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Abstract. We propose a structural operational semantics for mobile
and distributed agents. From it we derive a stochastic transition system
labelled by actions and their costs. These costs reflect the (net) archi-
tecture on which agents run. We then map stochastic transition systems
to Markov chains, and performance evaluation is carried out using stan-
dard tools. The results of our approach are shown to agree with the ones
obtained via classical evaluation techniques on a case study involving
mobile computation.

1 Introduction

Recently, stochastic process algebras [10,11,2,4,15/17,18] have been proposed as
a mean to specify software and to derive general performance measures. Pro-
cess algebra specifications are built by combining the basic actions, often called
prefixes, that a system performs. The occurrence of a prefix is represented by
a transition labelled by the associated action. The stochastic variants of pro-
cess algebras associate probabilistic distributions with prefixes. The transitions
are then labelled by a pair (u,r), where p represents the action performed and
completed in a time drawn from an exponential distribution with parameter r.
We easily derive a continuous time Markov chain from a stochastic transition
system. The stationary distribution of the chain, if any, is computed through
standard numerical tools. Finally, performance analysis is carried out on the
basis of stationary distributions. The main limitation of this solution is that
the designer of a system must specify its intended behaviour already having in
mind all the features of the architecture on which the specification will be im-
plemented. Otherwise there is little hope to associate suitable distributions with
prefixes. But the less details are needed at specification time, the better.

Our idea is to retain the advantages of stochastic process algebras without
modifying the syntax of the classic process algebras and thus letting specifica-
tions be independent of architectural aspects of implementations. The associa-
tion of probabilistic distributions with prefixes is then a matter of the compiler

J.-P. Finance (Ed.): FASE’99, LNCS 1577, pp. 204-219, 1999.
© Springer-Verlag Berlin Heidelberg 1999



Semantic-Driven Performance Evaluation 205

or the interpreter of the calculus. A compiler necessarily has all the relevant
information about the target architecture, so we can re-use it.

The main contribution of the paper is the development of an algebraic repre-
sentation of systems which is independent of their run-time support. The way in
which rates of transitions are computed allows us to take run-time support into
account. The neat separation of functional and quantitative information permits
to consider different architectures for the same system, and to establish the most
adequate in a semiautomatic way.

We are mainly interested in specifying and evaluating distributed applica-
tions, possibly involving code migration. To present our proposal in a pure set-
ting, we adopt here the higher order m-calculus (HOw) [19]. It is a basic language
for mobility in which processes are first class values. Since our technique can be
applied to any language with an operational semantics, no real limitation arises
from our choice. Our proposal relies on the idea that performance evaluation
and other quantitative analysis should start already at the design level. Besides
robustness and reliability of the design, these early measures may save efforts.
Indeed, if the design meets all behavioural requirements but leads to inefficient
implementations, the system must be re-designed. This calls for the integration
of behavioural and quantitative analysis of systems in a single methodology.

Our starting point is an enhanced version of operational semantics that gives
raise to a hierarchy of specifications of distributed systems increasingly nearer
to implementations [3,16]. The definition of the operational semantics follows
the SOS style [14], where the activities of a system are represented by transi-
tions deduced according to a set of inference rules driven by the syntax. More
precisely, we exploit proved transition systems, a parametric model used in [7,9]
to uniformly describe different qualitative aspects of processes. Transitions are
labelled by encodings of their proofs. Intuitively, the proof of a transition can
be interpreted as the low level routines performed by the run-time support to
execute the transition. Then, by inspecting these rich labels we derive the costs
of transitions, reflecting the target architecture. In our SOS definition of the
operational semantics of HOm, the cost function is parametric and can be in-
stantiated to reflect different target architectures. In this way, the same definition
can describe the behaviour of a system running on different targets.

Many real languages for concurrency, like Facile, PICT, CML, are built on
top of a core process calculus like the w-calculus [13] we use here, which can
be seen as an intermediate language. Therefore, the compiled code of high level
programs can be annotated with information about the physical architecture,
along the lines that we propose here.

