Evaluation of Algorithms for Local Register
Allocation*

Vincenzo Liberatore!, Martin Farach-Colton?, and Ulrich Kremer?

L UMIACS, University of Maryland
College Park, MD 20742, USA
vliberatore@acm.org
2 Dept. of Comp. Sc., Rutgers University
New Brunswick, NJ 08903, USA
{farach,uli}@cs.rutgers.edu

Abstract. Local register allocation (LRA) assigns pseudo-registers to
actual registers in a basic block so as to minimize the spill cost. In this
paper, four different LRA algorithms are compared with respect to the
quality of their generated allocations and the execution times of the al-
gorithms themselves. The evaluation is based on a framework that views
register allocation as the combination of boundary conditions, LRA, and
register assignment. Our study does not address the problem of instruc-
tion scheduling in conjunction with register allocation, and we assume
that the spill cost depends only on the number and type of load and
store operations, but not on their positions within the instruction stream.
The paper discusses the first optimum algorithm based on integer lin-
ear programming as one of the LRA algorithms. The optimal algorithm
also serves as the base line for the quality assessment of generated allo-
cations. In addition, two known heuristics, namely Furthest-First (FF)
and Clean-First (CF), and a new heuristic (MIX) are discussed and eval-
uated. The evaluation is based on thirteen Fortran programs from the
fmm, Spec, and Spec95X benchmark suites. An advanced compiler in-
frastructure (ILOC) was used to generated aggressively optimized, inter-
mediate pseudo-register code for each benchmark program. Each local
register allocation method was implemented, and evaluated by simulat-
ing the execution of the generated code on a machine with N registers
and an instruction set where loads and stores are C' times as expen-
sive as any other instruction. Experiments were performed for different
values of N and C. The results show that only for large basic blocks
the allocation quality gap between the different algorithms is significant.
When basic blocks are large, the difference was up to 23%. Overall, the
new heuristic (MIX) performed best as compared to the other heuristics,
producing allocations within 1% of optimum. All heuristics had running
times comparable to live variable analysis, or lower, i.e., were very rea-
sonable. More work will be needed to evaluate the LRA algorithms in the
context of more sophisticated global register allocators and source level
transformations that potentially increase basic block sizes, including loop
unrolling, inlining, and speculative execution (superblocks).

* Research partly supported by NSF Career Development Award CCR-9501942,
NATO Grant CRG 960215, NSF/NIH Grant BIR 94-12594-03-CONF and an Al-
fred P. Sloan Research Fellowship.

S. Jahnichen (Ed.): CC’99, LNCS 1575, pp. 137-153, 1999.
© Springer-Verlag Berlin Heidelberg 1999

138 Vincenzo Liberatore et al.

1 Introduction

Register allocation can substantially decrease the running time of compiled pro-
grams. Unfortunately, register allocation is a hard problem. To overcome the
complexity of register allocation and to focus on its most crucial part, we pro-
pose a framework that breaks register allocation into a sequence of three distinct
phases: boundary allocation, local allocation, and register assignment. Boundary
allocation fixes the set of pseudo-registers that reside in physical registers at the
beginning and at the end of each basic block. Local register allocation (LRA) de-
termines the set of pseudo-registers that reside in physical registers at each step of
a basic block, while previously chosen boundary conditions are respected. Regis-
ter assignment maps allocated pseudo-registers to actual registers. The proposed
framework has the advantage that (1) each phase is more manageable than the
whole register allocation process, (2) it allows the integration of improved local
register allocation heuristics with any global framework (e.g. Chaitin-Briggs),
and (3) it isolates the register assignment phase, which was found to be the
easiest phase of register allocation [20].

The canonical boundary allocation assumes that registers are empty at the
beginning and at the end of a basic block. A more sophisticated boundary al-
location extracts the boundary conditions from a state-of-the-art global register
allocator. For example, a Chaitin-Briggs style allocator [5] could determine the
register contents at the basic block boundaries. Once boundary conditions are
fixed, any LRA that respects the boundary conditions can be used. In this pa-
per, an optimum algorithm will be presented as well as heuristics to perform
LRA under any specified set of boundary conditions. Finally, allocated pseudo-
registers will be assigned to physical registers. While register assignment could
theoretically add significant overhead, it is in fact the easiest step of register
allocation [20].

