
<<UML>>’98

- 1 -

Best of Both Worlds - A Mapping from EXPRESS-G to UML

Dipl.-Inform. Florian Arnold, Dipl.-Inform. Gerd Podehl

Research Group for Computer Application in Engineering Design, University of Kaiserslautern
P. O. Box 3049, 67653 Kaiserslautern, Germany

Phone: +49 631 205 - 3871
Fax: +49 631 205 - 3872

E-mail: arnold@mv.uni-kl.de, podehl@mv.uni-kl.de
Abstract
On the one hand, in the world of Product Data Technology (PDT), the ISO standard STEP (STandard for the
Exchange of Product model data) gains more and more importance. STEP includes the information model
specification language EXPRESS and its graphical notation EXPRESS-G. On the other hand, in the Software
Engineering world in general, mainly other modelling languages are in use - particularly the Unified Modeling
Language (UML), recently adopted to become a standard by the Object Management Group, will probably achieve
broad acceptance. Despite a strong interconnection of PDT with the Software Engineering area, there is a lack of
bridging elements concerning the modelling language level. This paper introduces a mapping between EXPRESS-G
and UML in order to define a linking bridge and bring the best of both worlds together. Hereby the feasibility of a
mapping is shown with representative examples; several problematic cases are discussed as well as possible solutions
presented.

Keywords: UML, Correspondence with other notations, EXPRESS-G

Introduction
Within the world of Product Data Technology (PDT) and Computer Aided technologies (CAx), the need to overcome
the proprietary data formats of system suppliers led to the development of the ISO standard STEP (STandard for the
Exchange of Product model data). STEP was defined specifically to deal with the information consumed or generated
during the product lifecycle from design to manufacturing. STEP includes the information model specification
language EXPRESS and its graphical notation EXPRESS-G.

Although the main focus of STEP and PDT is not software, there are some points of contact between the fields of
PDT and Software Engineering (SE). For example, there is a need for software to convert data between the various
proprietary and system specific file formats and EXPRESS for data exchange purposes. Besides this, software tools
for the modelling, specification and manipulation of product data are necessary. In the case of graphical modelling,
mainly EXPRESS-G is used in this field. In the SE world in general, mainly other modelling languages are in use
though. Particularly the Unified Modeling Language (UML), recently adopted as a standard by the Object
Management Group, will probably achieve broad acceptance. So, in spite of the strong interconnection between PDT
and SE, there is a lack of bridging elements concerning the modelling language level. This paper introduces a
mapping between EXPRESS-G and UML in order to define a linking bridge and bring the best of both worlds
together.

In the following, some background information on EXPRESS-G is given first. Then, after a short visit to UML some
fundamentals for the mapping are explained. After this, the mapping with examples is presented whereby several
problematic cases are discussed and possible solutions presented. At the end, some conclusions are drawn and an
outlook is given.

STEP, EXPRESS and EXPRESS-G
STEP (STandard for the Exchange of Product model Data) is an international standard (ISO-10303, Industrial
automation systems and integration – Product data representation and exchange) for the computer interpretable
representation and the exchange of product model data. Part 11 of STEP is the EXPRESS language reference manual.
The formal description language EXPRESS is not a programming language but a specification language for the
consistent and logical description of the information models of STEP [Holland 1995]. EXPRESS contains object-
oriented and procedural concepts as well as data base concepts. It enables the complete and non-ambiguous
description of a mainly static product model. EXPRESS specifies an information domain in terms of entities, i.e.

<<UML>>’98

- 2 -

classes of objects sharing common properties which are represented by associated attributes and constraints. In
EXPRESS, constraints are written using a mixture of declarative and procedural language elements.

EXPRESS-G is a formal graphical notation of EXPRESS which can however only reach part of the expressiveness of
EXPRESS. The static components like entities, attributes, type declarations and hierarchies of inheritance can be
represented by EXPRESS-G. But there is a lack of possibilities to visualise functional components, local or global
rules as well as algorithms. Despite this, EXPRESS-G instead of EXPRESS has been chosen for the mapping to
enable the evaluation of two graphical representations with examples. Thus it should be possible to compare
EXPRESS-G and UML in the categories of readability, clearness, comprehensibility and complexity.

Note that this paper is not intended to explain EXPRESS-G (or even EXPRESS) fundamentals at all. A good
introduction to EXPRESS and EXPRESS-G can be found in [Schenck & Wilson 1994].

