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Abstract. This paper reports on the application of the Strongly Ty-
ped Evolutionary Programming System (STEPS) to the PTE2 challenge,
which consists of predicting the carcinogenic activity of chemical com-
pounds from their molecular structure and the outcomes of a number
of laboratory analyses. Most contestants so far have relied heavily on
results of short term toxicity (STT) assays. Using both types of informa-
tion made available, most models incorporate attributes that make them
strongly dependent on STT results. Although such models may prove to
be accurate and informative, the use of toxicological information requires
time cost and in some cases substantial utilisation of laboratory animals.
If toxicological information only makes explicit, properties implicit in the
molecular structure of chemicals, then provided a sufficiently expressive
representation language, accurate solutions may be obtained from the
structural information only. Such solutions may offer more tangible insi-
ght into the mechanistic paths and features that govern chemical toxicity
as well as prediction based on virtual chemistry for the universe of com-
pounds.

1 Introduction

This paper reports on the application of the Strongly Typed Evolutionary Pro-
gramming System (STEPS) [4] to the IJCAI Predictive Toxicology Evaluation
(PTE) challenge [8]. A second round of the challenge (PTE2) consists of pre-
dicting the outcome for 30 chemical bioassays for carcinogenesis being conduc-
ted by the National Institute of Environmental Health Sciences in the USA.
The data provided includes both structural and non-structural information. The
non-structural information consists of the outcomes of a number of laboratory
analyses (e.g., Ashby alerts, Ames test results). The structural information is
simply a graphical representation of the molecules in terms of atoms and bond
connectives. Most contestants so far have relied heavily on results of short term
toxicity (STT) assays. It appears that, for some learning tasks and systems, the
addition of this type of information improves the predictive performance of the
? This work is funded by EPSRC grant GR/L21884
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induced theories [10]. On the other hand, for other tasks and systems, the op-
posite seems to be true, i.e., propositional information has a negative effect on
generalisation [3].

We strongly argue that, for the PTE2 task, if toxicological information only
makes explicit, properties implicit in the molecular structure of chemicals, the
non-structural information is actually superfluous. In addition, obtaining such
properties often requires time cost and in some cases substantial utilisation of
laboratory animals [1,6]. Provided a sufficiently expressive representation lan-
guage, good solutions may be obtained from the structural information only.
Hence, prediction can potentially be made faster and more economically. Ex-
periments reported here with STEPS support this claim. The inherent struc-
ture of the graphical representation of molecules is captured naturally by the
individuals-as-terms representation of STEPS. The rules obtained with structu-
ral information only are better in terms of accuracy than those obtained using
both structural and non-structural information. In addition, our approach is
more likely to provide insight into the mechanistic paths and features that go-
vern chemical toxicity, since the solutions produced are readily interpretable as
chemical structures. STEPS ranks joint 2nd of 10 in the current league table of
the PTE2 challenge.

The paper is organised as follows. Section 2 describes the PTE2 challenge.
Section 3 reports the results of applying STEPS to PTE2. Finally, section 4
concludes the paper.

2 The PTE2 Challenge

The National Institute of Environmental Health Sciences (NIEHS) in the USA
provides access to a large database on the carcinogenicity (or non-carcinogenicity)
of chemical compounds through the National Toxicology Program (NTP). The
information has been obtained by carrying out long term bioassays that have
classified over 300 substances to date. The Predictive Toxicology Evaluation
(PTE) challenge was organised by the NTP to gain insight into the features
that govern chemical carcinogenicity [2]. The first International Joint Confe-
rence on Artificial Intelligence (IJCAI) PTE challenge involved the prediction
of 39 chemical compounds that were, at the time, undergoing testing by the NTP.
The training set consisted of the remaining compounds in the NTP database.
The participants consisted of both experts in the area of chemical toxicology and
machine learning systems. Symbolic machine learning, and in particular Induc-
tive Logic Programming, has been applied with great success to bio-molecular
problems in the past [12,5]. Symbolic machine learning techniques are particu-
larly suitable for problems of this type since it is not only the prediction that is
interesting, but also the induced theory which provides an explanation for the
predictions. The learning system Progol, for example, was entered into the PTE
challenge and obtained results that were competitive with those obtained by the
expert chemists [9].
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Following on the success of the first challenge, a second round of the PTE
challenge (PTE2) [7] was presented to the AI community at IJCAI in 1997 [11].
The PTE2 challenge involves the prediction of 30 new bioassays for carcinogene-
sis being conducted by the NTP. The training set consists of the remaining 337
bioassays in the NTP database. At the time of writing the results for 7 of the che-
mical compounds in the test set are still unknown. Ten machine learning entries
have been made so far in reaction to the PTE2 challenge, and their performance
has been calculated on the 23 chemical compounds whose results are known
[8]. In addition to predictive accuracy, entries have been evaluated according to
whether or not they exhibit explanatory power, where the explanatory power of
a theory exists “... if some or all of it can be represented diagrammatically as
chemical structures.” [11].

The PTE challenges provide the machine learning/data mining communi-
ties with an independent forum in which intelligent data analysis programs and
expert chemists can work together on a difficult scientific knowledge discovery
problem.

3 Experiments

This section reports on experiments using STEPS on the PTE2 dataset. STEPS
is a strongly-typed evolutionary system, which evolves program trees using con-
structs from the Escher programming language (see [4] for details).

