi.

Thus, the FOL search space is shifted to a boolean lattice ordered by boolean
inclusion, denoted ≺b. The search space of the reformulated problem is then that
of concepts more general than or equal to the seed example: a partial mapping
of P literals to FOL example literals yields a more general boolean vector than
P , whereas a complete mapping yields a boolean vector equivalent to P . For
instance, if E, CE are a positive and a negative example of the target concept
and E′ is the seed example, the obtained tabular representation is:
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E : c(a) ← p(a, b), p(b, c), q(c), q(a). E′ : c(a) ← p(a, b), q(b), q(a), r(c).
CE : c(a) ← p(a, b), p(b, c), q(b), q(c).

P c(U) p(V, W ) q(X) q(Y ) r(Z) U = V U = Y V = Y W = X

θE,1 1 1 1 1 0 1 0 0 0
θE,2 1 1 1 1 0 1 1 1 0
θE,i 1 1 1 1 0 0 0 0 1
θCE,1 1 1 1 1 0 1 0 0 1
θCE,2 1 1 1 1 0 1 0 0 1
θCE,j 1 1 1 1 0 0 0 1 1

Fig. 1. Excerpt of boolean representation of a FOL problem

Moreover, as pointed out in [15], the learning task is no longer to induce a
Datalog concept consistent with all boolean vectors, but what is referred to as
the multi-part problem2:

Definition 2. (after [15]) The multi-part problem consists of finding a descrip-
tion that covers, for all FOL positive examples, at least one of their associated
boolean vectors (completeness) and none of the boolean vectors associated to any
FOL negative example (correctness).

3 State of the Art

Although the reformulated problem can be delegated to efficient and robust
algorithms (SP [5] with C4.5 [10], REPART with CHARADE [4]), the space
complexity becomes intractable, as does the time complexity. As pointed out
by [1], boolean learners working on the reformulated problem must deal with
data of exponential size wrt the FOL problem. Indeed, following definition 1,
each positive or negative FOL example is described by a set of boolean vectors
(termed in the remainder of the paper positive and negative boolean vectors
respectively), the cardinality of which is equal to its multiple matchings with
the propositionalization pattern.
As far as we know, two learning systems have addressed this problem: STILL
[13] and REPART [15]. For the former, propositionalization is performed through
a stochastic selection of η example matchings (η is a system parameter) with
the pattern, which allows for bounding the size of the reformulated problem,
yielding a polynomial generalization process. To offset the imperfection of such
generalizations as ”standalone” classifiers, STILL learns a committee of them,
that classifies unseen examples in a nearest neighbor-like way.

For the latter, restriction of the reformulated problem is performed through
the choice of a relevant propositionalization pattern. The user/expert must pro-
vide a pattern as a (strong) bias which allows him to drastically decrease the
matching space. The validity of the method relies on the assumption that the
selected pattern preserves the discrimination information sought for. As the FOL
learning problem is propositionalized before resolution, this system nevertheless
has to cope with the size of the reformulated data.

We propose one alternative method in order to both reduce the data size of
the reformulated problem and avoid data storing as much as possible.
2 As noted by the authors, this learning problem is closely related to what Dietterich

termed the multi-instance problem [2].
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4 Selective Propositionalization

build P from a seed positive example (see def. 1)
initialize G as the universal element of the search space
For each ce ∈ CE do

Repeat
Select g ∈ G

(1) Compute a boolean vector b from ce (* P ≺b b �b g *)
If b is equal to P Then

no structural discrimination is possible
Else

Specialize G to discriminate b (* algebraic resolution *)
(2) Evaluate each element of G wrt positive example coverage

Update G (* beam search strategy *)
Endif

Until all elements of G are correct
Endfor
return(G)

Fig. 2. Computation of n elements of G

The overall structure of our algorithm is quite classical. It is based on the
Candidate Elimination Algorithm [7] and implements a covering method for
learning disjunctive concepts. The algorithm computes a set of maximally general
and correct solutions by a top-down search in a boolean search space. The two
original ideas of the algorithm stem from the fact that the boolean examples
handled by the algorithm are not generated before learning proceeds, but during
resolution. Therefore, as opposed to classical propositionalization methods (see
sec. 1) which compute as many boolean examples as the number of matchings
between the pattern and FOL examples, this algorithm constructively exploits:
i) information gathered during resolution to only generate boolean examples
that are useful for (in)validating the current specialization step; ii) the partial
ordering on the instance space in order to generate useful examples, that is, the
“close to” most specific ones.

