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Abstract. A method of verifying a definite iteration over hierarchical
data structures is proposed. The method is based on a replacement oper-
ation which expresses the definite iteration effect in a symbolic form and
belongs to a specification language. The method includes a proof rule for
the iteration without invariants and inductive proof principles for prov-
ing verification conditions which contain the replacement operation. As
a case study, a parallel replacement operation for arrays is considered
in order to simplify the proof of verification conditions. Examples which
illustrate the application of the method are considered.

1 Introduction

Formal program verification that means the proof of consistency between pro-
grams and their specifications is successfully developed. The axiomatic style of
verification is based on the Hoare method [7] which includes the following stages:
constructing pre-, post-conditions and loop invariants; deriving verification con-
ditions with the help of proof rules and proving them. The functional style of
verification proposed by Mills and others [1,9] assumes that each loop is anno-
tated with a function expressing the loop effect. The functions are closely related
to the loop invariants but a difference can be noticed [4]. In both the approaches
loop annotation remains a difficult problem especially for programs over complex
data structures such as arrays, files, trees and pointers. Simplifying verification
of such programs is an important problem. Difficulties of verification have been
noted both for the functional approach to programs over arrays [10] and for the
axiomatic one to programs over pointers [5].

One way to simplify verification of such programs is to impose restrictions
to loop forms. Loops can be divided in two groups called definite and indefinite
iterations. For- and while-loops of Pascal are typical examples. A definite itera-
tion is an iteration over all elements of a list, set, file, array, tree or other data
structure. A general form of the definite iteration is proposed in [16]. In [2,6,8]
some advantages of for-loops over unordered and linear ordered sets are discussed
for the axiomatic approach, and proof rules which take into account the specific
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character of the for-loops are proposed. In [16] the functional method for verify-
ing the definite iteration in the general form is described. However, annotation
of the definite iteration remains a difficult problem for programs over complex
data structures.

In [12,13] we proposed a symbolic method of verifying the definite iteration
of such a form as loops over linear ordered sets which had the statement of
assignment to array elements as the loop body. The main idea of the method is
to use the symbols of invariants instead of the invariants in verification conditions
and a special technique based on the loop properties for proving the verification
conditions. In [14] we extended the symbolic method to the definite iteration
over data structures without restrictions on the loop bodies.

The purpose of this paper is to develop a symbolic method for the definite it-
eration over hierarchical data structures, which allows us to represent some cases
of while-loops. In Section 2 the notion of hierarchical data structures is defined
and useful functions over the structures are introduced. A definite iteration and
a replacement operation which represents the effect of the iteration by means of
a symbolic form are described in Section 3 along with a proof rule without in-
variants for the iteration. Inductive proof principles for proving assertions which
contain the replacement operation are presented in Section 4. A case of study
of loop bodies over arrays and a parallel replacement operation which allows us
to simplify verification condition proofs are considered in Section 5. Examples
which illustrate the application of the symbolic method are given in Section
6. In conclusion, results and prospects of the symbolic verification method are
discussed. Appendix contains proofs of two theorems from Section 5.

This work is supported in part by INTAS-RFBR grant 95-0378.

2 Data Structures

We introduce the following notation. Boolean operations are denoted by sym-
bols ∧ (conjunction), ∨ (disjunction), → (implication), ¬ (negation), ↔ (equiv-
alence). We suppose all free variables to be bound by universal quantifiers in
axioms, theorems and other formulas. Let {s1, s2, . . . , sn} be a multiset (some-
times a set) which consists of elements s1, . . . , sn. Here s ∈ T denotes the
membership of s in the multiset T . Let T1 − T2 be the difference of multi-
sets T1 and T2. For the function f(x) we denote f0(x) = x, f i(x) = f(f i−1(x))
(i = 1, 2, . . .).

