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Abstract. The Genetic Algorithms (GAs) paradigm is being used in-
creasingly in search and optimization problems. The method has shown
to be efficient and robust in a considerable number of scientific domains,
where the complexity and cardinality of the problems considered elected
themselves as key factors to be taken into account. However, there are
still some insufficiencies; indeed, one of the major problems usually as-
sociated with the use of GAs is the premature convergence to solutions
coding local optima of the objective function. The problem is tightly re-
lated with the loss of genetic diversity of the GA’s population, being the
cause of a decrease on the quality of the solutions found. Out of question,
this fact has lead to the development of different techniques aiming to
solve, or at least to minimize the problem; traditional methods usually
work to maintain a certain degree of genetic diversity on the target pop-
ulations, without affecting the convergence process of the GA. In one’s
work, some of these techniques are compared and an innovative one, the
Random Offspring Generation, is presented and evaluated in its merits.
The Traveling Salesman Problem is used as a benchmark.

Keywords: Genetic Algorithms, Genetic Diversity, The Traveling Sales-
man Problem.

1 Introduction

Since its genesis, and in particular with the work by John Holland [Hol75], the
Genetic Algorithms (GAs) paradigm has grown either in its areas of application
or in its theoretical foundations. Indeed, the number of conferences and jour-
nals devoted to the subject is remarkable, as well as the amount of commercial
software already available to tackle real-world problems.



In fact, the GAs are not too demanding, as could be natural to expect, in
terms of their needs of computational power, being applied so far to a wide range
of problems, going from the fields of Combinatorial or Numeric Optimization to
Image Processing or even Machine Learning, showing to be efficient and robust.

However, and in spite of these achievements, the approach still suffers from
a number of insufficiencies; or rather, one of the most harmful, and object of
attention in this work, is the premature convergence of the GA to local optima
of the objective function, defined for the target problem.

The significant influence of this anathema at the problem solving level, has
promoted the development of techniques in order to overcome such an handicap.
In this study, one pursues the purpose to hang in balance a set of such procedures,
by evaluating their performance in tasks that may lead to renew the saga of the
Traveling Salesman Problem (TSP).

One’s paper is organized as follows: it starts with a description of the problem
at hand, the TSP. Then it endorses the GA paradigm in terms of its most
important features. It continues addressing some techniques to avoid premature
convergence to local optima and, finally, foregone conclusions and new directions
for future work are reported.

2 The traveling salesman problem

The TSP is a classic, well known NP-hard problem in Combinatorial Optimiza-
tion; given a set of n cities, and the costs associated with the travel between
each pair, the objective is to find a roundtrip of minimal total cost (or length),
visiting each city exactly once.

The problem is stated as a n-dimensional cost matrix of values dij , where the
purpose of the exercise is to obtain a permutation of these values, such that the
sum of the costs dij , for any i and j being i the precedent of j in the sequence, is
minimal. There are problems in areas so distinct as Computer Wiring, Wallpaper
Cutting, Crystallography or Job Sequencing that can be formulated and solved
as instances of the TSP.

The TSP can be defined in terms of an Integer Linear Programming procedure
and postulates (or restrictions) as follows [Lap91]:

Minimize :
∑n

i=1

∑n

j=1
dijxij (1)

Subject to :
∑n

j=1
xij = 1, ∀i (2)

∑n

i=1
xij = 1, ∀j (3)

xij ∈ {0, 1}, ∀i, j (4)
∑

i,j∈S xij < |S|, ∀S ⊂ V, S 6= ∅ (5)

The first equation defines the cost function in terms of the values dij and of
the decision variables, defined as binary variables in (4). When xij is one, the
edge connecting i and j is in the solution, otherwise (xij is zero) the contemplated



edge is not in the solution. The equations (2) and (3) define the constraints of
only one edge entering and leaving a given node. In the last equation, V stands
for the set of nodes in the instance and |S| for the cardinality of S, defined to
be a subset of V . The intended meaning of equation (5) is, therefore, to avoid
feasible solutions containing cycles with length smaller than n.

3 The genetic algorithm

In the GA used, each individual (or chromosome), that makes the fixed pop-
ulation, codes a TSP valid tour. The genotype (the genetic constitution of an
organism) of the individual is built on a sequence of n integers with no repeated
values. The phenotype (the physical constitution of an organism as fixed by the
interaction of its genetic structure with the environment) is fairly obvious, once
the position of any allele on the chromosome determines the order by which the
node that it codes is visited. An edge is assumed to connect the nodes that are
given by the chromosome’s last and first values.