A first advantage of our framework is that each phase is more manageable
than the whole process. Moreover, our approach allows us to replace the local
component of any global allocation (e.g. Chaitin-Briggs) with improved LRA
heuristics. Our framework puts emphasis on LRA. The basic block in the inner-
most loop should be the most highly optimized part of the program [1]. Moreover,
pseudo-registers are easier to reuse in a basic block [20]. Finally, LRA algorithms
are the first and fundamental step in demand-driven register allocation [20]. We
do not address the problem of instruction scheduling nor the interplay of regis-
ter allocation with instruction scheduling. We assume that spill code has a fixed
cost that is independent of the position where it is inserted. However, we will
account for simple rematerializations.

This paper mostly focuses on the LRA phase. An optimum algorithm and
three suboptimal heuristics for LRA are discussed. The optimum algorithm is a
novel branch-and-bound method that exploits a special substructure of the in-
teger program. The resulting allocator returns the best possible local allocation
and took less than one minute in almost all our benchmarks. Using integer pro-
gramming formulations for optimal solutions of NP-hard compiler problems has
been discussed by a few researchers, in particular in the context of evaluating the

Evaluation of Algorithms for Local Register Allocation 139

quality of heuristic approaches [15,21]. In addition to the optimal algorithm, we
also propose a new heuristic, called MIX, for the same problem. MIX takes poly-
nomial time, returned allocations that were always within 1% of the optimum,
and was always more than ten times faster than the optimum. We also analyze
previous heuristic for LRA. Previous heuristics always returned allocations that
were worse than MIX’s. We also measure the time taken by the heuristics, which
is part of the total compilation time. If the heuristic running time is considered
in isolation, MIX was substantially slower than previous heuristics. However, if
we add the heuristic running time to live range analysis time, all heuristics ran
in a comparable amount of time. In other words, the total allocation time was
dominated by live range analysis rather than by the heuristic running time, and
so no great difference was found in the overall running time. In conclusion, MIX
returned better allocations than previous heuristics, while the total elapsed time
was not seriously affected.

The paper is organized as follows. In § 2, LRA is formally defined, followed by
a review of relevant literature. In § 3, we describe our experimental set-up. In § 4,
we give a new branch-and-bound algorithm and report experimental results for
this algorithm. In § 5, we define previous and new heuristics for LRA, report
and discuss experimental results. The paper concludes with a summary of its
contributions.

2 Register Allocation

The problem of Register Allocation is to assign pseudo-registers to actual regis-
ters in a basic block so as to minimize the spill cost. Details are specified in the
following section.

2.1 Local/Global Register Allocation

For the purpose of this paper, register allocation will operate on sequences of
intermediate code instructions. Intermediate code instructions define and use
pseudo-registers. Pseudo-registers contain temporary variables and constants.
No aliasing between pseudo-registers is possible. We assume that a pseudo-
register represents only one live range, and thus a pseudo-register is defined
at most once. We also assume that each pseudo-register can be stored and re-
trieved in a designated memory location. We denote by V' = {t1,t0, ...,y } the
set of pseudo-registers that appear in the intermediate code, and so M = |V/|
is the number of distinct pseudo-registers that appear in the code. An exam-
ple of intermediate code sequence is found in the leftmost column of Figure 1.
In the figure, the instructions are ADDI, SUB, etc, and the pseudo-registers
are tO0, t1, ..., t7.