Let us remind the notion of a data structure which contains a finite number of
elements [16]. Let memb(S) be the multiset of the elements of the structure S,
and | memb(S) | be the power of the multiset memb(S). The following three
operations are defined for the structure S: empty(S) is a predicate whose value is
true if memb(S) is empty and false otherwise; choo(S) is a function which returns
an element s of memb(S); rest(S) is a function which returns a structure S′ of
the same type as S such that memb(S′) = memb(S)−{choo(S)}. The functions
choo(S) and rest(S) will be undefined if and only if empty(S). Typical examples
of the structures are sets, sequences, lists, strings, arrays, files and trees.
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We introduce a number of useful functions related to the structure S in the
case of ¬empty(S). We denote si = choo(resti−1(S)) for i = 1, . . . , n provided
¬empty(restn−1(S)) and empty(restn(S)). So, memb(S) = {s1, s2, . . . , sn} and
last(S) is a partial function such that last(S) = sn. Let str(s) denote a struc-
ture S which contains the only element s.

Let M = [m1, . . . ,mk] denote a vector which consists of elements
mi(1 ≤ i ≤ k). We will use pred(M, j) (j = 1, . . . , k) to denote the set {mi | 1 ≤
i < j} and the empty set if j > 1 and j = 1, respectively. We will consider the
vector M = [m1, . . . ,mk] as a structure such that choo(M) = m1, rest(M) =
[m2, . . . ,mk] (if k ≥ 2), empty(rest(M)) (if k = 1). We consider m ∈ M to be
a shorthand for m ∈ memb(M). Let con(M1,M2) be a concatenation operation
of vectors M1 and M2.

For the structure S we assume that vec(S) = [s1, . . . , sn] provided
¬empty(S), memb(S) = {s1, . . . , sn} and si = choo(resti−1(S))(i = 1, . . . , n). A
function head(S) returns the structure such that vec(head(S)) = [s1, . . . , sn−1]
provided vec(S) = [s1, . . . , sn].

Let us introduce a concatenation operation con(S1, S2) for the structures S1

and S2 by means of a recursive definition. The explicit definition of the opera-
tion can be complicated for some structures, for example, trees. The recursive
definition is as follows: con(S1, S2) = S2 if empty(S1), choo(con(S1, S2)) =
choo(S1) and rest(con(S1, S2)) = con(rest(S1), S2) if ¬empty(S1). We con-
sider con(S, s), con(s, S), con(S1, S2, S3) to be shorthands for con(S, str(s)),
con(str(s), S), con(con(S1, S2), S3), respectively.

The following theorems express some important properties of the concatena-
tion operation for the structures.
Th1. ¬empty(S)→ con(choo(S), rest(S)) = S.

Th1 is immediate from the definition of con.
Th2. con(vec(S1), vec(S2)) = vec(con(S1, S2)).
Th3. ¬empty(S)→ con(head(S), last(S)) = S.

Th2 and Th3 are proved with the help of the induction by | memb(S1) | and
| head(S) |, respectively.

Let us consider data structures S1, . . . , Sm. We will use T (S1, . . . , Sm) to
denote a term constructed from Si with the help of the functions choo, last, rest,
head, str, con. Sometimes we will omit all Si in T (S1, . . . , Sm). For a term T
which represents a data structure, we will denote the function | memb(T ) | by
lng(T ). The function can be calculated by the following rules: lng(Si) =
| memb(Si) |, lng(con(T1, T2)) = lng(T1) + lng(T2) lng(rest(T )) =
lng(head(T )) = lng(T )− 1, lng(str(s)) = 1.

Let a hierarchical data structure S = STR(S1, . . . , Sm) be defined by the
functions choo(S) and rest(S) which are constructed with the help of condi-
tional (if-then-else), superposition and Boolean operations from the following
components:
- terms which do not contain S1, . . . , Sm;
- the functions choo(Si), rest(Si), last(Si) and head(Si) for all i = 1, . . . ,m;
- the predicate empty(Si)(i = 1, . . . ,m);
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- terms of the form STR(T1, . . . , Tm) such that∑m
i=1 lng(Ti) <

∑m
i=1 lng(Si);

- the undefined element ω.
Note that the undefined value ω of the functions choo(S) and rest(S) means

empty(S). The restriction that we impose on terms Tj in the recursive definition
of STR(S1, . . . , Sm) ensures termination of the definition process.

