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Abstract. In this paper, we investigate the extraction of fuzzy rules
from data tables based on possibility theory. A possibilistic decision lan-
guage is used to represent the extracted fuzzy rules. The algorithm for
rule extraction is presented and the complexity analysis is carried out.
Since the results of the rule induction process strongly depend on the
representation language, we also discuss some approach for dynamic ad-
justment of the language based on the data.

1 Introduction

The results reported here are originally motivated by the quantization problem
in rough set-based data mining methods[5,4]. In those methods, the induced
rules are represented by the so-called decision language(DL). The basic building
blocks of DL are descriptors of the form (a, v), where a is an attribute and v is a
value. If the domain of attribute values is continuous, a quantization process is
usually necessary to replace the value v by an interval containing it. However, to
make the induced rules more robust, replacing a crisp interval by fuzzy linguistic
terms may be an interesting alternative. In this paper, we propose a possibilistic
decision logic which facilitates the representation of fuzzy rules and so solve the
quantization problem to some extent.

The possibilistic decision logic is based on possibility theory, which is de-
veloped by Zadeh from fuzzy set theory[8]. Given a universe W , a possibility
distribution on W is a function π : W → [0, 1]. Obviously, π is a characteristic
function of a fuzzy subset of W . Let F(W ) denote the class of all fuzzy subsets
of W , then for X,Y ∈ F(W ), two measures may be defined

CON(X,Y ) = sup
w∈W

µX(w) ⊗ µY (w),

INC(Y,X) = inf
w∈W

µY (w) →⊗ µX(w),

where ⊗ : [0, 1] × [0, 1] → [0, 1] is a t-norm1 and →⊗ is the implication function
defined as a →⊗ b = 1 − (a ⊗ (1 − b)) for all a, b ∈ [0, 1]. Hence, CON(X,Y )
1 A binary operation ⊗ is a t-norm iff it is associative, commutative, and increasing

in both places, and 1 ⊗ a = a and 0 ⊗ a = 0 for all a ∈ [0, 1].
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denotes the degree of intersection between X and Y , whereas INC(Y,X) is the
degree of inclusion of Y in X.

2 Possibilistic Decision Logic

To represent the rules extracted from fuzzy data tables, we propose a possibilistic
decision logic(PDCL) here. The linguistic terms used in the logic are fixed in
advance and their meaning is given by a context. Once the context is determined,
the semantics of wffs of the logic can be defined via possibility theory.

2.1 Syntax and Context

Let A be a set of attributes, L be a set of linguistic terms such that a function
type : L → A assigning each linguistic term with its type, and H be a set of
linguistic hedges, then the atomic formulas of PDCL are in one of the forms,
(a, πl), (a, νl), (a, τπl), and (a, τνl), where a ∈ A, l ∈ L, τ ∈ H and type(l) = a.
The set of well-formed formulas of PDCL is the smallest set containing atomic
ones and closed under Boolean connectives.

For example, (t, νhigh), (t, πhigh), (t,veryνhigh), and (t,veryπhigh) de-
note respectively “the temperature is certainly high”, “the temperature is pos-
sibly high”, “it is very certain the temperature is high”, and “it is very possible
the temperature is high”. Here, the term ”very” is the so-called linguistic hedge.

It is well-known that many natural language terms are highly context-dependent.
For example, the term “tall” may have quite different meanings between “a tall
basketball player” and “a tall child”. To model the context-dependency, we as-
sociate a context with each PDCL. The context determines the domain of values
of each attributes and assigns appropriate meaning to each linguistic term and
hedge. Formally, a context associated with a PDCL is a triple ({Va}a∈A,m1,m2),
where Va is a domain of values for each a ∈ A, m1 is a function on L such that
m1(l) ∈ F(Va) if type(l) = a, and m2 : H → ([0, 1] → [0, 1]) is a function map-
ping each hedge to a function from [0, 1] to [0, 1]. While the domains Va and
m1 are totally determined by the users or linguistic experts to reflect the inten-
ded meaning of these attributes and linguistic terms, there exist some common
definitions for the linguistic hedges in the literature[1].