Register allocation maps pseudo-registers into a set of N actual registers.
More precisely, a register allocation is a mapping that specifies which pseudo-
registers reside in a register at each step of the program. Formally, a register
allocation is a function ra : V x IN — {True, False}, where N is the set of natural

140 Vincenzo Liberatore et al.

Registers
intermediate code o opt LRA code [cost|R1 R2 R3
(read,{0}) |LOAD &t0 = R1 | 2 [t0 - -
ADDI 3 t0 = t1 |(write,{1}) |ADDI 3 R1 = R2| 1 [t0 t1 -
(read,{1,2})|LOADI 4 = R3 1 |t0 t1 t2
SUB t1 t2 = t3 |(write,{3}) |SUB R2 R3 = R1| 1 [t3 t1 t2
(read,{3,4})|LOAD &t4 = R3 | 2 [t3 t1 t4
MUL t3 t4 = t5 |(write,{5}) |MUL R1 R3 = R3| 1 [t3 t1 t5
(read,{2,5})|LOADI 4 = R1 1 |t2 t1 t5
SUB t2 t5 = t6 |(write,{6}) |SUB R1 R2 = R1| 1 [t6 tl1 t5
(read,{1,6}) t6 t1 t5
ADD t1 t6 = t7 |(write,{7}) |ADD R2 R1 = R1| 1 |t7 t1 t5

total cost: 11

Fig. 1. Example of optimal LRA with 3 registers. The first column gives a se-
quence of intermediate code instructions, the second column its representation
in terms of pseudo-register usage, the third column the result of applying an op-
timum allocation, the fourth column gives the cost per operation assuming the
spill cost is C' = 2 and all other operations are unit cost, and the last columns
give the register contents after a step has been executed. In the example, the
set of live variables at the end of the segment is L = {t7} and t2 contains the
constant 4.

integers, ra(t;,j) = True if ¢; is in a register at step j and ra(t;,j) = False
otherwise. The register allocation ra function cannot be any mapping V' x N —
{True, False}, but satisfies the following two additional constraints imposed by
register-register architectures:

— If a pseudo-register i is used by an instruction, then 7 occupies a register
immediately before that instruction is executed.

— If a pseudo-register 7 is defined by an instruction, then ¢ occupies a register
immediately after that operation is executed.

There are two issues that are beyond the scope of this paper: instruction
scheduling and register assignment. We now show how our functional definition
ra of register allocation correctly excludes the two issues. Instruction scheduling
is the problem of rearranging the order of execution of instructions. The func-
tional definition of ra excludes any instruction scheduling. We also distinguish
between register allocation and register assignment: register allocation decides
which pseudo-registers reside in actual registers and register assignment maps
those pseudo-registers to particular physical registers. Our functional definition
for register allocation keeps the two phases distinct. Register assignment could
introduce an overhead because the assignment might have to be enforced by
swap operations. In particular, at the end of a basic block, different register
assignments must be made consistent by means of register swapping.

Evaluation of Algorithms for Local Register Allocation 141

Since register allocation is, in our definition, a function, we can take its re-
striction to a subset of its domain. Specifically, we define the boundary allocation
of a register allocation to be a function that specifies which pseudo-registers oc-
cupy actual registers at the beginning and at the end of each basic block. In other
words, a boundary allocation fixes register contents at the boundaries of a basic
block, and leaves undetermined register contents inside a basic block. We define
Local Register Allocation (LRA) as the problem of assigning pseudo-registers to
registers in a basic block once the boundary allocation is fixed. In other words,
LRA is a register allocation for straight-line code that satisfies additional bound-
ary conditions. We can view register allocation as formed by two components:
the boundary allocation and the local allocation. Given a register allocation, its
local allocation can be replaced with any other local allocation that satisfies the
same boundary conditions.

Each intermediate code instruction generates a sequence of reads and writes
to pseudo-registers. For example, the instruction SUB t1 t2 => t3 reads the
pseudo-registers t1 and t2, subtracts them, and writes the result into t3. We
define the static reference sequence o corresponding to the intermediate code
to be a sequence of references, each of which is either a read or a write of
a subset of V. For example, the instruction SUB t1 t2 => t3 results in the
sequence ((read, {t1,t2}), (write, {t3})). Formally, a static reference sequence o
is a sequence of elements of {read, write} x V. In Figure 1, we give a sequence of
intermediate code instructions in the first column and the corresponding static
reference sequence o in the second column. Finally, boundary conditions can be
cast in the static reference sequence o by extending the sequence as follows:

— The first element of o will be a read of the pseudo-registers that are in a
register at the beginning of the basic block.