3 Definite Iteration over Structures and Replacement
Operation

We recall the notion of the definite iteration over structures from [16]. Let us
consider the statement
(1) for x in S do v := body(v, x) end
where S is the structure, x is the variable called the loop parameter, v is the
data vector of the loop body (x 
∈ v), v := body(v, x) represents the loop body
computation. We suppose that the loop body uses variables from v(and x), does
not change the loop parameter x and iterates over all elements of the structure S.
So, the loop body terminates for every x ∈ memb(S).

Operational semantics of iteration (1) is defined as follows. Let v0 be the
vector of initial values of variables from the vector v. The result of the iteration
is v = v0 if empty(S). If ¬empty(S) and vec(S) = [s1, . . . , sn], the loop body
iterates sequentially for x defined as s1, s2, . . . , sn.

We associate a function body(v, x) with the right part of the body of iteration
(1) such that the body has the same form v := body(v, x). To present the effect
of iteration (1), let us define a replacement operation rep(v, S, body) to be a
vector vn such that v0 = v, n = 0 provided empty(S), vi = body(vi−1, si) for
all i = 1, . . . , n provided ¬empty(S) and vec(S) = [s1, . . . , sn]. It should be
noted that in the expression rep(v, S, body) all variables of the term body are
considered to be bound in the term. Therefore, substitutions for the occurrences
of the variables are not performed in the term body.

Important properties of the replacement operation are expressed by the fol-
lowing theorems.
Th4. rep(v, con(S1, S2), body) = rep(rep(v, S1, body), S2, body).

Th4 is proved with the help of the induction by | memb(S1) |.
Th5. ¬empty(S)→ rep(v, S, body) = body(rep(v, head(S), body), last(S)).

Th5 follows from Th3 and Th4. Let us denote the iteration (1) by iter(v, S).
Th6. iter(v, S) is equivalent to the multiple assignment v : = rep(v, S, body).
Proof. We use the induction by | memb(S) |. If ¬empty(S), then iter(v, S) is
equivalent to the program begin iter(v, head(S)); v := body(v, last(S)) end. It
remains to use Th5.

To describe a proof rule for the iteration (1), we introduce the following
notation. Let P,Q, inv and prog denote a pre-condition, a post-condition, an
invariant, and a program fragment, respectively. {P} prog {Q} denotes partial
correctness of the program prog with respect to the pre-condition P and the
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post-condition Q. Let R(y ← exp) (or R(exp1 ← exp)) be a result of substitu-
tion of an expression exp for all the occurrences of a variable y (or an expression
exp1) into a formula R. Let R(vec ← vexp) denote a result of the synchronous
substitution of the components of an expression vector vexp for all the occur-
rences of corresponding components of a vector vec into a formula R.

The replacement operation allows us to formulate a proof rule without in-
variants for the iteration (1). Indeed, let us consider the following proof rule.
rl1. {P} prog {Q(v← rep(v, S, body))} �
{P} prog; for x in S do v := body(v, x) end {Q}

where the post-condition Q does not depend on the loop parameter x.

Let PROOF denote the standard system of proof rules for usual statements
including multiple assignment. The following corollary from Th6 justifies the
proof rule rl1.
Corollary 1. The proof rule rl1 is derived in the standard system PROOF.

We will generalize the definite iteration (1) allowing for the output from the
loop body under a condition. The condition can depend on the loop parame-
ter x but it does not depend on the variables from the data vector v. For this
purpose we will define the iteration (1) over hierarchical data structures which
is equivalent to the generalized one.

Let us consider the statement
(2) for x in S0 do if cond(x) then EXIT ; v := body(v, x) end
where S0 is arbitrary data structure, the condition cond(x) does not depend on
the variables from v, and EXIT is the statement of termination of the loop.

Let a hierarchical data structure S = STR(S0) be defined with respect to
the structure S0 and to the condition cond as follows:
(choo(S), rest(S)) = if empty(S0) ∨ cond(choo(S0)) then (ω, ω)
else (choo(S0), STR(rest(S0))).