We end the paper with a case study involving mobile computation. The
results given by our approach are shown to agree with those obtained via classical
evaluation techniques [1]. This is a very small step towards the applicability of
our approach. It is certainly the case that further case studies need to be done
in order to refine the technique.
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2 Higher Order w-Calculus

In this section we briefly recall the higher order m-calculus (HOm) [19], a model of
concurrent communicating processes providing the notion of naming. Names can
represent processes, and thus communications may cause processes to migrate.
We slightly enrich its syntax to better express performance analysis.

Definition 1.

Let N be a countable infinite set of names a,b,...,x,vy,... and let S be a count-
able infinite set of invisible actions 79, 71, ... with N NS = (. We also assume a
set of agent identifiers, each with an arity, ranged over by A, Ay, .. ..

Let P be a countable infinite set of processes P,Q, R, ... and let V be a set of
process variables X,Y,.... Let K stand for a process or for a name and let U
stand for a process variable or for a name. Thus, we have the following syntax

P:=0]| X |n.P| ZPj | PIP | (vx)P | [x =y]P | A(Uy,...,Uy)
JjeJ

where m may be either x(U) for input, or TK for output (where x is the subject
and U and K are the object) or 7; for silent moves. Also, J in the summation
above is a finite index set. Hereafter, the trailing O will be omitted.

The prefix 7 is the first atomic action that the process m.P can perform.
The input prefix (U) binds the occurrences of U in the prefixed process P.
Intuitively, some name or process U is received along the link named z. The
output prefix TK does not bind the name or process K which is sent along =x.
A silent prefix 7; denotes an action which is invisible to an external observer
of the system. We use a set of silent prefixes because different internal actions
may have different durations. Summation denotes nondeterministic choice. The
process » jed Pj behaves as one among the P;. The operator | describes parallel
composition of processes. The components of P;| P, may act independently; also,
an output action of P; (resp. P») at any output port T may synchronize with an
input action of P, (resp. P;) at x to create a silent action of the communication.
The operator (vz) acts as a static binder for the name x in the process P that it
prefixes. In other words, x is a unique name in P which is different from all the
external names. The agent (va)P behaves as P except that actions at ports T
and z are prohibited. However communications along link = of components of P
are not prohibited because the resulting action will be a 7. We sometimes write
(va,y)P for (va)(vy)P. Matching [x = y]P is an if-then operator: process P is
activated if x = y. Each agent identifier A has a unique defining equation of the
form A(U) = P (hereafter, U denotes Uy, ..., U,), where the U; are all distinct
and are the only free names in P.

The operational semantics for the HO7 is defined in the SOS style. The
metavariable for the labels of transitions is u (it is distinct from 7, the metavari-
able for prefixes, though it coincides in three cases). We introduce the set A
of visible actions ranged over by « (i.e. x(U) for input, ZK for free output,
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and T(K) for bound output). The bound output is originated by the interplay
of output prefix and restriction as shown in Tab. 1.

We define our enhanced labels, in the style of [6,3,7]. The label of a transition
records the inference rules used during its deduction, besides the action itself.
It is then possible to derive different semantic models for HO7 by extracting
new kinds of labels from the enriched ones (in [9] the last two authors studied
qualitative aspects of the calculus). We call proof term the encoding of the proof
in an enhanced label. Finally, we introduce a function ¢ that takes an enhanced

label to the corresponding standard action label.

Definition 2. Let £ = {[|o, |1} with x € L*, O = {},, . =m, (v2),(U)} 3 0
and let 9 € (LU O)*. Then the set © of enhanced labels (with metavariable 6)
is defined by the following syntax

0 = Ja | I | I(|[oPo, [[10101)

with ag = x(U) iff aq is either TK or T(K), and vice versa.
Function ¢ is defined as ((Va) = a, £(97;) = L(¥{]|oPo0, [[1P101)) = T.

A tag ), , means that a nondeterministic choice has been resolved in favour

of the A" component among m summands. Rule Parg (Par;) adds to the label
a tag |lo (]1) to record that the left (right) component is moving. Restriction
is represented in labels to record that a filter has been passed. We record the
resolution of a matching through tag =,,, where m is the size of the data to be
compared. The rules Comg and Closey have in their conclusion a pair instead
of a 7 to record the components which interacted (and the proof of the relevant
transitions). Their symmetric version Com; and Close; are obvious and are
omitted. Finally, the invocation of a definition enriches the label of the conclusion
of rule Ide with the tag (U ). We also record in the labels the actual parameters U
because their number and size affect the instantiation cost.