— The last element of ¢ will be a read of the pseudo-registers that are in a
register at the end of the basic block.

Register allocations impose register contents at each step of program execu-
tion. Register allocations have to be enforced by loading the appropriate pseudo-
registers into registers. Moreover, register allocations often require pseudo-regi-
sters to be stored back into their memory location. We now detail how a register
allocation is enforced by load and store operations. If the register allocation
specifies that a pseudo-register i is in a register at step 7, but ¢ is not in any
register immediately before step j, then a load operation is inserted in the code
to load ¢ into a register. In turn, some other register i would have to be evicted
from the register file to make room for ¢. Define the set S = {clean, dirty} as the
set of pseudo-register states. We explain S as follows. If i’ is clean, then it can
be evicted without executing any store. If i’ is dirty and live, then 7 must be
stored when evicted. If 7/ is clean, then either 7’ contains a constant or the value
in the register is consistent with the value in the memory location assigned to 7.
If 4 is dirty, then ' does not contain a constant and the value in the registers is
not consistent with the value in the location of ¢/. A pseudo-register i’ is dirty
when ¢’ has been defined and its contents are maintained in a real register, but
have not been stored to the memory location corresponding to i’. Notice that if a

142 Vincenzo Liberatore et al.

Registers
intermediate code o FF LRA code |cost|R1 R2 R3
(read,{0}) |LOAD &t0 = R1 | 2 [t0 - -
ADDI 3 t0 = t1 |(write,{1}) |ADDI 3 R1 = R2| 1 [t0 t1 -
(read,{1,2})|LOADI 4 = R3 1 |t0 t1 t2
SUB t1 t2 = t3 |(write,{3}) |SUB R2 R3 = R1| 1 [t3 t1 t2
STORE R2 = &t1| 2 |t3 t1 t2
(read,{3,4})|LOAD &t4 = R2 | 2 |t3 t4 t2
MUL t3 t4 = t5 |(write,{5}) |MUL R1 R2 = R2| 1 [t3 t5 t2
(read,{2,5}) t3 t5 t2
SUB t2 t56 = t6 (write,{6}) |SUB R3 R2 = R1| 1 [t6 t5 t2
(read,{1,6})|LOAD &t1 = R2 | 2 |t6 t1 t2
ADD t1 t6 = t7 [(write,{7}) |ADD R1 R2 = R1| 1 [t7 t1 t2

total cost: 14

Fig. 2. Example of FF LRA with 3 registers. As compared to the optimal LRA
shown in Figure 1, the FF heuristic results in an overall cost of 14 vs. 11 for the
optimal allocation.

pseudo-register is not live, then we do not need to store it regardless of its being
clean or dirty. Figure 1 gives an example of register allocation and assignment.
The leftmost column gives a sequence of intermediate code, and we assume that
the code is only a basic block in a larger program. The set of live variables at
the end of the basic block is L = {t7}. The second column reports the static
reference sequence o associated with the intermediate code. The third column
gives the final code produced when a register allocation is enforced by (i) inter-
spersing load and store operations in the code and (ii) rewriting pseudo-registers
as the assigned actual registers. The last three columns give the register contents
immediately after each instruction has been executed.

Since load and store operations are expensive to execute, an objective of
register allocation is to minimize the total cost due to loads and stores. Specif-
ically, we assume that load and store operations cost C' times as much as any
other operation. Notice that load immediates do not involve a memory access
and cost 1/C as much as a load from memory. Since we assign different costs to
different instructions, we will refer to a weighted instruction count. In this paper,
we assume that the spill cost depends only on the number and type of inserted
load and store operations, and not on the position they occupy. An example is
given by the fourth column in Figure 1 where the costs of each operation are
calculated when C' = 2. The total cost of this sample allocation is 11, and it is
the best possible allocation for this basic block. Different allocations yield dif-
ferent costs. In Figure 2, we report the same intermediate code as in Figure 1,
but with a different allocation. Again, C' = 2 and L = {t7}, but now the total
cost is 14.