Th7. The generalized iteration (2) is equivalent to the iteration (1) with
S = STR(S0).

Proof. We will use the induction by | memb(S0) |= n. Let us suppose n > 0
and the iterations to be equivalent if | memb(S0) |< n. So, ¬empty(S0). In the
case when ¬cond(choo(S0)), the iteration (2) is equivalent to the program
v := body(v, choo(S0)); for x in rest(S0) do
if cond(x) then EXIT ; v := body(v, x) end.

From ¬cond(choo(S0)), it follows that ¬empty(S) and the iteration (1) is equiv-
alent to the program
v := body(v, choo(S0)); for x in rest(S) do v := body(v, x) end.
It remains to notice that the programs are equivalent because
choo(S) = choo(S0), rest(S) = STR(rest(S0)), | memb(rest(S0)) |= n − 1, and
the inductive hypothesis is applicable.
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4 Induction Principles

Verification conditions including the replacement operation are generated by
means of the proof rule rl1. To prove the verification conditions, we need a
special technique.

Let prop(STR(S1, . . . , Sm)) denote a property expressed by a first-order logic
formula only with free variables S1, . . . , Sm. The formula is constructed from
function symbols, variables and constants by means of Boolean operations and
first-order quantifiers. The function symbols include memb, empty, vec, choo,
rest, last, head, str, con. To prove such properties, we present an induction
principle.
Induction principle 1. The property prop(STR(S1, . . . , Sm)) holds for all
structures S1, . . . , Sm if the following two conditions hold:
1) empty(S1) ∧ . . . ∧ empty(Sm)→ prop(STR(S1, . . . , Sm)),
2) for all S1, . . . , Sm such that ¬empty(Si) for appropriate i = 1, . . . ,m, there ex-
ist terms T1, . . . , Tm for which

∑m
i=1 lng(Ti) <

∑m
i=1 lng(Si) and

prop(STR(T1, . . . , Tm))→ prop(STR(S1, . . . , Sm)).

The validity of this principle can be proved with the help of induction by
n =

∑m
i=1 lng(Si).

Let prop(rep(v, S, body)) denote a property expressed by a first-order logic
formula with the only free variable S. The formula is constructed from the re-
placement operation rep(v, S, body), function symbols, variables and constants
by means of Boolean operations, first-order quantifiers and substitution of con-
stants for variables from v.
Induction principle 2. The property prop(rep(v, S, body)) holds for each struc-
ture S if the following two conditions hold:
1) empty(S)→ prop(rep(v, S, body)),
2) for each S such that ¬empty(S) there exists a term T (S) such that
lng(T (S)) < lng(S) and prop(rep(v, T (S), body))→ prop(rep(v, S, body)).

Corollary 2 follows from induction principle 2 with T (S) = rest(S) and
theorems Th1, Th4.
Corollary 2. The property prop(rep(v, S, body)) holds for each structure S if
the following two conditions hold for each structure S:
1) empty(S)→ prop(rep(v, S, body)← v).
2) ¬empty(S) ∧ prop(rep(v, rest(S), body)) → prop(rep(v, S, body)←
rep(body(v, choo(S)), rest(S), body)).

Corollary 3 follows from induction principle 2 with T (S) = head(S) and Th5.
Corollary 3. The property prop(rep(v, S, body)) holds for each structure S if
the following two conditions hold for each structure S:
1) empty(S)→ prop(rep(v, S, body)← v).
2) ¬empty(S) ∧ prop(rep(v, head(S), body))→
prop(rep(v, S, body)← body(rep(v, head(S), body), last(S))).
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5 Case of Study: Iterations over Arrays

At first, we recall the known notion upd(A, ind, exp) which denotes an array
resulted from the array A by replacing its element indexed by ind with the
value of the expression exp [15]. A notion upd(A, IND,EXP ) with IND =
[ind1, . . . , indm] and EXP = [exp1, . . . , expm] is its generalisation which de-
notes an array obtained from the array A by the evaluation of the expression
vector EXP and after that, by the sequential replacement of its indj-th element
with the value of the expression expj for all j = 1, . . . ,m. Let Mz denote the
projection of a vector M on a variable z.