2.2 Semantics

Given a PDCL with set of attributes A, set of linguistic terms L, set of linguistic
hedges H, and a context ({Va}a∈A,m1,m2), a fuzzy data table (FDT) is a pair
S = (U,F (A)), where U is a finite set of objects and F (A) = {fa : U →
F(Va) | a ∈ A}. Intuitively, fa(x) denotes the uncertain value of attribute a for
object x. Thus fa(x) = Va when the value is missing and fa(x) is a singleton
when the value is precise. This means FDT’s can represent both precise and
imprecise data in a uniform framework. Let L denote the set of wffs of the
PDCL, then for an FDT S = (U,F (A)), we can define the truth valuation
function ES : U × L → [0, 1] as follows:
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1. ES(x, (a, πl)) = supv∈Va
µm1(l)(v) ⊗ µfa(x)(v)

2. ES(x, (a, νl)) = infv∈Va
µfa(x)(v) →⊗ µm1(l)(v)

3. ES(x, (a, τπl)) = m2(τ)(ES(x, (a, πl)))
4. ES(x, (a, τνl)) = m2(τ)(ES(x, (a, νl)))
5. ES(x,¬ϕ) = 1 − ES(x, ϕ)
6. ES(x, ϕ ∧ ψ) = ES(x, ϕ) ⊗ ES(x, ψ)
7. ES(x, ϕ ∨ ψ) = ES(x, ϕ) ⊕ ES(x, ψ), where ⊕ is a t-conorm defined by
a⊕ b = 1 − (1 − a) ⊗ (1 − b)

8. ES(x, ϕ −→ ψ) = ES(x, ϕ) →⊗ ES(x, ψ)
9. ES(x, ϕ ≡ ψ) = ES(x, ϕ −→ ψ) ⊗ ES(x, ψ −→ ϕ)

We will define [|ϕ|]S =
⊗

x∈U ES(x, ϕ) as the truth degree of ϕ with respect to
an FDT S. Let pa = (a, πl), (a, νl), (a, τπl), or (a, τνl) be an atomic formula,
called a-basic formula, then a CD-decision rule for C,D ⊆ A is a wff of the form

∧

a∈C

pa −→
∧

a∈D

pa.

When ϕ is a CD-decision rule, [|ϕ|]S will be the strength of the rule according
to our semantics. In the next section, we will present the approach to discover
this kind of rules from an FDT.

3 Rule Induction Process

In traditional rough set based approach to data analysis, for a decsriptor (a, v),
v appears somewhere in the table, so we do not have to fix the atomic formulas
of the decision logic in advance. However, in an FDT, it is possible that for some
numerical attribute a, fa(x) has precise value, and to avoid the quantization
problem, we would still like to use some linguistic terms to represent the induced
rules. For example, we may have a data table with precise temperature values
and want to discover rules of the form “If temperature is high, then . . .”. Thus
it is necessary to fix the set of linguistic terms L of our PDCL in advance. On
the other hand, if the linguistic terms and the context is given independent of
the FDT, it is possible that the data values are not completely covered by these
terms. To resolve the dilemma, we will first describe the rule induction algorithm
by assuming a fixed set of linguistic terms and its associated context is given by
the domain experts, and then consider the process of setting up or adjusting the
language and context. For simplicity, we temporarily assume H = ∅ and omit
the m2 component of a context. Without loss of generality, we can also assume
the set of decision attributes is a singleton. The algorithm is described in Figure
1.

In the first step of the procedure, we test whether x is a support of the a-
basic formulas (a, πl) and (a, νl) for each x ∈ U , a ∈ C, and l ∈ La. If the the
degree of consistence between fa(x) and the linguistic term l is equal to 1, then
x supports the statement (a, πl), and if fa(x) implies l to the degree 1, then x
supports the statement (a, νl). Since Px is the Cartesian product of P a

x for all
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Procedure Rule Induction
Input: A FDCL L(A, L), a context ({Va}a∈A, m1), and a FDT S = (U, F (A)). Assume
L =

⋃
a∈A

La and A = C ∪ {d}, where La = {l ∈ L | type(l) = a}, C is the set of
condition attributes, and d is the decision attribute.
Output: A set of C{d}-decision rules with strength.
Steps:

1 Let P a
x = {πl | l ∈ La, CON(m1(l), fa(x)) = 1} ∪ {νl | l ∈ La, INC(fa(x), m1(l)) =

1}.
2 Let Px = ×a∈CP a

x and P =
⋃

x∈U
Px.

3 For each tuple t ∈ P and l ∈ Ld, let

ϕπ(t, l) =
∧

a∈C

(a, t(a)) −→ (d, πl),

ϕν(t, l) =
∧

a∈C

(a, t(a)) −→ (d, νl).

4 Return the set {(ϕπ(t, l), [|ϕπ(t, l)|]S) | t ∈ P, l ∈ Ld} ∪ {(ϕν(t, l), [|ϕν(t, l)|]S) | t ∈
P, l ∈ Ld}

End

Fig. 1. The procedure to discover fuzzy rules

a ∈ C, for any tuple t ∈ Px, x will be the support of the wff
∧

a∈C(a, t(a)). Thus
each tuple in P corresponds to a conjunctive wff which has at least a support
in the FDT S, and our extracted rules are those with at least a support. The
number of supports for a tuple t in P (and its corresponding rules) is equal to the
number of x’s such that t ∈ Px. For further refinement, we can eliminate rules
with number of supports less than some predefined threshold value. Analogously,
we return rules with arbitrary strength at the last step, however, we can also set
a threshold and drop out any rules with strength less than the threshold.

