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Abstract. The paper addresses the well-known bottleneck of knowledge based
system design and implementation — the issue of knowledge maintenance and
knowledge evolution throughout lifecycle of the system. Different machine
learning methodologies can support necessary knowledge-base revision. This
process has to be studied along two independent dimensions. The first one is
concerned with complexity of the revision process itself, while the second one
evaluates the quality of decision-making corresponding to the revised
knowledge base. The presented case study is an attempt to analyse the relevant
questions for a specific problem of industrial configuration of TV transmitters.
Inductive Logic Programming (ILP) and Explanation Based Generalisation
(EBG) within the Decision Planning (DP) knowledge representation
methodology, have been studied, compared, and tested on this example.

1 Introduction

Configuration, as a specific kind of decision making, is defined [9] as a problem of
assembling basic elements of the considered system in such a way that internal logic
constraints are not violated. We address the issue of gradual evolution of
configuration meta-knowledge that forms a knowledge base of a knowledge-based
system developed for a Czech TV producer. The considered production undergoes
some changes during its life cycle, e.g. due to modification of the product range. This
transition has to be reflected in the knowledge base of the system, of course. Some
machine learning techniques can support corresponding evolution/revision of the
knowledge base. We have applied Inductive Logic Programming (ILP) and
Explanation Based Generalisation (EBG) complemented by Decision Planning (DP)
knowledge representation methodology. Our experiments and analysis show that both
methodologies exhibit different behaviour with respect to two angles introduced for
characterisation of the revision processes. This behaviour should be taken into account
when choosing the proper tool for support of knowledge-base evolution.

Inductive logic programming (ILP) enriched the repository of available machine
learning methods in the 90ties. Its goal is to induce knowledge in the form of a general
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logic program using in its body predicates from the background knowledge defined in
advance. This is an obvious difference when compared to knowledge represented by a
decision tree or a decision list, for example. In ILP, the language of the first order
logic is used (1) to describe the training examples, (2) to express the induced
knowledge, and (3) to formulate background knowledge, which is a natural part of the
problem definition. Though ILP methods work with a significantly richer language
than the attribute valued propositional language of the classical ML methods, both
approaches share intuition and some basic paradigms. Number of different ILP
systems have been developed and implemented recently [2]. Our experiments have
been conducted in the systems FOIL [7] and KEPLER [10].

Decision Planning is a declarative knowledge representation methodology based
on proof planning, a well-known theorem proving technique. This technique has been
successfully used for formalisation of the process of industrial configuration (see [5,
6]). The meta-level inference knowledge is captured here by means of an oriented
graph called decision graph. The decision graph describes in meta-terms a decision
space, a space of all legal configurations. We distinguish between the abstract level of
the decision graph, where only the abstract inference knowledge (strategic knowledge)
is specified and the specific level with all the context-related pieces of knowledge
incorporated. A knowledge engineer specifies the strategic knowledge within the
abstract level of the decision plan and an EBG (Explanation Based Generalisation) [3,
4] machine learning algorithm deduces the specific level of the decision plan from the
object-level knowledge. The basic EBG procedure starts from an attempt to prove that
a concept example is positive within a complete theory, the system is aware of. The
constructed proof (explanation) is then generalised and appended to the theory so that
a new, better definition of the concept is learned.

We have thoroughly tested both methodologies for creating and maintaining the
inference meta-knowledge to be used in the process of configuration [8]. Meta-
knowledge is supposed to embody original domain knowledge from the field. To
generate this meta-knowledge, we have analysed a set of all positive examples of legal
variations with the aim to find knowledge that will cover exactly the given set of legal
variations. This set remains fixed for a certain period. Machine learning techniques
are used to elicit the relevant knowledge. The learned knowledge has to be sound and
complete with respect to the present set of all legal variants representing a noise-free
training set. From time to time, the set of all legal variants is extended, while the task
domain remains fixed. This is a signal for the knowledge revision/update - a central
point of this case study.

2 Meta-knowledge Lifecycle

Suppose that the original theory T covers a set of all positive examples E. Let the set
of positive examples be extended by a new set S such that E N S=&. The theory T has
to be updated/revised in such a way that the resulting theory T1 covers E U S. To do
so two alternative approaches can be taken:
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e STRONG UPDATE re-computes the entire inference knowledge base
considering a new updated field theory (i.e. the current field theory enriched by the
recent change) as a knowledge induction parameter. Strong update is the result of
application of the knowledge extraction process on the full set E U S.

o  WEAK UPDATE re-computes just the relevant parts of the inference knowledge
base in order to ensure that the result stands for a sound and complete
representation for the updated field theory.