In the section we assume that the iteration body contains a vector of variables
consisted of a variable x, an array A and a vector v of other variables. So, the
body of the iteration (1) has the form (A, v) : = body(A, v, x). We also assume
that bodyA(A, v, x) can be represented by upd(A, IND,EXP ) for appropriate
vectors IND(x) and EXP (A, v, x) where if A[ind] is in expj(A, v, x)
(1 ≤ j ≤ m), then ind has the form ri(x)(1 ≤ i ≤ t). So, we impose a restriction
on IND and EXP such that indj and ri do not depend on variables from v.
Notice that the representation of bodyA by upd is natural, since such a loop body
usually contains the statements of the form A[ind] := exp which can be jointly
represented by the statement A := upd(A, IND,EXP ).

We will define a parallel replacement operation r̃ep(A, v, S, body) with respect
to the array A as a special case of the replacement operation for which the rea-
soning technique can be simplifyed. Let us define the operation r̃ep(A, v, S, body)
to be a pair (An, vn) such that A0 = A, v0 = v, n = 0 provided empty(S), Aj =
upd(Aj−1, IND(sj), EXP (A, vj−1, sj)), vj = bodyv(Aj−1, vj−1, sj) for all j =
1, . . . , n provided ¬empty(S) and vec(S) = [s1, . . . , sn]. Thus, the definition
differs from the replacement operation definition from Section 3 by the fact that
EXP included in upd depends on the initial value of the array A.

The parallel replacement operation is correct if it coincides with the replace-
ment operation. A sufficient condition of its correctness gives the following the-
orem where IND(D) = {ind(s) | s ∈ D, ind ∈ IND}.
Th8. r̃ep(A, v, S, body) = rep(A, v, S, body), if for every j = 2, . . . , n and i =
1, . . . , t, ri(sj) /∈ IND(pred(vec(S), j)).

Note that the condition of theorem 8 holds for j = 1 because
IND(pred(vec(S), 1)) is the empty set.

We introduce the following notation. A set IND(S) = {indj(s) | s ∈
memb(S), 1 ≤ j ≤ m} is called a replacement domain. The set IND(S) is
empty, if empty(S). Let us define a maximal occurrence function moc(S, k). The
function moc(S, k) will be undefined for k /∈ IND(S). If k ∈ IND(S), then
moc(S, k) = (i, j) where i is a maximal index of the elements of the vector
vec(S) = [s1, . . . , sn] such that there exists a number l for which indl(si) = k, j
is the maximal number among such the numbers l.

The following theorem gives a procedure for computing the parallel replace-
ment operation with respect to an array A.
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Th9. r̃epA(A, v, S, body)[k] = A[k] if k /∈ IND(S).
r̃epA(A, v, S, body)[k] = expj(A, r̃epv(A, v, headn−i+1(S), body), si)
if k ∈ IND(S), vec(S) = [s1, . . . , sn] and moc(S, k) = (i, j).

Note that vec(headn−i(S)) = [s1, . . . , si], therefore ¬empty(headn−i(S)) and
headn−i+1(S) will be defined. Proofs of theorems Th8 and Th9 are given in
Appendix.

Let us consider a special case where iteration (1) has the form
(3) for x in [e1, e1 + 1, . . . , e2] do A := upd(A, IND(x), EXP (A, x)) end
where e2 ≥ e1. Then S = vec(S), n = e2− e1 + 1, pred(vec(S), j) =
{e1, . . . , e1+ j−2} (j = 2, . . . , n). The following corollaries follow from Th8 and
Th9 for the iteration (3).
Corollary 4. r̃ep(A,S, upd) = rep(A,S, upd) if for every j = 2, . . . , n and i =
1, . . . , t, ri(e1 + j − 1) /∈ IND({e1, . . . , e1 + j − 2}).
Corollary 5. r̃ep(A,S, upd)[k] = A[k] if k /∈ IND(S).
r̃ep(A,S, upd)[k] = expj(A, e1 + i− 1) if k ∈ IND(S) and moc(S, k) = (i, j).

