
J.M. Zytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 518-523, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Discovering Rules in Information Trees

Zbigniew W. Ras

Univ. of North Carolina, Comp. Science, Charlotte, N.C. 28223, USA
and

Polish Academy of Sciences, Comp. Science, 01-237 Warsaw, Poland

Abstract: The notion of an information tree has been formulated and
investigated in 1982-83 by K.Chen and Z. Ras [1,2,3]. In [1] we have defined a
notion of an optimal tree (the number of edges is minimal) in a class of trees
which are semantically equivalent and shown how optimal trees can be
constructed. Rules can be discovered almost automatically from information
trees. In this paper we propose a formalized language used to manipulate
information trees, give its semantics and a complete and sound set of axioms.
This complete and sound set of axioms is needed for discovering rules in
information trees assuming that conditional attributes and the decision attribute
are not arbitrary but they are both provided by the user.

1 Introduction

Information trees and their query answering systems have been proposed and
investigated in 1982-83 by K.Chen and Z. Ras [1,2,3]. The main difference between
information trees and decision trees [5,6] lies in the interpretations and applications.
Their structures and methods of constructions are often transferable to each other. In
decision trees nodes are labeled by queries, edges by responses to these queries and
leaves by some objects uniquely identified by the path from the root to the leaf. In an
information tree, internal nodes are labeled by attributes and terminal nodes by sets
of objects. A path from the root to a terminal node is interpreted as a description of
objects labeling that node.

In [1] we proposed a heuristic polynomial algorithm to construct a minimal
information tree with respect to the storage cost (storage cost was defined by us as a
number of edges in a tree). It is worth to note that the problem of constructing even a
minimal binary tree with respect to the storage cost is to be known as NP-complete.
Information trees are quite useful in KDD area. Many certain rules can be discovered
from the information tree in 0(k) steps where k is the height of the tree (number of
attributes). Many possible rules can be generated in 0(n) steps where n is the
number of nodes in a tree. The label of any edge (let us say e) in an information tree
can be seen as a decision value of a rule. The conjunction of labels of all edges
forming a path from the root of the tree to the edge e gives the condition part of the
rule. Questions we would like to state in this paper say: can we discover rules from
an information tree if condition attributes and a decision attribute are given by a
user? Can we manipulate information trees algebraically into forms that are more
convenient for a rule discovery than the initial trees?

To answer these questions we devise a representation of information trees as
terms in a formal theory (theory of information trees) and present rules to manipulate

Discovering Rules in Information Trees 519

them. Next we show that the rules proposed by us are complete in constructing
equivalent information trees. We also give a strategy for constructing equivalent
information trees to a given information tree which are more convenient for
discovering rules when conditional and decision attributes are given.

2 Basic Definitions

In this section we recall the definition of an information tree. Next we introduce the
notion of equivalence of two information trees and the notion of one tree being
covered by another.

Let U be a finite set of attributes called the universe. For each a ∈ U , let VA

be the set of attribute values of A. We assume that VA is finite, for any A ∈ U. By
an information tree on the universe U, we mean a tree T=(N,E) such that:

(a) each interior node is labeled by an attribute from U,
(b) each edge is labeled by an attribute value of the attribute that labels the

initial node of the edge,
(c) along a path, all nodes (except the leaf) are labeled with different attributes,
(d) all edges leaving a node are labeled with different attribute values (of the

attribute that labels the node),
(e) a subset Nl of N is given, each node in Nl is called an object node.

Figure 1. Information Tree

So, an information tree can be thought of as a triple (T, l, Nl) where T = (N,E)
is a tree, Nl ⊆ N and l is the labeling function from Nl ∪E into

U ∪ (∪{VA : A ∈U}). The set Nl is a set of internal nodes in T.

520 Z.W. Ras

Let m be an object node, n1 , n2 , n3 ,…, nk with nk = m be the path from the
root n1 to m. Objects node m determines an object type 0(m)={[l(ni),l([ni , ni+1])]:
i=1,2,…,k-1 } where l(ni) is the label of the node ni , which is an attribute.
l([ni , ni+1]) is the label of the edge [ni , ni+1] which is an attribute value of the
attribute l(ni).

An information tree S = ((N,E), l, Nl) determines a set of object types 0(S) =
{0(m): m ∈ Nl }. Two information trees S1 , S2 are said to be equivalent if and only
if 0(S1) = 0(S2). If 0(S1) ⊆ 0(S2), we say that S1 is covered by S2.

Figure 1 represents an information tree S = ((N,E), l, Nl) , where N={a,b,c,d,e,
f,g,h,i,j}, E = {[a,b], [b,e], [b,f], [a,c], [a,d], [d,g], [g,i], [g,j], [d,h]}, l(a) = color,
l([a,b]) = red , l([a,c]) = blue , l([a,d]) = yellow , l(b) = sex , l([b,e]) = male , l([b,f]) =
female , l(d) = size , l([d,g]) = large , l([d,h]) = small , l(g) = sex , l([g,i]) = male ,
l([g,j]) = female , Nl = {e,f,c,g,i,j,h}.