Most often it is much simpler to generate a weak update then the strong one. On the
other hand, it is not clear what efficiency will exhibit the system using the changed
(weakly updated) knowledge base. Weak update patches the local requirements of the
decision space but it does not consider its overall shape. That is why weak update is
computationally less expensive, but the resulting space of configuration-like meta-
level knowledge can be expected to be quite messy. Consequently, there can appear
inefficient consultations in such a space often.

When deciding between strong and weak update the efficiency of the resulting
system has to be considered simultaneously with requirements for creation of the
updated system. This last criterion should meet the demands of the dynamics of the
application domain; i.e. estimated frequency of updating and its effect on the quality
of the decision space described by inference knowledge. When the revision is not
required very often and strong update is not extremely time consuming then the strong
update is generally recommended. When the field theory changes instantly one has to
bear in mind that we might be lacking resources or time for the strong update.

In order to illustrate this we may view the problem from purely Al point of view.
Let us consider a simplified meta-knowledge decision space in a form of a decision
tree, where each product configuration is a branch from a root of the tree to a certain
leaf node (goal). Here, a weak update means appending a simple branch to the root of
the tree. By doing so the numbers of nodes considered as well as the branching factor
of the new state space increases. In this way the knowledge hidden within the original
decision tree loses its significance. Using a tree with an increased branching factor or
with more decision nodes results in higher memory requirements, moreover it makes
the process of state space search slower and more difficult. That is why we try to
update the decision space in such a way that (1) needed time and (2) the increase of
the state space size and of its branching factor are as little as possible.

Neither pure weak update, nor pure strong update guarantees optimal knowledge
base maintenance. Rather than implementing a ‘middling’ update we seek for a
compromise by playing around with frequencies of both weak and strong updates. If
the weak update does not result in significant decrease of efficiency, the strong update
can be done only occasionally (after several steps of weak updates). Need for strong
updates and their frequency has to be determined with respect to the conditions of the
application domain. We will compare experimental results concerning revision
processes in DP environment with the theoretical estimates computed for Prolog
programs resulting from the ILP analysis. These experiments try to answer the
following questions: "Which knowledge is easier to maintain? Is it knowledge, the
system formulated automatically (this is what ILP does) or knowledge elicited and
expressed by a knowledge expert (the case of DP)? What is the efficiency of the
system after a sequence of weak updates? "
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2.1 Inductive Logic Programming Approach

ILP is applied in this context to induce inference meta-knowledge from object-level
data. Our ILP analysis starts from pure data without any expert inference knowledge.
The set of positive examples represents all legal variants (valid combinations) of input
transmitter parameters to be covered by induced rules representing the meta-
knowledge. The negative examples are created using closed world assumption. The
induced set of rules should provide significant compression of positive examples; i.e.
it should be as small as possible. The rules represent the inference knowledge needed
during the transmitter configuration consultation. Their utilisation is straightforward —
any question concerning legality of a certain variant of a product is answered using a
standard Prolog query. Moreover, these rules are further analysed to optimise number
of questions that have to be asked during the process of configuration.

The induced Prolog program is used whenever the question about legality of a
specific variant arises. We know the exact number of different relevant queries, which
can appear. Let us denote this number NN — it is the size of the considered task domain.
This number is constant until a new possible value for one of the attributes is added
(its domain is extended). Let us concentrate on the case when all attributes have fixed
domains. Then N is fixed and any member of the considered space can become an
issue. That is why we are interested in average case complexity of the program
measured in terms of the average number of attempted unifications.

Let us try to predict the change of this complexity during the process of gradual
weak updates when each new positive example is added as an exception in front of the
actual program. Let us start with the program P induced from positive examples E*
and negative examples E~ (both sets E™ and E~ together have just N elements). The
program P works with average complexity p, it has d rules and its structure is not
recursive. At the first step, one single example f is shifted from the set E™ into the set
E*. What will be the complexity of the program P(1) that results from the weak update
of P after this single step? Let us denote this complexity by C (p,1).