Unified Modeling Language (UML)
The Unified Modeling Language (UML) defined by the three "amigos" Grady Booch, Jim Rumbaugh and Ivar
Jacobson from Rational Software Corporation as a metamodel (and an incidental visual modelling language) for the
specification, visualisation, construction and documentation of the artifacts of software systems [UML 1997] is
especially suited for the modelling of complex, distributed and concurrent systems [Oestereich 1997]. In November
1997, the UML in its current version 1.1 was adopted to the Object Management Architecture of the Object
Management Group and therefore was accepted to become a de facto official industry standard for the metamodel in
the area of object-oriented software design.

General remarks on the mapping
The mapping from EXPRESS-G to UML shows the association of model structures with adequate examples. In
doing so, all elements of EXPRESS-G are covered and critical cases are highlighted.

Entities, schemas and entity level relations
Because EXPRESS-G does not model dynamics, i.e. it only allows for modelling the data of a static product model,
there are only static structural diagrams (i.e. class diagrams) needed on UML side. Hereby some basic modelling
elements are corresponding in a quite obvious way: EXPRESS-G entities are mapped onto classes and schemas to
packages (left half of Figure 1) because they share the same semantics.

Entity
Schema

Class
Package

0..1

1

EXPRESS-G

UML

Figure 1: Mapping of some basic elements

<<UML>>’98

- 3 -

EXPRESS-G relations (right half of Figure 1) are bi-directional but nevertheless one direction is emphasised through
an open circle. The EXPRESS-G supertype-subtype relation symbol is a thick line with a circle on the subtype end of
the relationship and is mapped to the generalisation arrow in UML.

Regarding EXPRESS-G attribute relations, it has to be kept in mind that there is a big difference between the
semantics of relational symbols on entity level and on schema level. On entity level, a dashed line with a circle at one
end denotes an optional attribute and all other attribute relationships are stated as solid lines with a circle at one end.
Thereby the circle is always on the attribute type end. The explicit attribute relationship symbols of EXPRESS-G are
mapped to unidirectional (navigable) associations in UML. In the case of optional attributes, a multiplicity of 0..1 is
added at the arrow end (compare Figure 1) of the navigable UML association. Derived, inverse and redeclared
attributes will be examined in the following chapters. The totally different meaning of relationship symbols on
schema level will also be visited later on.

Some primitive types
The EXPRESS-G predefined simple types Binary , Boolean , Integer , Logical (TRUE, FALSE or
UNKNOWN), Real , Number (Integer or Real) and String can directly be seen as primitive types in UML.

EXPRESS-G user defined types (like Date , Figure 5, and Strings , Figure 7) are also mapped to classes. Another
possibility would have been to declare them as new user defined primitive types in UML.

The way of defining new user defined primitive types in UML has been chosen for the enumeration type of
EXPRESS-G. So the respective enumeration definitions are not noted in UML (as they are not in EXPRESS-G).

Regarding the EXPRESS-G collection types Set , List , Array and Bag there are two cases to distinguish. First, a
certain collection type is simply assigned to a user defined EXPRESS-G type. In this case, an aggregation association
is used in UML (see class Date , Figure 5). Second, they are used to state the type of an attribute (see attribute
values of class FromEnt , Figure 7, and attribute elements of class Mesh, Figure 13). In all cases, the actual
kind of collection type can easily be denoted: an unordered set is the default case when denoting a multiplicity greater
than one on an association end in UML. A list may be indicated in UML by adding the constraint {ordered} , an
array by adding {array} and a bag by adding {bag} .

Complex constraints
In some cases, complex constraints which cannot be directly represented in EXPRESS-G and therefore have to be
noted outside the EXPRESS-G diagrams (i.e. in EXPRESS) have been included in the UML representation.

Representational aspects
While assigning names to entities, schemas, classes etc., the different naming conventions of EXPRESS-G and UML
have been kept to point out the differences and to illustrate the transferability. It has been waived to map the page
referencing symbols of EXPRESS-G because they have no semantic contents and are only used for structuring and
formatting purposes of documents in the case of large models.

A mapping with examples
The following EXPRESS-G examples are essentially based on the examples from [Schenck & Wilson 1994] and
mainly have the purpose to clarify certain aspects of the usage of this language rather than being examples for good
information modelling in general.