4.1 Exploiting Current Resolution Information

In classical propositionalization techniques, all (positive and negative) FOL ex-
amples are reformulated into their multiple matchings with a given pattern P .
In contrast, our method only looks for boolean vectors that may invalidate the
current hypothesis g and therefore yields a specialization of g. At each search
step, it therefore attempts to build a negative boolean vector more specific than
g, i.e., which contains at least all boolean attributes of g.

For a Datalog language, several tentative matchings may be necessary (in the
worst case, an exponential number) in order to build a matching substitution
σ. However, the benefit of selective propositionalization wrt a classical propo-
sitionalization, in terms of the matching space explored, is theoretically (and
empirically, as shown in our first experiments, sec. 5) substantial: the space of
matching substitutions to be searched is induced by literals belonging to g as
opposed to P , that is, by relevant predicates wrt the current discriminant task.
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4.2 Partial Ordering on the Instance Space

The size of the reformulated boolean problem is upper-bounded by the number
of matching substitutions between the pattern and the FOL examples (positive
and negative), but a large fraction of these boolean vectors are redundant (see
in fig. 1 θE,1 wrt θE,2 and θCE,1 wrt θCE,2) in that they do not directly take
part in the process of building a correct and complete discriminant solution.
Such redundant data occur when propositionalizing both negative and positive
examples (respectively, steps 1 and 2 of the algorithm).
Indeed, as far as negative examples are concerned, and after [12], there is a partial
ordering (nearest-miss) of the negative instance space and it has been shown
that only maximally specific negative examples wrt this partial ordering are
sufficient for solving the discriminant learning problem. For positive examples,
if we refer to definition 2, a FOL example is covered in the boolean search
space if at least one of its corresponding boolean vectors is covered. Therefore,
only the most specific ones wrt boolean inclusion are sufficient for our learning
problem. After computing the matching substitution σ as stated above, the
propositionalization will be as efficient as the extracted boolean vector is specific.
We therefore complete σ by deterministically3 matching literals of P with the
FOL example. In doig so, we therefore cannot ensure that the extracted boolean
vector is a most specific one, which would require an exponential complexity,
but is only a ”close to” most specific one.

5 Experimentations

The efficiency of our approach is evaluated by both percentages of boolean vec-
tors computed and that of the matching space explored by our approach wrt
classical propositionalization methods as presented in section 2. The former re-
flects the amount of non-redundant boolean vectors empirically computed by
the selective propositionalization, that is the complexity of the learning problem
resolution. As for the latter, it reflects the complexity of the selective proposi-
tionalization itself.

As a learning database, we have used a hard artificial problem derived from
Michalski’s trains involving an intractable number of data (about one hundred
million) for classical propositionalization methods. As a result, we have obtained
an amount of 0,0018% boolean vectors computed (with a standard deviation of
0,0017%), by exploring 1,62% of the whole matching space (with a standard
deviation of 1,69%). As a corollary, learning methods implementing selective
propositionalization are empirically about 62 times faster than classical propo-
sitionalization methods.

6 Conclusion

We have proposed an original propositionalization method which benefits from
the advantages of both generate and test methods, using a ”more general than or
equal to” partial ordering, and from a sound and efficient algebraic specialization

3 therefore, with polynomial time complexity.
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operator. The selective propositionalization method has been validated on an
artificial, yet complex relational problem, involving a huge matching space and
seems well-suited for handling highly indeterminate FOL learning problem. The
generation of a large amount of redundant data is avoided. On the other hand, the
Version Space approach allows for storing just a few boolean vectors computed
from positive FOL examples only.

Finally, this selective propositionalization technique can be adapted to any
subsumption relation in the original FOL search space, and it can be combined
with additional biases that can further improve the overall efficiency. For in-
stance, user bias [15] can be incorporated in the pattern definition to further
decrease the size of the matching space.
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