The program P(1) will generate the answer for most members of the task domain
attempting just one more unification then the original program P. The only exception
will be the single example f - this will be answered in a single unification. Thus we
can estimate the upper limit for the considered update as follows

(Np=d+14N-D)
-Z\IT

By induction we can prove that after a sequence of k gradual weak updates (each
removing a single example from E" ) the complexity of the resulting program P(k) is

C(pl) = p+1-d/N M

Cipk)< (1+2+...+k+N]<7/—kd+(N—k)k) =p+k—(k2—k+2kd)/2N

2

This bound is strongly influenced by the compression coefficient d/N, which is in our
case much smaller than 1/5. For any k < N/2 in this range holds, that the degradation
of performance of P(k) is within the interval < k/2, k > and the increase of average
case complexity after a sequence of k weak revisions is linear in k.
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Assertion 1: Degradation of performance after k weak updates is acceptable
provided k is a fraction of average complexity p of the original program.

The induced rules are not used to compress the set of valid variants of transmitters,
only. A specific algorithm was implemented to present valid process of configuration
consultation using the induced rules. For implementation reasons the task has been
“inverted” and the positive and negative examples were exchanged so that no
restrictions are placed on the configuration parameters at first. During consultation the
state space of possible variants is cut wrt disabled combinations of parameters and
engaged values. The length of configuration depends on the process of consultation as
the algorithm skips all decision nodes offering a single option, only. Experiments
verified that time complexity of the algorithm is linear wrt the number of rules used
within the consultation. This is why the minimal number of rules is desired.

Applying strong or weak update strategies carries out the maintenance of inference
meta-knowledge. Whereas, the weak update strategy can be applied as a fast strategy
the time complexity of the corresponding configuration consultation algorithm grows
inevitably. Though this degradation can be characterised as graceful, see equations (1)
and (2), it can eventually exceed acceptable limits. Moreover, the weak update
strategy is applicable only if we need to add a new legal variant within the fixed task
domain. In the opposite case the strong update is inevitable.

The strong update is performed by the ILP
analysis, which induces new rules from the
entire data set. This strategy minimises the

strong update

inference

number of rules to be used within consultation nles ocepton

but it is more time consuming. The strong T " f
weak update

update can significantly improve efficiency of
the considered system. This is best visible on
an extreme case of strong update applied to
2658 examples and resulting in 42 rules [8].
Since the time complexity is proportional to the size of the program we can claim that
complexity has been decreased and efficiency improved about 63 times due to strong
update.

We have failed to produce a rigorous time requirement analysis for the strong
update (it took about 2 minutes). According to our observations, time necessary for
strong update depends on the internal similarity of examples. It took considerably
more time to analyse a small set of utterly unrelated examples than a bigger set of
similar clusters of examples. The point we are trying to make here is that not only the
frequency of strong versus weak updates is what matters. It is highly recommended to
structure the incoming examples in clusters with consideration of some internal logic.
This is the case of real data as the requirement for strong update arises usually when a
new product with a number of variations is introduced.

Figure I — ILP knowledge evolution
lifecycle

2.2 Decision Planning Solution

Decision planning takes constant number of steps for any consultation within the fixed
task domain. This is due to the topology of the decision plan (the abstract decision
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plan) which remains fixed in such a case. No matter how many examples are covered,
the user has to be taken through an identical decision path, i.e. through the same
number of decision nodes. Requested time does not in practice depend on the
cardinality of the set of field theory examples, which represent the set of all positive
examples. Checking preconditions of a decision node can become more time
consuming. But a well-designed abstract decision plan minimises the extent to which
the time requirements grow with increasing number of covered examples.

The nature of decision planning knowledge representation methodology is such
that it does not offer any means for a strong update. System knowledge base can be
either directly supplied with inference knowledge specified by user or step-by-step
induced from the field theory using Explanation Based Generalisation (EBG)
technique which cares for weak updates. The lifecycle is then a sequence of weak
updates. To ensure functionality of a strong update (Fig. 2), there have been
implemented some processes of decision space filtering, aimed at reducing the number
of decision nodes and the branching factor. We distinguish between following two
filters:

e CONJUNCTIVE FILTER clusters decision nodes with the same effect; they get
unified through conjunction of corresponding preconditions.

e FRAME FILTER checks relevancy of each of preconditions in order to avoid the
frame problem ([1]). The algorithm has to be provided with the entire possible
range of values each attribute can take. Possible clusters of decision nodes having
the same effect and precondition
describing  entire  discourse  are
eliminated.