Evaluation of Algorithms for Local Register Allocation 143

2.2 Discussion and Related Work

We study register allocation as the problem of assigning pseudo-registers to reg-
isters so as to minimize the spill cost. Other approaches view register allocation
as a two step process. Find the minimum number of registers needed to execute
the given code without spilling (register sufficiency), and if there are less phys-
ical registers than needed, introduce spill code, and repeat the previous step.
It can be shown that the register sufficiency problem is exactly equivalent to
coloring a certain graph, which is called interference graph [6]. Several authors
put forth compelling arguments against such an approach:

— Some optimizations, like in-line expansion and loop unrolling, complicate
the interference graph, and good colorings become hard to find. Hence, the
solution to the register sufficiency problem will likely exceed the number of
actual registers [13].

— As soon as the the number of registers is exceeded, then spill code must be
inserted. Unfortunately, it is hard to decide which pseudo-registers to spill
and where to insert spill code [13].

— Coloring addresses the problem of register assignment, but does not deal with
the issue of deciding which pseudo-registers should actually be allocated to
physical registers [20].

We add the following two observations in support of those arguments. First,
the number of registers in the target architecture is fixed, while spill code is
not. Therefore, registers are fixed resources and spill code corresponds to a cost.
Minimizing a fixed resource is only a very indirect way to minimizing the actual
spill cost. Moreover, register sufficiency (or, which is the same, graph coloring)
is not only an NP-hard problem [9], but also a problem that is very hard to
approximate efficiently [11].

Another approach to register allocation is demand-driven register alloca-
tion [20]. Demand-driven allocation starts from an inner loop LRA and expands
it to a global allocation. Our formulation of LRA and our heuristics can be
used in demand-driven register allocation. In demand-driven register allocation,
the boundary conditions specify that no pseudo-register resides in a register at
the basic block boundary. The subsequent global allocation cleans inefficiencies
introduced by such boundary conditions.

Several different models have been proposed to formalize LRA. Historically,
the first models are simpler and disregard some feature, whereas subsequent
model are more complete. Belady considered a model where there are no bound-
ary conditions, no multiple references in one instructions, and stores can be
executed for free [4]. Subsequent work counted each load and store as a unit
cost [12,13,19]. Briggs et al. give algorithms for global register allocation where
each load and store from memory costs C' = 2 times load immediates or any
other operations [5]. Such cost model allows us to keep track of simple remate-
rializations. In this paper, we also consider the case when one instructions can
generate multiple references. Multiple references arise commonly in actual code.
For example, the instruction SUB t1 t2 => t3 requires that both t1 and t2 be

144 Vincenzo Liberatore et al.

simultaneously present in registers before the instruction could be executed. Such
feature was first considered in [13]. The simplest LRA problem is Belady’s, where
stores have no cost, loads have unit cost, and there are no multiple references.
Belady gave a polynomial-time algorithm for that LRA problem. Subsequently,
it was found that, if the cost of a store were zero, the problem would be polyno-
mially solvable even in the presence of different load costs, boundary conditions,
and multiple references, but LRA is NP-hard as soon as stores are counted as
having positive cost [7]. In conclusion, the hardness of LRA is due to the presence
of store operations and not on several other features mentioned above.

We define boundary allocation as a functional restriction of global allocation,
and local register allocation as a basic block allocation that respects boundary
conditions. To the best of our knowledge, no such formulation had previously
been given. The division of register allocation into boundary and local alloca-
tions makes possible to integrate an LRA algorithm with any global allocation
by simply replacing its local portion. To the best of our knowledge, register al-
location and register assignment have been considered as two distinct phases in
all previous papers on LRA [3,12,13,19]. Register allocation is more manageable
if it is divided into allocation and assignment. Register assignment could con-
ceivably cause the introduction of a large number of register swap operations.
Actually, Proebsting et al. report that register assignment could almost always
be enforced without swaps, and conclude that more emphasis should be placed
on allocation rather than on assignment [20].