Our transition system for HOm is in Tab. 1, where an auxiliary transition

relation - 7 is used. The set I contains names that can occur in a communicated
process and that are extruded. Rules Close use I to include the receiving process
as well in the scope of the extruded names. Rule Open updates the set of these
names, that Close empties (note that in rules Open and Close it is I C fn(K)).
The actual transitions are generated by rule HO7 that discards index I. The
transitions in the conclusion of each rule stand for all their variants. Recall that
a variant of P —» Q@ is a transition which only differs in that P and @ have
been replaced by processes that are a-equivalent (they only differ in the choice
of bound names), and £(6) has been a-converted, where a name bound in ¢(0)
includes @ in its scope [13].

Hereafter, we write a transition P LN Q@ simply as 6, when unambiguous. We
also write T's(P;) to denote the set of the transitions enabled in P;. As usual,
we denote transition systems by quadruple (P, 0, —, P), where P is the set
of states (processes), © is the labelling alphabet, — is the transition relation
defined in Tab. 1, and P is the initial state.
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Table 1. Proved transition system of the HOmn-calculus.

The standard interleaving semantics is obtained from the proved transition
system by relabelling each transition through function ¢ in Def. 2.

3 Stochastic Semantics

We first discuss how to assign costs to individual transitions. Then we show how
to extract a continuous time Markov chain (CTMC) from a proved transition
system. Finally we describe how to evaluate performance measures starting from
a CTMC.

3.1 Cost Function

We now show how the parameter r of the action pu = ¢(0) from a label 0 is
derived. The intended meaning of r is that the execution of the action u is
completed in a time drawn from an exponential distribution with parameter r,
called the rate of the transition. Indeed, this is the interpretation in classical
stochastic process algebras, where the designer of a system assign a fized rate to
all the occurrences of u. But this is seldom the case in real situations because
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the actual cost of u depends on the basic operations that the run-time support
of the target architecture performs for firing p. Typically, the resolution of a
choice imposes some operations on the target architecture such as checking the
ready list or implementing fairness policies. Therefore, in practice an action
fired after a choice costs more than the same action occurring deterministically.
The other operations of our calculus reflect analogous routines of the run-time
support and delay the execution of an action as well — communications deserve
a special treatment, see below. Therefore, we first assign a rate to the transition
1 on a dedicated architecture that has only to perform p. In other words, p
occurs in the empty context. We then model the performance degradation due
to the run-time support by introducing a scaling factor for r for any operation
of the routine implementing the transition 6. In this way, the new semantics
takes into account the target architecture on which a system runs. Also, we
automatically derive the distributions of transitions by inspecting the syntactical
contexts where the actions which originate them are plugged. In fact, the context
in which an action p occurs in the program represents the operations that the
target machine performs for firing p just because the structural operational
semantics of a language specifies its abstract machine. Accordingly, a suitable
linearization of the deduction of a transition represents the execution of the
corresponding run-time support routines on the target machine. As mentioned
above, a proof term 6 represents the context in which an action occurs and
the proof of the transition it labels. Following this intuition and the discussion
above, we assign a cost to each inference rule of the operational semantics via a
function denoted by $. In other words, the occurrence of a transition receives a
duration time computed according to its deduction.

As a matter of fact, there is no need to fix here function $, and we let it be a
parameter to the definition of our model. In this way, it is possible to estimate
the performance of different architectures, each with its own cost function.

We propose below a possible definition of $ that considers some features
of a somehow idealized architecture like the number of processors of a net or
the bandwidth of a channel. Although not very accurate, they permit to derive
performance measures that agree with the ones in the literature [1,5]. Other case
studies are needed to tune the function $.