Time needed to learn a single example 1 ﬁ
depends on the structure of the actual ‘

‘strong’ update

decision
EBG

decision space (compared to the example to oraph
be accepted) and on the amount of the nodes f ‘
to be parsed. The first objective makes an — : ek update

example to be learnt more difficult in the
beginning of the learning process and the Figure 2 — Decision planning knowledge
other objective makes it more time evolution lifecycle.
consuming with increasing number of
accepted examples. Apart from the first 30 examples the time needed for learning is
linearly proportional to the size of the decision
250 4 space for our data set. When filtering the
decision space the nodes have to be compared
one to another (to put it simpler), thus the
complexity is almost proportional to the square
of number of nodes. The space of decision
nodes does not grow with increasing number of
0 positive examples proportionally. It saturates at
! "' ¢ " - certain point and consequently filtering takes
just certain time (seconds) but does not grow up

Figure 3 — Positive accepted examples/

number of nodes in the decision space
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to infinity. Experiments showed that the best practice in maintaining the knowledge
base consistent with respect to frequency of updates corresponds to the rhythm in
which object-level data come. As each new piece of product has got usually about 30
new variants (4 — 6 new attributes) we were filtering the knowledge base after each 32
arrivals of new object-level data. This mechanism provides the knowledge base with
filtered data ready for consultation whereas it minimises the time needed for
knowledge induction. The solid line in the Fig. 3 gives the size of the decision space
after several tens of weak update iterations (in terms of number of decision nodes).
The effect of proposed filtering can be seen on the dashed line in the Fig. 3.

3 Conclusion and Future Work

The issue of knowledge maintenance is of immense importance throughout entire
lifecycle of a knowledge-based system. Since general methodology for updating
knowledge is missing, we have compared two machine learning methodologies for
addressing this issue — Inductive Logic Programming (ILP) and Explanation Based
Generalisation (EBG) within the framework of Decision Planning (DP).

Both approaches differ in number of aspects. The ILP approach generates a logic
program, which can be directly used by the reasoning mechanism that mimics the
expert’s configuration process using standard methods of logic programming. In the
case of DP the configuration mechanism is more elaborate. Graphs of interrelated
decision nodes (decision graphs) on various levels of specificity are parsed, each
representing either an action or another lower level graph.

Originally, we have suggested the ILP approach as an alternative for intelligent
maintenance of knowledge base through a strong update, which corresponds to ILP
analysis of all positive examples. Later, the weak update proved to be simple to
achieve due to the used knowledge representation: the new positive example is added
as an exception in front of the system's base of rules. This takes just one single step
and the system using the rule base after a sequence of weak update steps exhibits
acceptable decrease of efficiency (linear function with respect to number of
consecutive weak updates). Moreover, we have found a simple method (Assertion 1)
how to estimate frequency of strong updates in dependence on the requested efficiency
of our target KB system.

On the contrary, the central point of the decision planning approach is the weak
update achieved by EBG. EBG updates the decision graph so that a new example is
accepted. As this example is incorporated within already existing decision space
structure, the extent to which its complexity increases is minimised. The time needed
for the weak update here is considerably bigger than in the case of ILP approach.
Decision planning implements the strong update by means of filters that reorganise the
decision graphs in order to maintain efficiency of knowledge representation.

As decision planning requires strategic inference knowledge to be acquired from
the user in order to formalise initial decision graph; its utilisation is envisaged mainly
in areas where human expertise is available. The DP methodology just ensures the
decision graph to be consistent with the evolving task domains. Our experience
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verified that ILP is good at digging inference knowledge from the domain data and it

is well suited even for areas with no or little of pre-specified human expertise.

Efficiency of the resulting logic program can be estimated and used to find a proper

balance between weak and strong updates. This makes ILP a robust and reliable

mechanism for maintenance of domain knowledge throughout life cycle of the system.

Suggested properties of revision processes should be studied more carefully since

they have to be taken into account whenever choosing an appropriate knowledge

representation and knowledge extraction process for a dynamic application. Even here

there have to be done decisions concerning the frequency with which the discovered

theory has to be recomputed using a strong update instead of applying only a weak

update of discovered theory. It is important to choose such frequency of strong

updates, which suites best the dynamics of the system and which takes into account

time and memory demands of the strong update. Finding balance between efficiency

of weakly updated knowledge base and the result of time-consuming strong update

belongs to the key problems within this area and it deserves development of rigorous

methodology. Our case study shows that it is worth of considering ILP tools in this

context. One of advantages they offer is that some useful upper estimates can be

derived for the efficiency of the resulting programs.
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