Generalisation issues
Figures 2 and 3 show that inheritance trees look very much the same in both notations, with EXPRESS-G being
something more explicit by using the (ABS) prefix for abstract classes (Figure 2). The supertype-subtype inheritance
hierarchy symbol is labelled with digit 1 highlighting that it is a OneOf relation.

<<UML>>’98

- 4 -

In UML, this is realised through a generalisation with a {disjoint} constraint. Disjoint applies to a set of
generalisations, specifying that instances may have no more than one of the given subtypes as a type of the instance
[UML 1997].

1

Root

Leaf1 (ABS) Sub1

Leaf2 Leaf3

Root

Sub1Leaf1

Leaf3Leaf2

{ disjoint }

 Figure 2: Inheritance in EXPRESS-G Figure 3: Inheritance in UML

Attributes and constraints
Figure 4 shows the visualisation of a concept Person in EXPRESS-G notation. Here, a person has several
characteristics like a first name and a last name, an optional nickname, a special type of hair, a date of birth and
implicitly a certain age. Age has been prefixed with (DER) , for derived, to denote that it is a derived attribute.

11

Person

Hai rType

I N T E G E R

FemaleMale

Hair

Date

Marr ied
*Husband *Wi fe

Ma idenName

A [1:3]
Bi r thDate

Fi rs tName

LastName

NickName

(DER) Age

Chi ldren S[0:?]

(INV) Parents S[0:2]

 STRING

 STRING

Figure 4: Concept person in EXPRESS-G

The enumeration HairType : {bald, dyed, natural, wig} has to be noted outside the diagram. In the
example, a person is either female or male. If female, the person optionally has a maiden name. (This relation surely
depends on the country’s laws and can be regarded being sexistic.) A person may have children and up to two (living)
parents, who naturally are persons, too. The attribute parents is defined as being inverse to children by a

<<UML>>’98

- 5 -

preceding (INV) . In EXPRESS-G, an inverse attribute denotes a bi-directional relationship between two entities: an
inverse attribute of an entity A references an entity B that itself references entity A [ProSTEP 1994].

A man and a woman may be married whereby in the chosen example polygamy as well as (for equality reasons)
polyandry are forbidden through uniqueness constraints, i.e. that the values of husband and wife must be unique
across all instances of entity Married . In EXPRESS-G, only the pure existence of these constraints can be
displayed by prefixing Husband and Wife with an asterisk while the constraints (no_polyandry and
no_polygamy) themselves have to be noted and defined outside the diagram, i.e. in EXPRESS.

When translating this concept to UML (Figure 5), there are several points to be taken into account. The relationship
between Person and Male respectively Female is a OneOf relationship, i.e. a person can either be female or
male but not both at the same time. A Male and a Female may be married. Hereby the constraints described above
can straightforward be denoted in UML.

Person

 hair : HairType
 f irstName : String
 lastName : String
 nickName[0..1] : String
 /age : Integer

Male
Female

 maidenName[0..1] : Str ing

Married

{ disjoint }

husband
{ no_polyandry }

wife
{ no_polygamy }

Date
birthDate

Integer

1

3 { array }

children

parents

0..*

0..2

Figure 5: Concept person in UML

Person is modelled in UML (Figure 5) as a class with several attributes. The attribute nickName is marked as
optional by the use of [0..1] as can be seen in the attribute compartment of class Person. /age denotes that
it is a derived attribute. The children and parents attributes of EXPRESS-G are modelled in UML as one
association with the role names children and parents and appropriate multiplicities.

An additional example mainly for the use of EXPRESS-G constraint concepts is given in Figure 6. Pick is of Type
select . An EXPRESS-G select type defines a named collection of other types (entity types or defined types). A
value of a select type is a value of one of these specified types. The EXPRESS-G symbol for a select type is a dashed
rectangle with two vertical lines at the left end and can be modeled in UML by an aggregation association with an
{or} constraint (Figure 7). The {or} constraint indicates a situation in which only one of the several potential
associations may be instantiated at one time for a single object [UML 1997]. For mapping the defined class Name,
the {alias} constraint denotes the simple renaming of the class STRING into Name.