We first assign costs to actions in N'US. When applied to a visible action
a € A, our cost function returns the parameter of the exponential distribution
which describes the time needed to perform the very basic, low-level operations
corresponding to a, independently of the context in which a occurs. Similarly
for the invisible actions 7; that are not communications. We use a function
$,: NUS — R" defined as

= fpo(bw(x), size(K))
= fin(bw(z), size(U))
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The real numbers \; represent the cost of executing the routine corresponding to
the 71 internal action 7;. The functions f,y¢, [, and f;, define the costs of the
routines which implement the send and receive primitives. Function [y, differs
from f,,+ because y must be a fresh name, so it incorporates a call to a name
generator gs (i.e., fp, = fout +95). Besides the implementation cost due to the
algorithms of send and receive, the functions above depends on the bandwidth
of the communication channel (bw(x)) and the size of the objects transmitted.
According to the intuition that contexts slow down the speed of actions, we
now determine a slowing factor (in (0, 1]) for any construct of the language. The
cost of the operators in £ U O is expressed by the function $, : LU O — (0,1]

o(Xom ;) = f+(m)
olli) = fi(np), i=0,1
o(= szze(:c)) f=(size(z))
o((vz)) = fu(n(P ))

$,((U1 Un)) = fo(size(Ur),. .., size(Up), np)

We have explicitly used a minimal set of parameters affecting the cost of the
routines implementing any operator. In particular, the resolution of a choice
implementing fairness policies is affected at least by the number of summands.
Parallel composition is evaluated according to the number np of processors avail-
able. A particular case is $,(]|) = 1 that arises when there is an unbound number
of processors. (Recall that we are not yet considering communications.) The cost
of matching depends on the size of the data to be compared. The cost of restric-
tion depends at least on the number of names in a process because its resolution
needs a search in a table of names. Finally, the activation of a new process via
a constant invocation has a cost depending on the size and the number of the
actual parameters as well as on the number of processors available.

We now consider synchronizations. To determine their impact on the overall
cost function, we follow their deduction. Essentially, the two partners perform in-
dependently some low-level operations locally to their environment. These oper-
ations (call them pre-synch) correspond to the rules applied to fill in the premises
of rules Com and Close. The application of either of them is recorded by pairing
the proof terms corresponding to the pre-synch operations. Note that C'om or
Close rules can be applied exactly once in a derivation (see Tab. 1). Afterwards,
some operations common to both partners are needed to derive the actual tran-
sition representing the communication. The cost of these additional operators is
derived using $,.

We compute the slow down factor due to communication as follows. Since
it is synchronous and handshaking, we first take the minimum of the costs of
the pre-synch operations performed by the participants independently. Thus a
communication reflects the speed of its slower partner.

We then use a function fy : £* x L* — (0,1] to take the distance of the
partners into account. For encoding locations, we use here xo, x1 € {||o,||1}". To
see why, consider the binary abstract syntax tree of a process, when the parallel
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composition | is the only syntactic operator. Then, a sequence x can be seen as
the access path from the root, i.e. from the whole process, to a leaf, i.e. to a
sub-process. So, the two arguments of f(), together with allocation tables, can
be used to determine where the two communicating processes actually reside.

To apply function f(y, we need an auxiliary function : : (LU O)* — L* that
extracts the parallel tags from proof terms, inductively defined as (e is the empty
string)

e=¢€ |0 =0, =29

We can now define the function that maps a proof term 6 to a pair (¢(6), $(6)),
by giving the function $. It is defined inducing on 6 and using the auxiliary
functions $,, as basis and $, and f(y. The function § : © — IR" is defined as
follows

$(p) = 3u(p)
$(00) = $,(0)$(0)
$((Yoao, ¥1a1)) = f(y (Yo, V1) x min{$(Joc), $(V1c1)}

3.2 Interpretation of Costs

The interpretation of a transition Py S, P is as follows. The action £(f) has
to wait a delay At drawn from the exponential distribution with parameter $(0)
before its actual completion. In other words, At may be seen as the duration of
the transition.

The dynamic behaviour of processes is determined by a race condition. All ac-
tivities enabled attempt to proceed, but only the fastest one succeeds. The fastest
activity is different on successive attempts because durations are expressed by
random variables. The continuity of probabilistic distributions ensures that the
probability of two activities ending simultaneously is zero. Furthermore, expo-
nential distributions enjoy the memoryless property. Roughly speaking, the time
at which a transition occurs is independent of the time at which the last transi-
tion occurred. Thus, the time elapsed by an activity in a state in which another
one is the fastest is useless. This means that any time a transition becomes
enabled, it restarts its elapsing time as it were the first time that it is enabled.

