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Abstract. In many applications of data mining a - sometimes consi-
derable - part of the data values is missing. Despite the frequent occur-
rence of missing data, most data mining algorithms handle missing data
in a rather ad-hoc way, or simply ignore the problem. We investigate
simulation-based data augmentation to handle missing data, which is
based on filling-in (imputing) one or more plausible values for the mis-
sing data. One advantage of this approach is that the imputation phase
is separated from the analysis phase, allowing for different data mining
algorithms to be applied to the completed data sets. We compare the
use of imputation to surrogate splits, such as used in CART, to handle
missing data in tree-based mining algorithms. Experiments show that
imputation tends to outperform surrogate splits in terms of predictive
accuracy of the resulting models. Averaging over M > 1 models resulting
from M imputations yields even better results as it profits from variance
reduction in much the same way as procedures such as bagging.

1 Introduction

The quality of knowledge extracted with data mining algorithms is evidently
largely determined by the quality of the underlying data. One important aspect
of data quality is the proportion of missing data values. In many applications of
data mining a - sometimes considerable - part of the data values is missing. This
may occur because they were simply never entered into the operational systems,
or because for example simple domain checks indicate that entered values are
incorrect. Another common cause of missing data is the joining of not entirely
matching data sets, which tends to give rise to monotone missing data patterns.
Despite the frequent occurrence, many data mining algorithms handle missing
data in a rather ad-hoc way, or simply ignore the problem.

In this paper we focus on the well-known tree-based algorithm CART [3],
that handles missing data by so called surrogate splits1. As an alternative we
1 In fact we used the S program RPART that reimplements many of the ideas of

CART, in particular the way it handles missing data.
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investigate more principled simulation-based approaches to handle missing data,
based on filling-in (imputing) one or more plausible values for the missing data.
One advantage of this approach is that the imputation phase is separated from
the analysis phase, allowing for different data mining algorithms to be applied
to the completed data sets.

2 Multiple Imputation

Multiple imputation [5,4] is a simulation-based approach where a number of
complete data sets are created by filling in alternative values for the missing data.
The completed data sets may subsequently be analyzed using standard complete-
data methods, after which the results of the individual analyses are combined in
the appropriate way. The advantage, compared to using missing-data procedures
tailored to a particular algorithm, is that one set of imputations can be used
for many different analyses. The hard part of this exercise is to generate the
imputations which may require computationally intensive algorithms such as
data augmentation and Gibbs sampling [5,7].

In our experiments we used software for data augmentation written in S-plus
by J.L. Schafer2 to generate the imputations. Since the examples we consider in
this section contain both categorical and continuous variables, imputations are
based on the general location model (see [5], chapter 9). The Bayesian nature
of multiple imputation requires the specification of a prior distribution for the
parameters of the imputation model. We used a non-informative prior, i.e. a
prior corresponding to a state of prior ignorance about the model parameters.

One of the critical parts of using multiple imputation is to assess the con-
vergence of data augmentation. In our experiments we used a rule of thumb
suggested by Schafer [6]. Experience shows that data augmentation nearly al-
ways converges in fewer iterations than EM. Therefore we first computed the
EM-estimates of the parameters, and recorded the number of iterations, say k,
required. Then we perform a single run of the data augmentation algorithm of
length 2Mk, using the EM-estimates as starting values, where M is the number
of imputations required. Just to be on the “safe side”, we used the completed
data sets from iterations 2k, 4k, . . . , 2Mk.

3 Waveform Recognition Data

To compare the performance of imputation with surrogate splits, we first consi-
der the waveform recognition data used extensively in [3]. The only categorical
variable is the class label (with 3 possible values), and all 21 covariates are con-
tinuous, so imputation is based on the well-known linear discriminant model.
Note that the assumptions of the linear discriminant model are not correct here,
because the distribution of the covariates within each class is not multivariate
2 this software is available at http://stat.psu.edu/∼jls/misoftwa.html
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normal and furthermore the covariance structure differs between the classes.
Still, the model may be “good enough” to generate the imputations.