This kind of genotypical representation is named Order-Based Representation
(OBR), and is in some ways quite different from the traditional Binary-Based
Representations (BBRs), where the order of the genes in the chromosome is not,
or should not be, important to its phenotypical interpretation. The constraint on
non-duplicates in OBR, and the dependence on the order of the genes, justifies
the development of a whole new class of operators for the crossover and the
mutation operations.

As far as a TSP instance is considered, the evaluation function will assign
to each individual in the population a fitness value, a measure of the total cost
of the solution coded by its genotype; it should also be noticed that the best
individuals are the ones with the lowest fitness values.

The major structure of the GA used in one’s approach is outlined in the
pseudo-code of Figure 1, where ps, nc and sr stand, respectively, for the popu-
lation size, the number of offspring generated per iteration, and the number of
individuals replaced when moving from a generation to the next.

3.1 Selection

The selection operator is used to choose parents for reproductive trials, to pick
the survivors from a generation to the next one, and to decide which of the
offspring will be inserted into the population. The procedure used, in this study,
is based on a stochastic process using a Roulette-Wheel scheme. The weight as-
signed to each individual is calculated to be inversely proportional to its ranking,
considering the fitnesses of individuals on the whole population. The ranking is
ascendent when the purpose is to select the best individuals, and descendent
when one is looking to the worst of it.

3.2 Crossover

The crossover operator is defined based on the function



BEGIN
Initialize time (t = 0).
Generate, at random, ps individuals (initial population P0) and out their evaluation.
WHILE NOT (end test) DO

Select from the present population (Pt) the individuals.
Recombine these individuals to breed nc offspring and proceed on their evaluation.
Select sr offspring to insert into the next population (Pt+1).
Select ps − sr survivors from Pt to be inserted into Pt+1.
Mutate Pt+1 and re-evaluate mutated individuals.
Increase current time (t = t + 1).

END WHILE
END

Fig. 1. Structure of the GA used

Crossover : Individual×Individual×Parameters 7→ Individual[×Individual]

where the ”×” names Cartesian product, the ”[” and ”]” stand for an optional
entity, and ”7→” (without danger of ambiguity) names ”7→”.

In this study a number of different crossover operators were used, namely
the so called blind operators, that recombine the genetic material of their ances-
tors without regard of the underlying solution; i.e., with no links to the target
problem. There is also the ones known as hybrids, which are associated with
operators that take advantage of the problem’s specific knowledge; i.e., in the
case of the TSP, the operators use the information in the cost matrix to guide
the ancestors recombination process.

Below is a list of the blind operators implemented so far, as well as some
references to their genesis [Sta91][RocNev98].

– Uniform Order Preserving Crossover (UOPX)
The operator emphasizes the relative order of the genes in both ancestors,
working with a randomly generated binary mask, with a size made equal to
the genotype’s length. It is the equivalent to the Uniform Crossover operator
in BBRs, and some good results on its application to the TSP are being
reported [Dav91].

– EDGe Crossover (EDGX)
The edge family of crossover’s operators is based on the principle of main-
taining all possible pairs of adjacent genes (edges) on the chromosome. It
was specially designed for the TSP problem [Sta91].

– Maximum Preservative Crossover (MPX)
The MPX operator was designed by Mühlenbein [Muh91] with the purpose
to tackle the TSP by preserving, in the offspring, subtours contained by both
ancestors.

– SCHleuter Crossover (SCHX)



The SCHX [Sch89] is a variation of the MPX, with some features similar to
the order preserving ones, and also contemplating the process of the inversion
of partial tours.

When it comes to the hybrid operators, two were considered.

– Greedy Crossover (GX)
The GX was introduced by Grenfenstette [Gre85] and it is based on a simple
rule, that states that among the existing edges, when recombining informa-
tion from the ancestors to the offspring, one must choose the ones that carry
the minimum cost to the solution, in each step, thus believing that local
minimum sub-tours should lead to better global results than the use of the
more expensive ones.

– Half Greedy Crossover (HGX)
The HGX operator was proposed in [Kur96]. The idea is to make the operator
less greedy, delaying the convergence process with the purpose of preventing
premature convergence to local optima.