The race condition replaces nondeterministic choices with probabilistic ones.
In fact, we can associate probabilities to transitions as follows. We define the ezit
rate of P (written r(P)) as the sum of the rates of all activities that are enabled
in P, ie r(P) = EG,-ETS(P) $(0;). The occurrence probability of a transition

P -2 P’ is the ratio between its rate and the ezit rate of P, i.e. $(6)/r(P).
Consider the process P = a + (a + b). If we define the cost function as

$(a) =1, $(b)=3, $(+:)=1/2
the costs of the transitions are

$(+oa) = 1/2, $(+1 +oa)=1/4 $(+ +1b) = 3/4.
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Thus the exit rate of P is 3/2, and the probability that P fires the transition
+oa is 1/3. Following [11], we need the apparent rate of an action a in a given
process P, r,(P). It is the sum of the rates of all actions a that are enabled
in P, ie. 74(P) = > o,erspy $(0;). For instance, the apparent rate of a in P

1(0;)=a

is 3/4. This is the rate c(ap)tured by an external observer of the system, that can
only register actions and their occurrence frequency. Apparent rate allows us to
compute conditional probabilities, as well. In fact, the probability of a transition
p -2 P’, with 1(#) = a, given that an action a occurs, is $(0)/r.(P). For
example, the probability of the transition +ga in P, given that an a occurs,
is 2/3. Therefore, the rate of a transition is its occurrence probability times its
apparent rate. As usual, assume that parallel processes independently decide
which actions to fire.

We recall the notion of stochastic process. A family of random variables
{X(t) s.t. t € T'} is a stochastic process with index set T'. The set T is usually
called time parameter and t is called time. The process is continuous time if T
is a continuous set. The state space of the process is the set of possible values
that X (¢) can assume. Intuitively, X (¢) is the state of the process at time t.
Many systems arising in practice have the property that, once in a given state,
the past states have no influence on the future. This is called the memoryless
or Markov property and the stochastic processes satisfying it are called Markov
chains, if their state space is discrete.

The following theorem suggests how to turn a process into a CTMC. We
restrict ourselves to processes that originate a finite state space and that are
closed (i.e they contain no free name). The proof of Theorem 1 is a straightfor-
ward adaptation of the one of a similar result for PEPA [11]. We first introduce
some auxiliary notation.

Given a transition relation —, we define —* as its reflexive and transitive
closure, and we let the label of —* | if any, be the string obtained by concate-
nation of the labels of the sequence of transitions — in the closure. Also, we
say that a process P; is a derivative of a process P, if there exists a computation

S
with source P and target P; (in symbols, P —* P;). Then, given a process P,
S

we let hereafter d(P) = {P;| P —* P;} be the set of all derivatives P; of P. We
can now state the theorem.

Theorem 1. Given a process P, the stochastic process {X(t),t > 0}, where
X (t;) = Pj means that process P at time t; behaves as process P}, is a continuous
time Markov chain homogeneous in time with state space d(P).

We now define the instantaneous transition rate of the generator matrix at
the level of the proved transition system. Recall that the transitions enabled in
a process cannot be disabled by flow of time, i.e. the CTMC associated with
a process is homogeneous in time. Therefore, the instantaneous transition rate
from P; to P; is the sum of the rates of the transitions enabled in F; and leading
to P;. More formally, we have the following proposition.
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Proposition 1. Given (P,0,—, P), let P;, P; € P, and let n = |d(P)|. Then,
the generator matrix of the corresponding CTMC is a square matric Q n X n
whose elements q; ; are defined as

Qij = Z $(0,), fori#j, and q;; = — Z%,j

P2 peTs(P;) j7#

Since the equation in the above proposition defines the instantaneous transi-
tion rate from P; to P; in terms of the transitions of P;, and since our semantics
is finite branching (our systems are finite state and closed), we can define in SOS
style the CTMC associated with a system. More precisely, we define a stratified
transition system whose transition relation — ,; is defined in terms of —. We
let the CTMC of a process P; (written CTMC(PF;)) be the minimal transition

graph defined by rule

p-Lp

where g; ; is defined according to Proposition 1.