To carry out the complexity analysis of the rule induction process, let us
define |U | = m, |La| = na for all a ∈ A, and |L| = n =

∑
a∈A na. Then step 1

of the procedure will need O(mn) time for all x ∈ U and a ∈ A since it takes at
most 2m(n− nd) times of computation for measures CON and INC. In step 2,
the cardinality of P is at most

∏
a∈C 2na, so step 3 will need O(

∏
a∈A 2na) time,

and finally step 4 will take O(m ·∏a∈A 2na) time since the computation of [|ϕ|]S
will go through each element of U for any ϕ. If there exists constant N such
that na ≤ N for all a ∈ A, then the overall time complexity of the procedure is
O(m(n + (2N)|A|)). Thus the time complexity of the procedure is linear in the
number of training cases, though it is exponential in the number of attributes.
In other words, the procedure is efficient for problems with small numbers of
attributes.
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3.1 Context Construction and Adjustment

In the procedure given above, we assume the set of linguistic terms and their
meaning is fixed in advance. For example, for the temperature attribute, we
can assume the available linguistic terms are only “HIGH”, “MEDIUM”, and
“LOW” and the associated fuzzy sets are given by domain experts. This as-
sumption has the implication that the possible candidates of the induced rules
are limited. However, it also has the defect that the linguistic terms may not
adequately describe the data. In other words, the set P a

x may be empty for all
x ∈ U . To resolve the problem, we may adjust the context and the set of lin-
guistic terms dynamically according to the FDT. According to the types of the
attributes, two cases are considered.

First, if the attribute a is nominal, then we can simply let La = Va and for
each v ∈ La, its meaning is the singleton set {v}. In this case, the semantics of
atomic formulas (a, πv) and (a, νv) collapse into the same one, i.e., the one for
(a, v) in original decision logic, when the data fa(x) is precise for all x ∈ U .

Second, when the attribute a is numerical, we assume a metric δ : Va ×
Va → [0,∞) exists. Then we define V1 = {fa(x) | x ∈ U, fa(x) is a crisp set},
V2 = {fa(x) | x ∈ U} − V1 − {Va}, and V =

⋃ V1. Note that all these three sets
are finite and V ⊂ Va. Now, some classical clustering techniques can be applied
to partition V into crisp clusters V1, V2, . . . , Vk[2,3]. For example, by a linkage
method for hierarchical clustering[3], starting from V1, we merge two singleton
sets with shortest distance into one. The new created set is used to replace its
two original components in V1 and so we have a coarser partition. The process
continues by merging two closest subsets each time until a predefined limit k is
achieved. Here, the distance between two crisp subsets of V , X and Y , is defined
as δ(X,Y ) = maxx∈X,y∈Y δ(x, y). After the clustering process, we can find the
center of each Vi, v∗

i as

v∗
i = arg min

v∈Vi

δ({v}, Vi − {v}).

Let d∗
i = δ({v∗

i }, V ), then we can define a fuzzy set Xi ∈ F(Va) with the mem-
bership function µXi

(x) = max(0, 1− δ(v∗
i ,x)

d∗
i

). Let V3 = V2 ∪{X1, . . . , Xk}, then
V3 is the set of candidates for meanings of our linguistic terms. If the number of
fuzzy sets in V3 is still too many, then we can apply clustering techniques to V3
again, but using the similarity measure between fuzzy sets to determine distance
between them. Then the center of each cluster is collected into a set V. Finally,
we can associate each element in V with a appropriate linguistic label and the
set of linguistic labels are our La and their meaning are naturally defined as the
corresponding elements in V.

4 Conclusion

In a recent article, Pawlak, the founder of rough set theory, point out that
discretization of quantitative attribute values are badly needed for rough set-
based data analysis[6]. In this regard, many discretization methods have been



A Logical Approach to Fuzzy Data Analysis 417

explored[4]. On the other hand, the management of uncertainty has been a long-
standing requirement in intelligent data analysis. In this paper, we present a
uniform logical framework for handling both uncertain and quantitative data.
In the framework, uncertain attribute values are represented as fuzzy subsets
of the domain and quantitative values may belong to some fuzzy sets to some
different degrees. Linguistic terms correspond to the fuzzy subsets are taken as
the basic building blocks of a PDCL. Then, for each item of data, the information
contained in it decides the degree of truth of wffs of the language. A rule in our
framework is an implication formula of the language and the aggregated degree
of truth of the formula on all data items is taken as the strength of the rule. The
formulas of decision logic are called information pre-granules in [7], so our wffs
of PDCL can be analogously called fuzzy information pre-granules. Therefore,
our logical approach to fuzzy data analysis can be seen as a formal instance of
fuzzy granular information processing.
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