3.1 Data

In order to tackle the PTE2 problem using STEPS the original Prolog represen-
tation [8], consisting of the 337 training cases, was translated into the Escher
closed term representation.

Each chemical molecule is represented by highly structured term consisting
of properties of the molecule and the atoms and bonds that form the structure of
the molecule. The properties of the molecule resulting from laboratory analyses
consist of Ames test results (i.e., whether the compound is mutagenic or not -
mutagenicity is an indication of carcinogenicity), two sets of genetic toxicology
test results, one for positive and one for negative results, and a set of Ashby
alerts and their counts (properties of the molecule that are likely to indicate
carcinogenicity, discovered by a toxicology expert).

The atom and bond structure that make up the molecule is represented as a
graph, i.e., a set of atoms and a set of bonds connecting pairs of atoms. An atom
consists of a label (which is used to reference that atom in a bond description),
an element, one of 233 types represented by integers, and a partial charge. A
bond is a tuple consisting of a pair of labels for the atoms that are connected by
the bond and the type of the bond (e.g., single, double).
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3.2 Method

The aim of PTE2 is to generate a concept description that can distinguish bet-
ween Active, or carcinogenic compounds and InActive, or non-carcinogenic com-
pounds. The concepts induced here are restricted to the following form:

IF Cond THEN C1 ELSE C2;

Since either Active or Inactive can be used for C1 (leading to potentially
different induced theories) and the experiments are intended to compare learning
from structural-only information and learning from all available information,
there are four settings to compare.

As STEPS is a stochastic algorithm the experiments are repeated ten times
for each particular setting. The best performing theories as measured on the
training data are output at the end of a run. The theory with the highest ac-
curacy on the test set is then chosen as the best theory for that particular run.
The best theory from the set of ten experiments is selected as the theory for a
particular setting of data and description format.

The method of fitness evaluation used here is the Stepwise Adaption of
Weights (SAW) method [13]. The SAW fitness function essentially implements
a weighted predictive accuracy measure, which is based on the perceived diffi-
culty of the examples to be classified. During evolution, only training examples
are used. The SAW fitness function rewards an individual for the correct clas-
sification of a difficult example by associating a weight with each example. An
example is considered difficult if the current best theory of the generation can
not classify it correctly, in which case its associated weight is incremented by an
amount delta weight. The weights are adjusted every weight gen generations.
The fitness for a particular individual therefore becomes a weighted sum of the
number of training examples that it can correctly classify.

The parameters for STEPS and SAW, for all experiments are as follows: delta
weight = 0.1, weight gen = 5, population size = 100, maximum no. generations
= 150, minimum depth = 3, maximum depth = 20, and selection = tournament.

3.3 Results

The following table gives the results for the ten runs for each of the four confi-
gurations. The Best Accuracy is the accuracy of the best performing theory out
of all ten runs for a particular configuration.

Configuration (C1-Info) Best Accuracy
Active-All 65%
Inactive-All 74%
Active-Struc 70%
Inactive-Struc 78%

The program selected as the best out of the forty runs with the various
dataset and default class configurations achieved a predictive accuracy of 78%
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on the test data and was obtained with the Inactive-Struc Configuration. This
definition, which is currently undergoing more thorough analysis, is joint second
in the PTE2 league table (see [8]). It is given here in Escher program format in
Figure 1 and in its English equivalent in Figure 2.

carcinogenic(v1) =
if
((((card (filter (\v3 -> ((proj2 v3) == O))

(proj5 v1))) < 5) &&
((card (filter (\v5 -> ((proj2 v5) == 7))

(proj6 v1))) > 19)) ||
exists \v4 -> ((elem v4 (proj6 v1)) && ((proj2

v4) == 3))) ||
(exists \v2 -> ((elem v2 (proj5 v1)) &&

((((((proj3 v2) == 42) ||
((proj3 v2) == 8)) ||
((proj2 v2) == I)) ||
((proj2 v2) == F)) ||
((((proj4 v2) within (-0.812,-0.248)) &&

((proj4 v2) > -0.316)) ||
(((proj3 v2) == 51) ||
(((proj3 v2) == 93) &&

((proj4 v2) < -0.316))))))
&& ((card (filter (\v5 ->

((proj2 v5) == 7))(proj6 v1))) < 15))
then Inactive
else Active;

Fig. 1. The best definition produced by STEPS as an Escher program

4 Conclusion

This paper reports on the application of STEPS, to the PTE2 challenge. The
rules obtained by STEPS using structural information only, are comparable in
terms of accuracy to those obtained using both structural and non-structural
information by all PTE2 participants. In addition, this approach may produce
insights into the underlying chemistry of carcinogenicity, one of the principal
aims of the PTE2 challenge. Furthermore, as the theory produced by STEPS
relies only on structural information, carcinogenic activity for a new chemical
can be predicted without the need to obtain the non-structural information from
laboratory bioassays. Hence, results may be expected in a more economical and
timely fashion, while also reducing reliance on the use of laboratory animals.
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A molecule is Inactive if it
contains less than 5 oxygen atoms

and has more than 19 aromatic bonds,
or if it contains a triple bond
or if it contains an atom that

is of type 42 or 8 or 51
or is an iodine or a fluorine atom
or has a partial charge between -0.812 and -0.316
or is of type 93 with a partial charge less than -0.316

and contains less than 15 aromatic bonds
Otherwise the molecule is active.

Fig. 2. The best definition produced by STEPS in English
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