6 Examples

Example 1. Copying of ordered file with insertion.
To specify a copying program, we introduce the following notation. Let F and G
be the files considered as structures; Ω denotes the empty file; ord(F ) is a pred-
icate whose value is true if F was sorted in ascending order ≤ of elements and
false otherwise. We assume that ord(Ω) and ω < y for each defined element y
and the undefined element ω. del(F, y) is a function which returns a file resulted
from the file F by eliminating the first occurrence of the element y. If the ele-
ment y is not contained in the file F , then del(F, y) = F . hd(F, y) is a function
which returns a file resulted from the file F by eliminating its tail which begins
with the first occurence of the element y. tl(F, y) is a function which returns a
file resulted from the file F by eliminating its head which ends with the first
occurence of the element y. If the element y is not contained in the file F , then
hd(F, y) = tl(F, y) = F . y > F is a predicate whose value is true, if empty(F )
or ∀x ∈ memb(F ) y > x and false otherwise.

The following annotated program copies the sorted file F to the file G in-
serting an element w in its proper place.
{P} ins := false;G := Ω; for x in F do (G, ins) := body(G, ins, x) end;
if ¬ins then G := con(G,w) {Q}
where ins is a Boolean variable, body(G, ins, x) =
if w ≤ x∧¬ins then (con(G,w, x), true) else (con(G, x), ins), P (F ) = ord(F ),
Q(F,G) = (del(G,w) = F∧ ord(G) ∧w ∈ memb(G)).

Two following verification conditions are generated by means of the proof rule
rl1 and the standard system PROOF. We consider rep(F ) to be a shorthand for
rep((Ω, false), F, body).
VC1: P (F ) ∧ ¬repins(F )→ Q(F, con(repG(F ), w)),
VC2: P (F ) ∧ repins(F )→ Q(F, repG(F )).
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To prove the verification conditions, we apply the property
prop(rep(F )) = prop1 ∧ prop2 where prop1 = (¬repins(F )→ repG(F ) = F ∧
w > F ), prop2 = (repins(F )→ del(repG(F ), w) = F ∧ w > hd(repG(F ), w) ∧
w ∈ memb(repG(F ))∧w ≤ choo(tl(repG(F ), w))). The property prop1 specifies
the case when the variable ins remains false, w exceeds all elements of the file F ,
and F is copied to the file G. The property prop2 specifies another case when
the variable ins becomes true and the file F is copied to the file G with insertion
of the element w in its proper place. We use Corollary 3 in order to prove the
property prop(rep(F )).

Note that in [16] a mistake has been found in a version of the program with
the help of the functional method. Formal verification of the correct program is
not described in [16].

Example 2. Merging of ordered arrays with cleaning.
Let us consider two ordered arrays A1 and A2. The following structure S =
STR(A1, A2) is constructed by merging of the arrays in an ordered array.

(choo(S), rest(S)) = if ¬empty(A1) ∧ ¬empty(A2)
then if choo(A1) ≤ choo(A2) then (choo(A1), STR(rest(A1), A2))

else (choo(A2), STR(A1, rest(A2)))
else if ¬empty(A1) then (choo(A1), rest(A1))

else if ¬empty(A2) then (choo(A2), rest(A2))
else (ω, ω).

The following annotated program merges the ordered arrays A1 and A2 in
the ordered array A removing repetitive elements.
{P}j := 1;A := ∅; for x in STR(A1, A2) do (A, j) := body(A, j, x) end {Q}
where body(A, j, x) = if j > 1 ∧ x = A[j − 1] then (A, j)
else (upd(A, j, x), j + 1), ∅ denotes the empty array.