3.3 Performance

We give a necessary condition for a process to originate a Markov chain with
stationary distribution. Since the chains we consider have a finite state space,
we are left to identify transition systems that guarantee the irreducibility of the
corresponding Markov chains. If we call cyclic a state of a transition system that
can be reached by any of its derivatives through a finite sequence of transitions,
we have the following theorem.

Theorem 2. Let (P,0,—,P) be a transition system with P cyclic. Then,
CTMC(P) is irreducible.

Recall that if CT M C(P) has a stationary distribution I7, it can be computed
by solving the matrix equation

11Q =0 with Y II(P,) =1 (1)

To get performance measures for process P, we associate a reward to each
action a and we denote it as p,, according to [12,11]. The reward of a process P
is the sum of the rewards of the activities it enables, i.e. p(P;) = > gcrs(p,) Pe(0)-
The total reward of a component P is computed on the basis of an equilibrium
distribution II as

R(P)= Y p(P)I(P,)
P—P;

In the next section we report an example that shows how rewards are used
to carry out performance evaluation.



214 Chiara Nottegar et al.

4 A Case Study

In this section we use our mathematical framework to compare the relative effi-
ciency of remote procedure call (RPC) and remote evaluation (RE) for a network
management application presented in [1].

The management of networks based on IP uses the simple network manage-
ment protocol. A network management station (NMS) calls some remote proce-
dure for any server running on the network units which maintain a local data
base with information for the maintenance of the network. The procedures above
are typically get or set of values in the data base. This kind of interaction be-
tween NMS and the server is called micro-management and it generates a huge
amount of network traffic.

Migration of code can reduce the traffic by sending to the server a piece of
code that groups all the calls together. This approach is known as management
by delegation. To compare our results with those of [1], we use their assumptions
(reported below).

We assume that a data block of size X at the ISO/OSI application level
generates at the network level an amount of data

X' =a(X) + X)X

where (X)) is the cost of the set-up phase in a connection oriented protocol, and
B(X) is the size of the increment due to message encapsulation. For the sake of
presentation, we adopt a single overhead function 7 such that

X' =y(X)X with n(X) = a(X)/X + B(X), n(X) > 1

and we write nX for n(X)X.

We consider an application that collects data from N network units via
remote procedure calls to each unit. We also assume that the interactions be-
tween NMS and any of the units is the same. Thus, we can safely specify the
interactions with a single unit. The formal specification in HOm is

NMS =aij.a(R).aiz.a(R)..... aig.a(R). NMS
D= a(Ik).Erk.D
Sys™ = (va) (NMS|D)

NMS asks i1 to D and waits for an answer. It repeats this task @) times. The
unit D answers a datum 7 to a request iy from the station. The channel a
between NMS and D is made private via the operator (va) in Sys™°. The
corresponding proved transition system is depicted in Fig. 1 (a), where we omit
(v a) that prefixes all the labels.

Consider now the solution for code migration based on remote evaluation
(RE). NMS sends a piece of code to D which queries locally the data base. A
single message is needed to send back the @) answers to NMS. The specification
in HOw is

NMS =aG.a(T).NMS D=a(X).aQr.D Sys™ = (va) (NMS|D)
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Fig. 1. Proved transition system of Sys™° (a) and of Sys™ (b). We omitted
(v a) that prefixes all the labels.

and the corresponding proved transition system is in Fig. 1 (b). We assume that
the agent is killed after the answers are sent back to NMS. This allows us to
compare the RPC and RE solutions presented in [1].

According to our framework, we now define the cost function for the two
solutions. We assume that requests and answers have average size I and R,
respectively. Similarly, the average size of code migration is denoted by C'. Let
A be the rate of sending one bit on the channel a; then the rate of sending an
object on the same channel is the ratio of A to the dimension (in bits) of the
object. Thus, we have

S@in) = ——, $(ary) = ——, $(@G) = %LC $(@Qr) = ﬁmﬁ

Nared’
where Mg, Nree s Tre and 7k are the overhead of a single answer, a single request,
a migration of code and of the ) answers sent back all together. The cost of
input on a is related to that of output, but we have to take into account the
substitutions of formal parameters with actual ones in the code of the process
receiving the message. Thus we divide the cost of output by the number k& > 1.