<<UML>>’98

- 6 -

Root Sub2 Pick

Sub1

AnEnt
Name

FromEnt ToEnt Str ings

R E A L

choose

attr

values A[1:3]

descr ipt ion

*val

text

 L[1:?]

attr

g raph

 BINARY

 STRING

Figure 6: Defined classes, select classes, and constraints in EXPRESS-G

The EXPRESS-G user defined type Strings is mapped to an aggregation association while adding an
{ordered} constraint to state that it corresponds with a List collection type in EXPRESS-G. The val attribute is
constrained as well (Figure 7). The asterisk preceding an attribute denotes that there is a description of the rule in the
accompanying documentation (i.e. noted in EXPRESS: WHERE positive : val >= 0.0). For this example, a
positive value constraint was included into the UML description.

Root

Sub1 Sub2

 graph : Binary

Pick

NameAnEnt

ToEnt

 val : Real { positive : val >= 0.0 }

FromEnt

 values[3] : Real { array }

String

Strings

choose

 attr

 0..1

1 descript ion

 attr

 text

1

 1..* { ordered }

{ alias }

{ or }

Figure 7: UML notation for figure 6

<<UML>>’98

- 7 -

Attribute redeclaration
Attribute redeclaration is a concept which is specific for EXPRESS respectively EXPRESS-G and has no direct
equivalence within UML. A subtype may redeclare its inherited attributes by preceding their name by (RT). In Figure
8, Leaf inherits the optional attribute Attr from Middle and redeclares it to be of type Sub which must be a
specialisation of the original type Super of Attr . The same applies to the second redeclaration where the attribute
Num is redeclared to be of type INTEGER instead of type NUMBER (which could be REAL or INTEGER).

Middle Super

Leaf Sub INTEGER

Attr
Num

(RT) Num(RT) Attr

 NUMBER

Root Numero
NumAttr No

 NUMBER

Attr1

Figure 8: Attribute redeclaration in EXPRESS-G

UML does not support the possibility to inherit the structure of a class and then redeclare it. This is why a trick was
used to model attribute redeclaration (Figure 9). Leaf inherits only the operations of Middle but not the structure
(stated by a dashed generalisation arrow [UML 1997]). This makes it possible to again declare attr within Leaf .

Middle Super

 num : Number

Sub

 num : Integer

Leaf

Root
Numero

 no : Number
0..1

1

numAttr

attr1
0..1

1 attr

 attr1

attr

Figure 9: Attribute redeclaration in UML

<<UML>>’98

- 8 -

The drawback of this approach is first that also the attribute attr1 needs to be declared again. Second, if there is a
supertype Root of Middle it is necessary for Leaf to inherit not only the operations but also the attributes from
Root . Therefore an additional generalisation arrow between Leaf and Root is inserted. When transferring this
to implementation level, care has to be taken in order to avoid conflicts because of the possibility of multiple
inheritance of identical operations in Leaf from both Middle and Root .

Schemas
All EXPRESS-G examples investigated until now are entity-level models, i.e. only the contents of one single schema
has been displayed. Next we are going to examine a schema-level model, i.e. an example with multiple schemas
where solely schemas and their relations are shown.

Remember that on schema level, two EXPRESS-G relation symbols have a meaning which differs from the one on
entity level. Sad but true! A dashed line with an open circle at one end denotes a schema-schema ‘reference’, i.e.
instances of referenced entities can only occur when required as attribute values. A normal line with an open circle at
one end displays a ‘use’ relation between schemas, i.e. one or more foreign entity declarations are treated as local
declarations.

Figure 10 shows three schemas on schema level with schema fem using the entity property from schema mat and
referencing the entity point from schema geom while giving point the alias node .

f em

g e o m

mat

point > node

property

Figure 10: Schema level model in EXPRESS-G

In UML (Figure 11) this complies to a package Fem, where the class Mat::Property is explicitly imported by
using its full qualified pathname. Besides this there is a class Node which is associated with class Point of
package Geom. Hereby the property-string {reference} has been added to Node to indicate the special kind
of relationship between Node and Point which cannot be directly expressed in UML.

Node
{ reference }

Mat::Property

F e m

Point

G e o m

{ alias }

Figure 11: Representation of EXPRESS-G schemas in UML

Another possibility would have been to use property strings {EXPRESS-G references} and {EXPRESS-G
uses} for reasons of a similar treatment of both relationships. In principle, it may also be possible to map these

<<UML>>’98

- 9 -

relationships to stereotypes in UML, but the stereotype <<uses>> has already been defined with totally different
semantics so this would surely lead to misunderstandings at least.