The annotations have the form:
P (A1, A2) = ¬empty(A1) ∧ ¬empty(A2) ∧ ord(A1) ∧ ord(A2),
Q(A,A1, A2) = (set(A1) + set(A2) = set(A) ∧ ord(A) ∧ difel(A))
where ord(A) is a predicate whose value is true, if A was sorted in ascending
order of elements and false otherwise (we assume that ord(A) for | memb(A) |≤
1); set(A) is a function which returns a set of all elements of A; + is the union
operation for sets; difel(A) is a predicate whose value is true, if A does not
contain equal adjacent elements and false otherwise.

The following verification condition is generated by means of the proof rule
rl1 and the standard system PROOF. We consider rep(S) to be a shorthand for
rep((∅, 1), STR(A1, A2), body).
V C : P (A1, A2)→ Q(repA(S), A1, A2).

To prove V C, we use the property prop(S) = (memb(S) = memb(A1) +
memb(A2) ∧ (ord(A1) ∧ ord(A2) → ord(vec(S)))) of the structure
S = STR(A1, A2). To prove the property, we use induction principle 1.

The verification condition V C follows from the properties prop(S) and
prop(rep(S)) = (set(repA(S)) = set(vec(S)) ∧difel(repA(S)) ∧
| repA(S) |= repj(S)− 1 ∧ (ord(vec(S)) → ord(repA(S)))). We use Corollary 3
in order to prove the property prop(rep(S)).
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Example 3. The array inversion.
The following annotated program presented by the iteration (3) inverts an array
A[1..m].
{P} for k in S do (A[k], A[m + 1− k]) := (A[m + 1− k], A[k]) end {Q}
where S = [1, 2, . . . , trunc(m \ 2)], trunc(s) is an integer nearest to s, A0 is an
initial value of the array A,P (A) = m ≥ 1 ∧A[1..m] = A0[1..m], Q(A) =
∀i (1 ≤ i ≤ m → A[i] = A0[m + 1 − i]). So, IND = (ind1, ind2), ind1(k) =
k, ind2(k) = m + 1 − k, EXP = (exp1, exp2), exp1(A, k) = A[m + 1 − k],
exp2(A, k) = A[k]. Therefore, exp1(A, k) = A[r1(k)], r1(k) = n + 1 − k,
exp2(A, k) = A[r2(k)], r2(k) = k.

It follows from 2j ≤ m that j < m− j + 2, r1(j) and r2(j) are not contained
in IND({1, . . . , j − 1})(j = 2, . . . , trunc(m \ 2)). Therefore, by Corollary 4,
r̃ep(A,S, body) = rep(A,S, body).

The verification condition P (A) → Q(r̃ep(A,S, body)) is generated by the
proof rule rl1 when the program prog is empty. The correctness proof of the
verification condition with the help of Corollary 5 can be realized without in-
duction.

7 Conclusion

The paper presents a symbolic method for verification of definite iteration over
hierarchical data structures. The symbolic method differing substantially from
the axiomatic and functional methods has some features related with these meth-
ods. For definite iteration the symbolic method uses a proof rule which has the
form inherent in the axiomatic method, however, without invariants. To justify
the proof rule, the axiomatic method is applied. The symbolic method, such as
the functional one, makes use of a functional representation for the iteration
body and for the iteration as the replacement operation.

Let us discuss peculiarities and advantages of the symbolic method. Axiom-
atization of data structures by means of the concatenation operation con plays
an important role in the method. Indeed, useful algebraic properties of the op-
eration con are expressed by Theorems 1, 2, 3. Moreover, the operation con is
used to represent a key property of the replacement operation in Theorem 4 and
to prove Theorem 5. The symbolic method is based on the replacement oper-
ation which allows loop invariants in proof rules to be eliminated. Instead of
such an invariant, a suitable property of the replacement operation is used in
a verification process. As a result, the verification process is substantially sim-
plified because the property, as a rule, is simpler than the invariant. Besides,
induction principle 2 is rather flexible and allows us to use different induction
strategies, such as forward, backward and mixed, in proving the property. The
use of properties of hierarchical data structures simplifies proving the verifica-
tion conditions with the help of induction principle 1. Theorem 7 allows us to
represent an important case of while-loops. We have proved a more complicated
theorem which generalizes Theorem 7. This theorem is used for verification of
programs over pointers.
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Advantages of the symbolic method become prominent for programs over
complex data structures. For arrays the change of the replacement operation by
the parallel one allows us to eliminate or to simplify inductive reasoning. Notice
that the parallel replacement operation has been introduced for a special case of
arrays in [11] and has been generalized for them in [13]. A variant of the parallel
replacement operation has been used for modelling synchronous computations
in [3] which are represented by statements equivalent to for-loops over sets with
vector assignments as the loop bodies. The statements are expressed by universal
quantifiers bounded by the sets which are given by Boolean expressions.