3.3 Mutation

A mutation is an unary operator that can be defined as the function

Mutation : Individual × Parameters 7→ Individual

By analogy with what happens in nature, a mutation operation normally
induces a small change to the genotype of the individual to which it applies,
happening with a frequency, called Mutation Rate (MR); MR defines the prob-
ability under which a mutation operator is applied, to a particular position of
the genotype of an individual, in each iteration of the GA.

In this work, four different categories of mutation operators were considered,
namely adjacent swap, non-adjacent swap, sub-list scramble, and partial inver-
sion.

4 Preventing the premature convergence to local optima

In this section one aims to describe some of the techniques used to prevent the
premature convergence to local optima. These methods work on to avoid the loss
of genetic diversity of the whole population, and in principle, will not damage
the convergence process.

4.1 Adaptive mutation rate

The mutation operator aims to introduce a random component into the search
process, with the exploitation of new chunks of the solution space, thus promot-
ing the increase of the genetic diversity of the population; i.e., it is not surprising



to find out that one of the first steps to take in order to maintain the genetic
diversity in a population is the MR’s increase.

However, a high value to this parameter introduces a certain degree of noise
into the system, thus creating serious obstacles to the convergence process.
Therefore, and in order to overcome this phenomenon, is was decided to change
the value of the MR, with appeal to an adaptive strategy based on the popula-
tion’s genetic diversity, measured at regular spaces in time, being the standard
deviation of the fitness values of the whole population used to estimate its di-
versity.

The process works as follows: one starts with an initial value for the MR,
and at regular intervals in time, the value of the standard deviation is tested. If
it is lower then a pre-defined limit, the MR is increased.

4.2 Social disasters technique

The Social Disasters Technique (SDT) was introduced by Kureichick and col-
leagues [Kur96] in order to avoid the premature convergence to local optima,
when the GAs are applied to the TSP. The general idea is to diagnose the situ-
ations of loss of genetic diversity of the population, and in such a case to apply
a catastrophic operator to it. These operators were defined with the purpose to
return the population to an acceptable degree of genetic diversity, by replacing
a number of selected individuals, by others, generated at random.

Two different operators were considered.

– Packing. Of all the individuals having the same fitness value, only one re-
mains unchanged; all the others are fully randomized.

– Judgment Day. Only the individual with the best fitness value remains un-
changed; all the others are fully randomized.

4.3 Random offspring generation

One of the features of a population converging to local optima is the large number
of individuals sharing the same genetic material. But, when this situation occurs,
there is a great probability that the crossover operator may receive as input two
individuals with equal genotypes. In this case the recombination of their genetic
material will be ineffective, since the offspring bred will simply be clone to their
parents.

The idea behind the Random Offspring Generation (ROG) is to test the
individual’s genetic material, before the crossover operation, and if a situation
as the one just referred is detected, the operation is not performed. Instead, one
offspring, or even two, are randomly generated; i.e., their genotype will code a
random solution on the problem’s domain.

Two different strategies are possible, differing on the number of the random
offspring created. With the former (1-RO), the result is made of a random gen-
erated individual being the other one clonally obtained from their parents. With
the latter (2-RO), both descendents are randomly bred. When one uses a hybrid



crossover operator, only the first strategy is applicable, due to the fact that it
only generates one offspring per two parents.

5 Experimental results

The techniques described so far were applied to three TSP instances taken from
the TSPLIB95 [Rei95]. The problems are listed in Table 1, as well as the values
of some of the relevant parameters for the GA. The instances referred can be
classified as Euclidean TSPs, i.e., defined in a way that ∀i, j, k di,j ≤ dik +
dkj . This is the case of all instances of the problem defined as a set of nodes
characterized by their coordinates in a two-dimensional space.

Table 1. The TSP Instances

Problem Nodes Optimum Population Size Mutation Rates(%)

Eil51 51 430.0 100, 200 0.1 - 1

Eil76 76 545.4 150, 300 0.05 - 0.5

Eil101 101 642.3 200, 400 0.01 - 0.3

In the experiences conducted, several options regarding the policy used to
prevent the loss of genetic diversity of the population were considered.

– None. No special technique was used to prevent the loss of diversity.
– Adaptive Mutation Rate (AMR). As described above considering the initial

value of the MR to be 0, the value for each increment to be equal to 0.01%,
0.05% or 0.1%, the number of iterations between each test to be 25 or 50
iterations, and the minimum value for the standard deviation to be 1% or
2% of the smallest fitness value in the population.