Inter-schema references
Figure 12 shows an EXPRESS-G model on entity-level that corresponds to the schema-level model of Figure 10 and
should clarify the usage of inter-schema references. The entity element has two attributes. Thereby nodes is a
‘reference’ to entity point (aliased as node) from schema geom. The fact that it is a ‘reference’ is expressed by the
dashed rectangle. The optional attribute material ‘uses’ (EXPRESS-G semantics) entity property from schema
mat , denoted by the solid rectangle. Entity mesh also has two attributes: elements , a non-empty list of elements
of type element , and material which also has type property from schema mat .

mesh

element

material

elements L[1:?]

materialnodes L[1:?]
mat.propertygeom.point

node

Figure 12: Inter-schema references in EXPRESS-G

Regarding the UML representation (Figure 13) of this example, the following particularities are worthwhile
explaining: there is no direct counterpart in UML for the ‘uses’ and ‘references’ statements of EXPRESS-G. Thus
another way has to be chosen: the ‘uses’ statement is modelled by the qualified import Mat::Property of a class
from another package. On the other side, class Node is associated with class Point from package Geom and simply
aliases it. The class Point itself is thereby not known inside package Fem to match the EXPRESS-G ‘reference’
semantics.

Mesh

Element Mat::Property Node { reference }

Point

G e o m

 material

nodes

1..* { ordered }

1

 elements

1..* { ordered }

1

material

0..1

1

{ alias }

Figure 13: Representation of EXPRESS-G inter-schema references in UML

<<UML>>’98

- 10 -

Conclusion and outlook
The above examples show the feasibility of a mapping between EXPRESS-G and UML. But since EXPRESS-G is
not consequently object-oriented and shows some specifics, the mapping to UML is by no means trivial or
unambiguous. Not in all cases really elegant solutions are possible but nevertheless a complete and consistent
mapping can be realised.

Although the final judgement on the introduced mapping will evolve over time and has to be left to the reader, some
further impressions may be noted:

• Having once gotten familiar (to some degree) with both EXPRESS-G and UML there is no general advantage of
one notation over the other concerning readability and comprehensibility.

• The expressive power of UML is not at all exhausted to reach the expressiveness of EXPRESS-G (the mapping
is not onto at all).

• Complex constraints which cannot be directly represented in EXPRESS-G and have to be attached (in pure
EXPRESS notation) to the diagrams can easily be represented in UML. An example can be found in the
explanatory text for Figure 6 and Figure 7.

A mapping from EXPRESS to UML is implicitly given for those elements which can be expressed by EXPRESS-G
while the rest still has to be examined in detail. Just before delivering the final version of this paper we were notified
that since a few weeks there is a CASE tool extension "that converts your EXPRESS models to UML"
[SoftLab 1998]. It is rather new (available since March 31st, 1998) and we just examined it very roughly in the last
days. This tool extension is certainly based on a mapping from EXPRESS to UML, but we have the impression that
this mapping is quite different from ours and has surely been developed independently. Their mapping seems not to
be final in all details today, e.g. definitions of select and user defined types, as well as constraints and inter-
schema references are only managed internally but they are not visualised in UML. So we assume that there are other
CASE tools evolving in the same direction and that the future will show which tool (and mapping) is most convenient
to meet the requirements.

Bibliography

[UML 1997] G. Booch, I. Jacobson, J. Rumbaugh: ”The Unified Modeling Language,
Documentation Set 1.1”, September 1997

[Holland 1995] M. Holland: ”Produktdatentechnologie und STEP”, STEP Grundschulung,
ProSTEP GmbH, Darmstadt, 1995

[Oestereich 1997] B. Oestereich: ”Objektorientierte Softwareentwicklung mit der Unified Modeling
Language”, 3., aktualisierte Auflage (UML 1.0), Verlag R. Oldenbourg, München,
1997

[ProSTEP 1994] ProSTEP GmbH: "EXPRESS-Grundkurs - Schulungsunterlagen", ProSTEP GmbH,
Darmstadt, 1994

[Schenck & Wilson 1994] D. Schenck, P. Wilson: "Information Modeling the EXPRESS Way", Oxford
University Press, January 1994

[SoftLab 1998] SoftLab AB (SoftLab is a subsidiary of Rational Software Corporation): "Rational
Rose EXPRESS Extension" (software), http://www.softlab.se/extern/products/
express_uml/index.htm, Sweden, available since March 31st, 1998