The object type of the node f is {[color, red], [sex, female]}. This information
tree classifies seven different object types (determined by the seven nodes in Nl).

Assume that {[n,n1], [n,n2],…, [n,nk]} is the set of all outgoing edges from the
node n. Node n is called a-active (a is an attribute) if l(n1) = l(n2) = l(nk) = a.
Also, we say that k is the degree of the node n. The degree of an information tree is
k if no node in the tree has the degree greater than k and there is a node in the tree
of the degree k.

Information tree is called semi-complete if on any path from the root to a leaf of
the tree the same attributes are listed (their order is immaterial).

Lemma 1. Assume that information tree is semi-complete. If a child of a node
n is a leaf, then the parent of n is a-active for some attribute a.

Rules can be automatically generated from an information tree. For instance, let
us assume that object node i in the information tree represented by Figure 1
contains 6 objects. Also, assume that object node j contains 4 objects and the object
node h contains 3 objects. The following rules can be automatically generated:

1. (color = yellow) ∧ (size = large) → (sex = male) with confidence 6/10
2. (color = yellow) → (size = large) with confidence 10/13.

However, if the user looks for a definition of attribute color in terms of attributes size
and sex, the tree in Figure 1 has to be transformed into an equivalent tree which will
be more suitable for the required knowledge extraction.

3 Formal Theory of Information Trees

In this section we shall define a formal syntax for representing information trees
which is motivated by the LISP representation in [3] and co-algebra representation in
[4]. We will introduce axioms and rules of inference for the formal theory of
information trees.

Discovering Rules in Information Trees 521

Let us use the information tree from Figure 1 as a starting point in this section.
Assume Vcolor = {red, blue, green, yellow} is ordered as red, blue, green, yellow;
Vsex = {male, female} is ordered as male, female; Vsize = {large, medium, small} is
ordered as large, medium, small. Then the following term

color(sex(-, -), -, *, size(sex(-, -), *, -))
retains all the information about the information tree from Figure 1. An underline
means the node is an object node. A star means the corresponding subtree is empty.

To describe an information tree, we use the general scheme
attribute(subtree1 , subtree2, …, subtreen) assuming the attribute has n different
values.

Now we are ready to introduce a formal theory of information trees over an
attribute universe U. There are two constant symbols * , - which have standard
interpretation: empty tree and single node tree (tree with one node being an object
node) respectively.

For each attribute A in U with |VA| = n (where |VA| denotes the number of
attribute values of A), there are two n-ary function symbols fA , fA . The standard
interpretation of fA(t1 ,t2, …, tn) is the information tree with the root labeled A
(drawn as circle) and the next level subtrees t1 , t2 ,…, tn .

The standard interpretation of fA(t1 ,t2, …, tn) is the information tree with the
root labeled A which is an object node (drawn as square) and next level subtrees t1 ,
t2 ,…, tn .

Function symbol fA is called a type 0 function symbol, fA is called a type 1
function symbol. There is one predicate symbol ≡ . Statement t1 ≡ t2 in the
standard interpretation says that t1 and t2 are equivalent.

Terms are defined by the following recursive definition:

DEFINITION OF TERMS.
(a) constant symbols are terms,
(b) if g is n-ary function symbol, t1, t2, …, tn are terms not containing g or its

dual type function symbol, then g(t1, t2,…, tn) is a term.

Intuitively, each term represents an information tree.
If a term does not contain any type 1 function symbol or the constant symbol -, it

is called null object term.
The nested level h(t) of a term t is defined as follows:
h(*) = h(-) = 0,
h(fA(t1, t2,…, tn)) = h(fA(t1, t2,…, tn)) = max{h(ti): n ≥ i} + 1.

Let t be a term, we use I(t) to denote the standard interpretation of t, i.e., the
information tree that t represents.

We have: H(t)=n if and only if the height of I(t) is n.
If t is a term then by t we mean a new term defined below:
t = [if t = * , then -] else

[if t = fA(t1, t2, …, tn) , then fA(t1, t2, …, tn)] else t

522 Z.W. Ras

The formulas are defined by the following recursive definition:
 (a) t1 ≡ t2 is a formula for any two terms t1, t2

(b) p ∧ q, p ∨ q, p → q, p ↔ q, ¬ p are formulas if p, q are formulas.

Our formal theory has the following axiom schemata:
A1. (reflexive) t ≡ t is an axiom for any term t ,
A2. (nullity) * ≡ t for any null object term t ,
A3. (change the order of branching)

f(g(t1,1 , t1,2 ,…, t 1,m), g(t2,1 , t2,2 ,…, t 2,m),…, g(tn,1 , tn,2 ,…, t n,m))
≡ f(g(t1,1 , t2,1 ,…, t n,1), g(t1,2 , t2,2 ,…, t n,2),…, g(t1,m , t2,m ,…, t n,m))

is an axiom for any two type 0 function symbols f, g where f is n-ary, g is m-ary
and for any n.m terms t i,j (i ≤ n , j ≤ m) not containing f, g or their type 1 duals ,
A4. p → (q → p) for any formulas p, q ,
A5. (p → (q → r)) → ((p → q) → (p → r)) for any formulas p, q, r ,
A6. (¬p → ¬q) → (q → p) for any formulas p, q .