$(a(z)) =$(ax)/k.

e 2

There is no rise of cost due to the parallel composition because there are two
processors: one on the node of the NMS and one on that of D, so

$o(]]:) = 1.

We indicate the rise of cost due to the restriction of the name a, to the invocation
of identifiers and to the choice, respectively with

$o((ra)) =1/nand $,(()) =1/p and $,(+;) = 1/1.
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Now, supposing that [|o and ||; codify the names of the nodes of NMS and D,
we assume

follo, 1) =1/d

in order to take the distance between the two nodes into account. Finally, the
costs associated to the transitions in the RPC case are

- =— i=0,2,4,..,2Q0 -2
$(0i541) ndkpiprel’ 1=0.24.,
and )
. =~ =1 20 — 1.
$(91,Z+1) ndkﬁ R) 1 a375a )

The same cost function $ allows us to associate costs to the transitions of
the RFE specification. We have

A A

W) = e ) = iR

We now can define the generator matrices Q™ and Q™ of the two specifi-
cations according to Proposition 1. Since the initial states of both Sys™ and
Sys™ are cyclic, Theorem 2 ensures that the two systems have stationary dis-
tributions IT" and II"*, and we can compute them according to equation (1).
We yield,

Pl L Tree R
I (27) = - e (2i+1) = .
Q(Prrrcd + Trre R) Q(Prrrcd + Trre R)
withi=0,...,Q — 1, and
e — ( PreC Tre QR )
PreC + @R PreC + fre QR

We end this section by comparing the efficiency of the two specifications.
First we compute the throughput of both systems, i.e. the number of completed
interactions NMS-D per unit time. Since in both systems each activity is visited
only once, this throughput will be the same as the throughput of every activity.
The throughput for an activity is found by associating a reward equal to the
activity rate with each instance of the activity. So we compute the throughput of
both systems by associating a reward equal to its rate to the first communication
and a null reward to the other communications. Thus,

2Q-1 \
™" = ; p(i)IF (i) = p(0)II**(0) = kOl T i)

and
A
ndk(pnpeC + Mre@QR) -

T = p(O)IF* (0) + p(L)II* (1) =
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We can state that Sys™ is better than or equivalent to Sys™° if T > T7°.
More precisely, we want

A A
>
ndk(pnpeC + MrsQR) — ndkQ(prrc! + Trre R)

hence

NreC < (QﬁRPCR - ﬁREQR)/p + Qe

Since the overhead 7 is fixed for any packet of a message, the longer the message,
the lower the overhead is. Therefore, we usually have

Qilrre R 2 e QR.

The analysis above suggests to use RE when the size of the agent sent is smaller
than the sum of all the requests plus the difference of the overhead in the trans-
mission of the answer. We finally note that by letting p ~ 1 (because this cost
is not considered in [1]), our results coincide with those in [1].

5 Conclusions and Further Work

The advantage of our approach is that it relies on a formal model which can
be used as the kernel of a programming environment. In fact, the CTMC’s of
the systems can be automatically derived from their transition systems. We only
need to manipulate labels of transitions and to merge some arcs. Then, standard
numerical packages can be used to derive performance measures. Note that the
construction of the proved transition system only amounts to implement an
interpreter for the semantic rules. Due to the syntax-directed way in which SOS
semantics is defined, the interpreter can be easily written with a functional or
logic language.

A calculus like the one we considered here can be the core of a real lan-
guage (see Facile, PICT, CML, etc.). The compiled code can be annotated to
make quantitative analysis. Also, it can be tranformed into syntactically differ-
ent, yet behaviourally equivalent versions, via the usual equivalence laws (e.g.
P|(Q|R) = (P|Q)|R)), before beginning to evaluate its performance. In this way,
the compiler can help choosing not only the more suited architecture, but also
the more adequate syntactic representation. This can be seen as a first step
towards a code optimizer for concurrent languages, driven by semantics.

We tested our proposal on an application for network management presented
in [1]. Under the same assumptions, our performance results agree with those
of [1]. Lack of space prevents us from giving another example, taken from [5],
for which again our method gives results in agreement with [5]. This makes us
confident that our approach is applicable. Of course, we still need to apply our
ideas to real size applications to test whether our method is scalable and to get
more experience in the definition of reasonable cost functions.
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