In the experiments, we generated 300 observations (100 from each class)
to be used as a training set, with different percentages of missing data in the
covariates. Then we built trees as follows

1. On the incomplete training set, using surrogate splits.
2. On one or more completed data sets using (multiple) imputation.

In both cases the trees were built using 10-fold cross-validation to determine the
optimal value for the complexity parameter (the amount of pruning), using the
program RPART3.

The error rate of the trees was estimated on an independent test set contai-
ning 3000 complete observations (1000 from each class). To estimate the error
rate at each percentage of missing data, the above procedure was repeated 10
times and the error rates were averaged over these 10 trials.

In a first experiment, each individual data item had a fixed probability of
being missing. Table 1 summarizes the comparision of surrogate splits and single
imputation at different fractions of missing data. Single imputations are drawn
from the predictive distribution of the missing data given the observed data and
the EM-estimates for the model parameters. Looking at the difference between
the error rates one can see that imputation gains an advantage when the level of
missing data becomes higher. However, at a moderate level of missing data (say
10% or less) it doesn’t seem worth the extra effort of generating imputations.
This same trend is also clear from rows four (p+

imp) and five (p−
imp) of the table.

p+
imp (p−

imp) indicates the number of times of the ten trials, that the error rate
of imputation was higher (lower) and the difference was significant at the 5%
level. So, for example, at 30% missing data the difference was significant at the
5% level four out of ten times, and in all four cases the error rate of imputation
was lower.

% Missing 10 20 30 40 45
êsur 29.8% 30.9% 32.2% 32.4% 34.3%
êimp 29.8% 29.2% 30.6% 30.0% 30.4%
êsur − êimp 0% 1.7% 1.6% 2.4% 3.9%
p+

imp 1 0 0 0 0
p−

imp 1 4 4 6 7

Table 1. Estimated error rate of surrogate splits and single imputation at different
fractions of missing data (estimates are averages of 10 trials)

In a second experiment we used multiple imputation with M = 5, and aver-
aged the predictions of the 5 resulting trees. The results are given in table 2. The
3 RPART is written by T. Therneau and E. Atkinson in the S language. The S-plus

version for Windows is available from http://www.stats.ox.ac.uk/pub/Swin.
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performance of multiple imputation is clearly better than both single imputation
and surrogate splits. Presumably, this gain comes from the variance reduction
resulting from averaging a number of trees, like is done in bagging [2].

% Missing 10 20 30 40 45
êsur 28.9% 30.1% 30.0% 33.3% 35.6%
êimp 26.0% 26.1% 25.5% 25.7%∗ 26.0%∗

êsur − êimp 2.9% 4.0% 4.5% 7.6% 9.6%
p+

imp 0 0 0 0 0
p−

imp 9 8 9 10 10

Table 2. Estimated error rate of surrogate splits and multiple imputation at different
fractions of missing data. ∗: here we ran into problems with data augmentation and
used EM-estimates only to generate the imputations

4 Pima Indians Database

In this section we perform a comparison of surrogate splits and imputation on
a real life data set that has been used quite extensively in the machine learning
literature. It is known as the Pima Indians Diabetes Database, and is available
at the UCI machine learning repository [1].

The class label indicates whether the patient shows signs of diabetes accor-
ding to WHO criteria. Although the description of the dataset says there are
no missing values, there are quite a number of observations with “zero” values
that most likely indicate a missing value. In table 3 we summarize the content
of the dataset, where we have replaced zeroes by missing values for x3, . . . , x7.
The dataset contains a total of 768 observations, of which 500 of class 0 and 268
of class 1.