The rules of inference for our formal system are the following:
R1. from p → q and p we deduce q for any formulas p, q ,
R2. from t1 ≡ t2 we deduce t(t1) ≡ t(t2), where t(t1) is a term containing t1 and t(t2)
comes from t(t1) by replacing some of the occurrences of t1 with t2 ,
R3. From t1 ≡ t2 , we can deduce t1 ≡ t2

Let t be a term, we shall use I(t) to denote the information tree represented by
t under the standard interpretation. Then we have the following completeness
theorem.

Theorem 1. t1 ⎜⎯ t2 if and only if I(t1) is equivalent to I(t2).

4 Discovering Rules in Information Trees

In this section we suggest a strategy for discovering rules in information trees when condition
and decision attributes are provided by the user.

We start with an example of an information tree represented by the term
A(B(C(-,-),C(-,-)), *, C(B(-,*),*), C(*,B(-,*))) .

Assume now that our plan is to describe A (decision attribute) in terms of B and C
(classification attributes). We use axioms A2, A3 and rule R2 repeatedly to replace the term
above by a new equivalent term

B(C(A(-,*,-,*), A(-,*,*,-)), C(A(-,*,*,*), A(-,*,*,*))).
The goal of our strategy is to move attribute A below all classification attributes. In a

case of attributes B and C, we prefer to place B above C because there is an equal number
of object nodes having property c1 and c2 whereas there are two object nodes having property
b2 and four object nodes having property b1. Now, if a node labeled by attribute A has only
one outgoing edge then edges along a path from the root to that node define the classification
part of a rule. In our example we get two rules: b2 ∧ c1→ a1 and b2 ∧ c2 → a1 .

Discovering Rules in Information Trees 523

Now, we apply axioms A2, A3 and rule R2 again to move up the nodes labeled by attribute A
assuming that these nodes both currently and in a resulting tree have only one outgoing edge.
Term

B(C(A(-,*,-,*), A(-,*,*,-)), A(C(-,-),*,*,*))
represents the final resulting information tree (called [A;B,C]-optimal) which is

equivalent to the initial tree. We have only one rule describing A in terms of B and C which
is: b2 → a1 . Clearly this rule is optimal.

Lemma 2. Assume that information tree is semi-complete and its degree is s. Let n1, n2,…,
nk be all children of the node n and l(n1)=a. The problem of converting n to a-active node
is in the worst case 0(sk) where k is the height of the complete subtree with a root n1. We
count here the number of times the rules of inference are applied.

5 Conclusion

Information trees investigated in this paper satisfy the assumption that on the path from the
root of a tree to a leaf there cannot be two nodes labeled by the same attribute. Trees allowing
repeated attributes on a path from the root of a tree to a leaf were investigated by Cockett [4]
and used in the implementation of CASCADE system. Formal theory of information trees and
its completeness theorem with respect to the predicate ≡ allows us to manipulate information
trees using axioms A2, A3, rules R2, R3 and preserve its semantical meaning. Also, we know
that any two information trees which are semantically equivalent can be transformed from one
to another using only axioms A2, A3, A4, A5, A6 and rules R1, R2, R3. Assume that a quest
q which requires to find an optimal description of an attribute A in terms of attributes A1,
A2,…, Ak queries an information tree T. Our goal is to find [A;A1,A2,…,Ak]-optimal
information tree which is semantically equivalent to T. Example in the last section of this
paper gives us some ideas how such trees can be constructed using the formal theory of
information trees.

References

1. Chen K, Ras Z.W., Homogeneous information trees, Fundamenta Informaticae, 8, 1985,
123-149.

2. Chen K, Ras Z.W., DDH approach to information systems, Proceedings of the 1982’CISS
in Princeton, N.J., 521-526.

3. Chen K, Ras Z.W., Dynamic hierarchical data bases, Proceedings of the 1983’ICAA in
Taipei, Taiwan, 450-456.

4. Cockett R., The algebraic co-theory of decision processes, Technical Report CS-84-58,
University of Tennessee.

5. Quinlan, J.R., Induction of decision trees, Machine Learning, 1, 1986, 81-106. Reprinted
in J.W. Shavlik & T.G. Dietterich (Eds.), Readings in machine learning, San Francisco,
CA, Morgan Kaufmann, 1990

6. Quinlan, J.R., Generating production rules from decision trees, Proceedings of the Tenth
International Joint Conference on Machine Learning, Morgan Kaufmann, 1987, 304-307

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