– Social Disasters Techniques (SDT), being considered two alternatives, the
first one using the Packing operator (SDT-P), and the latter using the Judg-
ment Day operator (SDT-J). A value of 0.5% of the smallest fitness value
in the population was used as the minimum limit of the standard deviation,
with tests every 100 generations.

– Random Offspring Generation (ROG), being considered 1-RO and 2-RO
strategies.

The results are given (Tables 2, 3 and 4), for each problem, in terms of the
strategy applied to prevent loss of genetic diversity, and of the crossover operator
used. The best result was obtained when combinations of other parameters,
namely the mutation rate, the population size and the mutation operator, were
considered. Each configuration was tested with 20 independent runs, being the
result obtained as the average of the fitnesses of the best individuals in each run.

It is now possible to engage into some reflections:



Table 2. Experimental results for the problem Eil51

Crossover Premature Convergence Prevention Technique
Operator None AMR SDT-P SDT-J 1-RO 2-RO

UOPX 450.7 458.4 449.9 441.8 443.2 450.3

EDGX 443.9 452.6 451.5 445.6 447.0 441.9

MPX 438.3 448.9 442.9 442.9 436.0 455.9

SCHX 443.5 442.4 443.0 444.4 440.7 437.8

GX 434.3 436.5 436.2 435.5 431.5 -

HGX 434.1 429.0 429.5 429.5 429.0 -

Best 434.1 429.0 429.5 429.5 429.0 437.8

Table 3. Experimental results for the problem Eil76

Crossover Premature Convergence Prevention Technique
Operator None AMR SDT-P SDT-J 1-RO 2-RO

UOPX 592.0 565.7 578.6 573.5 582.3 580.6

EDGX 569.3 592.7 592.9 570.9 574.9 595.3

MPX 590.1 595.6 601.2 592.8 599.5 607.0

SCHX 577.8 565.8 569.5 591.7 564.9 575.8

GX 554.8 550.6 554.3 556.6 551.3 -

HGX 554.1 555.9 551.4 552.4 551.1 -

Best 554.1 550.6 551.4 552.4 551.1 575.8

– The AMR strategy leads to solutions with a similar degree of quality as the
ones obtained via regular GAs. However, it must be stated that the use of
an AMR strategy has an obvious advantage, in the sense that it releases
the user from having to choose a specific value for the MR’s parameter, an
arduous task in many cases.

– The use of the SDT strategy, in either of its forms, does not seem to be an
important factor to the improvement of the results so far obtained, although
it may induce good solutions in some situations.

– The ROG strategy is, undoubtedly, the one that presents the best results, a
fact that in itself is not completely surprising, since it is the approach that
better takes care of the genetic diversity of the whole population.

6 Conclusions and future work

The data so far obtained, when the GA is applied to selected TSP instances,
shows that the use of artifacts to prevent the loss of genetic diversity in the target
population can improve significantly the quality of the results. In particular, the
ROG strategy seems to be a simple, but powerful method to prevent premature
convergence to local optima, and therefore improving the behavior of the GA.



Table 4. Experimental results for the problem Eil101

Crossover Premature Convergence Prevention Technique
Operator None AMR SDT-P SDT-J 1-RO 2-RO

UOPX 684.6 690.9 685.9 669.0 685.5 683.6

EDGX 721.5 715.5 710.4 693.5 684.8 708.5

MPX 708.8 716.3 719.9 718.2 711.2 707.5

SCHX 690.5 675.4 695.7 690.1 680.2 674.1

GX 652.7 664.7 651.2 669.8 653.2 -

HGX 646.3 653.4 653.4 654.0 641.4 -

Best 646.3 653.4 651.2 654.0 641.4 674.1

It must be mentioned that, unlike some other methods (eg. the Crowding
scheme [DeJ75]), these techniques keep the selection procedures unchanged, and
therefore their induced computational overheads may be disregarded.

Obviously, one does not intend to give the final solution to the problem of
preventing the premature convergence and loss of genetic diversity that occur
when using GAs. However, the results obtained by the ROG’s scheme are en-
couraging, a reason to extend these tests to other domains, in order to evaluate
the real usefulness of the method.

When one considers the way genetic diversity is created in nature, one comes
to the conclusion that the spatial organization of the living species is crucial
in their process of evolution. Therefore, it will not come as a surprise that the
integration of these findings, as well as concepts such as diploid representations
and dominance, along with the GA’s machinery, must be object of consideration
in any study that may be carried out on this arena.
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