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Abstract. Rough Sets Theory provides a sound basis for the extrac-
tion of qualitative knowledge (dependencies) from very large relational
databases. Dependencies may be expressed by means of formulas (impli-
cations) in the following way:

{x1, . . . , xn} ⇒ρ {y}
where {x1, . . . , xn} are attributes that induce partitions into equivalence
classes on the underlying population.
Coefficient ρ is the dependency degree, it establishes the percentage of
objects that can be correctly assigned to classes of y, taking into ac-
count the classification induced by {x1, . . . , xn}. Dealing with decision
tables, it is important to determine ρ and to eliminate from {x1, . . . , xn}
redundant attributes, to obtain minimal reducts having the same clas-
sification power as the original set. The problem of reduct extraction
is NP-hard. Thus, approximative reducts are often determined. Reducts
have the same classification power of the original set of attributes but
quite often contain redundant attributes.
The main idea developed in this paper is that attributes considered as
random variables related by means of a dependency, are also correlated
(the opposite, in general, is not true). From this fact we try to find,
making use of well stated and widely used statistical methods, only the
most significant variables, that is to say, the variables that contribute
the most (in a quantitative sense) to determine y.
The set of attributes (in general a subset of {x1, x2, . . . , xn}) obtained
by means of well-founded sound statistical methods could be considered
as a good approximation of a reduct.
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1 Rough Dependencies Reducts

Let U = {1, 2, . . . , n} be a non empty set of objects that will be called the
universe. Objects of the universe are described by means of a set of attributes:
T = {x1, x2, . . . , xk}.
If we assume all these attributes to be mono valued functions of the elements
of U , then they can be seen as equivalence relations on U . The corresponding
quotient sets being:

U/xj = {[i]xj
/i ∈ U} (1)

where [i]xj stands for the equivalence class (with respect to xj) including the
element i,.
Let P ⊂ T be a subset of T . The indiscernability relation with respect to P ,
IND(P ), is defined as follows:

U/IND(P ) =
⋂

xj∈P

[i]xj (2)

The indiscernability relation is an equivalence relation. Let now consider the
following sets: P ⊆ T and Q ⊆ T . We say that Q depends on P , P ⇒ Q, if
and only if IND(P ) ⊆ IND(Q) (every class of IND(P ) is included in a class
of IND(Q)).
In general and due both to the random nature of data and the inherent im-
precision of the measures, from a table of observations we cannot infer exact
dependencies. All that can be obtained are expressions of the form: P ⇒ρ Q.
Being ρ the dependency degree , 0 ≤ ρ ≤ 1, where 1 corresponds to the total
dependency and 0 to the total independency of Q with respect to P .

POSP (Q) =
⋃

X∈U/Q

IND(P )X (3)

IND(P )X = ∪{Y ∈ U/INDP/Y ⊆ X} (4)

We can now define ρ as cardPOSP (Q)
cardU × 100, the meaning of the dependency

P ⇒ρ Q is that the ρ% of the elements of U can be correctly assigned to classes
of Q, given the classification P .
If deleting xj ∈ P , the equality POSP−{xj}(Q) = POSP (Q) holds, then we
say that xj is Q-redundant in P and it may be suppressed while preserving the
classification power of he set.
If P ′ ⊂ P is such that POSP (Q) = POSP ′(Q) and P ′ does not contain Q-
redundant elements, then we say that P ′ is a Q-reduct of P . Dealing with decision
tables, and being C = {x1, x2, . . . , xk} (condition attributes) and D = {y}
(decision attribute), the dependency C ⇒ρ D holds, and we must: (a) determine
ρ and (b) minimise C (eliminating redundancies by means of extracting reducts
from it).
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2 Techniques for the Multidimensional Analysis of Data:
Correlation and Multiple Regression

The choice of a statistical technique for the multidimensional analysis of data
depends on the nature of them as well as on the desired objective: description
or prediction.

Dealing with decision tables the problem can be seen as the prediction of the
decision attribute making use of the condition attributes. We can distinguish
two different cases to which regression technique is applicable:

– When the predictive variables (in our case condition attributes) are quanti-
tatives ones and the predicted variable (the decision attribute in our case)
is also quantitative.

– When the predictive variables are quantitatives and the predicted variable
is qualitative but can be expressed by means of a numerical value with a
logical order.

3 Multiple Regression

In simple correlation there is only one predictive variable and one predicted va-
riable. The n available examples constitute a cloud of dots in the two dimensions
plane (X, Y ) through which the minimal square straight line is drawn. In mul-
tiple regression this procedure is generalised. Having k predictive variables we
have to calculate k coefficients A1, A2, . . . , Ak as well as a constant term y0 that
allow you to form the equation:

y = yo + A1x1 + A2x2 + . . . ,+Akxk (5)

of the regression hyperplane that approximate the best the n examples.
Assuming n to be n >> k : The k coefficients determine a vector A and the values
of x1, . . . , xk constitute a matrix X(n, k). The n values of Y form a column.