Variable Description Missing values
y Class label (0 or 1) 0
x1 Number of times pregnant 0
x2 Age (in years) 0
x3 Plasma glucose concentration 5
x4 Diastolic blood pressure 35
x5 Triceps skin fold thickness 227
x6 2-hour serum insulin 374
x7 Body mass index 11
x8 Diabetes pedigree function 0

Table 3. Overview of missing values in pima indians database
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In our experiment the test set consists of the 392 complete observations, and
the training set consists of the remaining 376 observations with one or more
values missing. Of these 376 records, 374 have a missing value for x6 (serum
insulin), so we removed this variable. Furthermore, we changed x1 (number of
times pregnant) into a binary variable indicating whether or not the person had
ever been pregnant (the entire dataset consists of females at least 21 years old,
so this variable is always applicable). This leaves us with a dataset containing
two binary variables (y and x1) and six numeric variables (x2, . . . , x5, x7 and
x8), with 278/2632 ≈ 10% missing values in the covariates. Although x2 and x8
are clearly skewed to the right, we did not transform them to make them appear
more normal, in order to get an impression of the robustness of imputation under
the general location model.

The first experiment compares the use of surrogate splits to imputation of a
single value based on the EM-estimates. Of course the tree obtained after single
imputation depends on the values imputed. Therefore we performed ten indepen-
dent draws, to get an estimate of the average performance of single imputation.
The results are summarized in table 4.

Draw 1 2 3 4 5 6 7 8 9 10
êimp 22.7% 30.6% 25.3% 26.0% 30.0% 24.5% 26.8% 24.7% 27.8% 29.3%
p-value .0002 1 .0075 .0114 .7493 .0097 .0237 .0038 .2074 .6908

Table 4. Estimated error rates of ten single imputation-trees and the corresponding
p-values of H0 : eimp = esur, with êsur = 30.6%

For each single imputation-tree, we compared the performance on the test
set with that of the tree built using surrogate splits, which had an error rate of
120/392 ≈ 30.6%.

Tests of H0 : esur = eimp against a two-sided alternative, using an exact
binomial test, yield the p-values listed in the second row of table 4. On average
the single imputation-tree has an error rate of 26.8% which compares favourably
to the error rate of 30.6% of the tree based on the use of surrogate splits.

In a second experiment we used multiple imputation (M = 5) and averaged
the predictions of the 5 trees so obtained. Table 5 summarizes the results of 10
independent trials. The average error rate of the multiple imputation-trees over
these 10 trials is approximately 25.2%. This compares favourably to both the
single tree based on surrogate splits, and the tree based on single imputation.

5 Discussion and Conclusions

The use of statistical imputation to handle missing data in data mining has a
number of attractive properties. First of all, the imputation phase and analysis
phase are separated. Once the imputations have been generated the completed
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Trial 1 2 3 4 5 6 7 8 9 10
êimp 27.3% 24.5% 25.8% 26.8% 23.7% 24.2% 24.0% 25.5% 24.7% 25.5%
p-value .1048 .0015 .0295 .0357 .0003 .0026 .0022 .0105 .0027 .0119

Table 5. Estimated error rates of 10 multiple imputation-trees (M = 5), and the
corresponding p-values of H0 : eimp = esur, with êsur = 30.6%

data sets may be analysed with any appropriate data mining algorithm. The
imputation model does not have to be the “true” model (otherwise why not
stick to that model for the complete analysis?) but should merely be good enough
for generating the imputations. We have not performed systematic robustness
studies, but in both data sets analysed the assumptions of the general location
model were voilated to some extent. Nevertheless, the results obtained with
imputation were nearly always better than those with surrogate splits.

Despite these theoretical advantages, one should still consider whether they
outweigh the additional effort of specifying an appropriate imputation model and
generating the imputations. From the experiments we performed some tentative
conclusions may be drawn. For the waveform data, single imputation tends to
outperform surrogate splits as the amount of missing data increases. At moderate
amounts of missing data (say 10% or less) one can avoid generating imputations
and just use surrogate splits. For the pima indians data, with about 10% missing
data in the training set, single imputation already shows a somewhat better
predictive performance.

Multiple imputation shows a consistenly superior performance, as it profits
from the variance reduction achieved by averaging the resulting trees. For high
variance models such as trees and neural networks multiple imputation may
therefore yield a substantial performance improvement.
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