The symbolic method of verification is promising for applications. To extend
the range of its applicability in program verification systems, it is helpful to
develop a proof technique which uses the peculiarities of problem domains. The
induction principles developed in the framework of the symbolic method can be
also useful for the functional method.
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8 Appendix: Proofs of Theorems Th8 and Th9.

Th8. It is sufficient to prove
(4) EXP (Aj−1, vj−1, sj) = EXP (A, vj−1, sj) for all j = 1, . . . , n.
Assertion (4) follows from
(5) Aj−1[ri(sj)] = A[ri(sj)] for all j = 1, . . . , n and i = 1, . . . , t.
Let us consider a generalization of (5) of the form
(6) Ak[ri(sj)] = A[ri(sj)] for all j = 1, . . . , n, i = 1, . . . , t, k = 0, 1, . . . , j − 1.
To prove (6), we will use the induction by k. If k = 0, then (6) is true be-
cause A0 = A. If 0 < k < j, then
Ak[ri(sj)] = upd(Ak−1, IND(sk), EXP (A, vk−1, sk))[ri(sj)] = Ak−1[ri(sj)] be-
cause sk ∈ pred(vec(S), j), IND(sk) ⊆ IND(pred(vec(S), j)),ri(sj) /∈ IND(sk).
It remains to apply the inductive hypothesis Ak−1[ri(sj)] = A[ri(sj)].
Th9. We will use the induction by | memb(S) |= n. If n = 0, then empty(S)
and IND(S) is the empty set. From this and Ax12, it follows that k /∈ IND(S)
and Th9. Let us consider the case n 
= 0. So, ¬empty(S). By theorem Th3,
S = con(head(S), last(S)) and IND(S) = IND(head(S)) ∪ IND(last(S)).
From this it follows that
(7) r̃epA(A, v, S, body)[k] = upd(r̃epA(A, v, head(S), body), IND(last(S)),
EXP (A, r̃epv(A, v, head(S), body), last(S)))[k].
Theorem Th9 is proved by the case analysis. Three cases are possible.

1. k /∈ IND(S). Then k /∈ IND(last(S)). From this and (7) it follows that
(8) r̃epA(A, v, S, body)[k] = r̃epA(A, v, head(S), body)[k].
It remains to apply the inductive hypothesis because | memb(head(S)) |= n− 1
and k /∈ IND(head(S)).

2. k ∈ IND(last(S)). Then there exists j such that
1 ≤ j ≤ m, indj(sn) = k, and ∀l(m ≥ l > j → indl(sn) 
= k). From this and (7)
it follows the conclusion of Th9 for i = n of the form r̃epA(A, v, S, body)[k] =
expj(A, r̃epv(A, v, head(S), body), sn).

3. k ∈ IND(head(S)) ∧ k /∈ IND(last(S)). Then (8) follows from (7). It
should be noted that moc(S, k) = moc(head(S), k), because k /∈ IND(last(S)).
Let us assume moc(head(S), k) = (i, j), where 1 ≤ i < n, 1 ≤ j ≤ m. It remains
to apply the inductive hypothesis of the form r̃epA(A, v, head(S), body)[k] =
expj(A, r̃epv(A, v, headn−i(head(S)), body), si) because
| memb(head(S)) |= n− 1. Theorem Th9 follows from this and (8).
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