A =




A1
.
.

Ak


 Y =




Y1
.
.

Yn


 (6)

and we get : A = (X ′X)−1X ′Y (Being X ′ the transpose of X) (7)

In order to calculate these coefficients the method of centred variables is applied.
To evaluate the quality of the approximation the difference between the observed
and the predicted values is calculated. Let s be the result of adding the square
of that difference. We define then:

σ2 =
s

n − k − 1
(8)
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When n >> k this value is approximately the variance of sample of the n
examples. Then we have the correlation coefficient r to be:

r =
√

1 − s∑
(yi − y)2

(9)

being −1 ≤ r ≤ 1. We consider values |r| > 0, 8.

4 Stepwise Regression

We are interested only in the most significant variables “explaining” or “predic-
ting” Y . To eliminate the less significant ones, we follow an iterative process of
stepwise regression.
The steps are the following:

– Carry out the simple regression process with every variable under conside-
ration. Then, retain the one giving the maximal value of r (or the minimal
value of s).

– Carry out double regression process with the selected variable and any other
one. Retain the one giving minimal value of s.

– We follow in this way, (triple regression, ...) In each step there is a decrement
δ of s. We calculate:

F =
δ

σ2 (10)

We compare this result with the value given by a Fischer table for (n−k−1)
and 1 degree of freedom. We finish when the result of this test is negative
(Fcalculated < FGivenbythetable).

The set of condition variables selected in this way is an approximative reduct.

5 Correlation vs Rough Dependencies

Correlation does not mean causality. If two independent variables depend on
a third one, they will be strongly correlated. Correlation does not implies de-
pendency. But if y depends on {x1, x2, ..., xk}; then {y} will be correlated with
x1, x2, ..., xk.

6 Stepwise Regression as a Foundation for the
Calculation of Approximative Reducts

When dependencies as {x1, x2, ..., xk} ⇒ {y} are simplified, we consider possible
dependencies existing between subsets of {x1, x2, ..., xk} and thus eliminating
redundancy.

The statistical approach is similar: If there is a set of variables strongly
correlated in the implicant, there is redundant use of the less significants, that
may be eliminated by means of the stepwise regression. The subset of condition
variables obtained in this way is an approximative reduct.
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Fig. 1. Approximative reducts by means of Stepwise regression.

7 Calculating Approximative Reducts by Means of
Stepwise Linear Regression

In a decision table when: (i) The number of cases (rows) is much more greater
than the number of attributes (columns), (ii) The condition attributes are quan-
titative and (iii) There is either a qualitative or quantitative susceptible of being
expressed as a numerical value with an order decision attribute. The dependency
between condition and decision may be analytically approached by means of a
linear regression model1:

y = y0 + A1x1 + ... + Akxk (11)

The stepwise regression process provides for the elimination of the less sig-
nificant condition attributes, thus obtaining an approximative reduct, whose
quality may be tested by comparing the percentage of objects classified by using
the whole set of conditions.

8 Application to Randomly Generated Data

A table containing 10.000 tuples has been generated in a random way. The table
corresponds to a decision table composed by 4 condition attributes x1, x2, x3, x4
and one decision attribute y. The correlation matrix is:


1

0, 731 1
0, 816 0, 229 1

−0, 535 −0, 824 −0, 139 1
−0, 821 −0, 245 −0, 973 −0, 029 1


 (12)

1 If |r| < 0.8 the linear model is not adequate and other approaches should be used.
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The selection of variables (in the order x4, x1, x2, x3) results:

y = 117, 57 − 0, 738x4 (r = −0, 821; δ = 0, 674) (13)
y = 103, 1 − 0, 614x4 + 1, 44x1 (r = 0, 986; δ = 0, 297) (14)
y = 71, 65 − 0, 237x4 + 1, 452x1 + 0, 416x2 (r = 0, 991; δ : non-sensitive) (15)

The correlation matrix indicates that there is a high correlation index between
x2 and x4. The minimum distance between the correspondent coefficient and its
standard deviation, pointed out the need to eliminate x4. Thus, the following
result is obtained as a lineal model of y:

y = 52, 58 + 1, 468x1 + 0, 662x2 r = 0, 989 (16)

Considering the possible existence of a dependency between {x1, x2, x3, x4} and
{y} you get that an approximative reduct is {x1, x2}. This method has the ad-
vantage, from the point of view of minimising the error, of calculating approxi-
mative reducts from raw (non discrete) data. However, if we apply a discretising
method and then calculate the dependency degree making use of rough sets we
obtain the following result:

{x1, x2, x3, x4} =⇒ρ1 {y} ρ1 = 88, 27% (17)
{x1, x2} =⇒ρ2 {y} ρ2 = 86, 74% (18)

From this result we can conclude that the power of classification remains almost
unalterable.
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