While we propose a three-phase approach to register allocation, some previ-
ous work takes a more compartmentalized approach to register allocation. The
register set is partitioned into two sets: one to be used only by pseudo-register
live in the basic block and the other only by global pseudo-registers. The for-
mer set, of register is intended to be used for local allocation, and the latter for
global allocation. It will be clear that all LRA algorithms in this paper would
work correctly in this framework as well, but we give measurements only for our
three-phase approach.

A few heuristics have been proposed for LRA. The oldest is Belady’s Furthest-
First (FF): if no register is empty, evict the pseudo-register that is requested
furthest in the future [2]. FF is optimum in the simple Belady’s model, which
assumes that stores are executed at no cost and that there are no boundary
conditions [12]. FF is also optimum when there are multiple references in one
step [17], and is a 2C-approximation algorithm for LRA even in the presence
of paid stores and boundary conditions [7]. If stores have a positive cost, FF is
not necessarily optimal : Figure 2 gives an FF allocation of cost 14, whereas the
optimum is in Figure 1 and costs 11. FF’s major problems are that it does not
take into account the cost of storing and the effects of rematerialization. In the
figure, pseudo-register t1 is stored and later reloaded at a total cost of 4 even
though t2 contains a constant and so it could be evicted for free and reloaded at
a unit cost. In this case, FF failed to detect that t2 could be rematerialized at
a small cost. Another problem arises because FF does not distinguish between
clean and dirty registers. In order to fix the latter problem, an heuristic called

Evaluation of Algorithms for Local Register Allocation 145

Clean-First (CF) has been introduced [8]. CF evicts a clean pseudo-register
that is requested furthest in the future. If no clean pseudo-register exists, CF
evicts a dirty pseudo-register that is requested furthest in the future. CF can
be arbitrarily worse than the optimum [18]. Finally, Farach et al. introduced an
algorithm WV that is provably never worse than twice the optimum [7].

Since LRA is NP-hard, no polynomial-time algorithm can be reasonably ex-
pected to return an optimum solution in all cases. In particular, all the heuristics
above fail to return the optimum solution in some cases. As opposed to heuris-
tics, an optimum algorithm is proposed in [12,14,19]. Such optimum algorithm
works only when C' = 1 and takes exponential time and space in the worst case.
The optimum algorithm failed to terminate on a few benchmarks due to lack of
memory space; those tests were executed as late as 1989 [13].

3 Experimental Set-up

We performed experiments with ILOC, the Intermediate Language for Optimiz-
ing Compilers developed at Rice University'. We used several ILOC programs
from the fmm and SPEC benchmarks. The benchmarks have been heavily op-
timized by the following passes: reassociation, lazy code motion, constant prop-
agation, peephole analysis, dead code elimination, strength reduction, followed
by a second pass of lazy code motion, constant propagation, peephole analysis,
and dead code elimination. The resulting ILOC code is similar to that in the
first column of tables 1 and 2: it is a sequence of intermediate code instructions
that operate on an infinite set of pseudo-registers®>. We did not have any part
in the coding of the benchmark, in the choice of optimization passes, nor in
the selection of the input to those benchmarks. We assumed we had N integer
registers and N double precision registers. In our experiments, floating point
operations are assumed to cost as much as integer ones. We remark that this is
only a measurement choice, and that all algorithms in this paper would work if
floating point operations were attributed a different cost than integer ones. We
performed experiments for a number of registers ranging as N = 16, 32, 64, and
spill cost C' = 2,4, 8,16. We used a SUN UltraSparcl (143MHz/64Mb) for algo-
rithm timing experiments. All our allocators were written in C, compiled with
gcc -03, and take as input the ILOC programs above. We run our allocators to
obtain ILOC code that uses at most N physical registers. We also kept track of
the weighted instruction count of each basic block, that is, we counted the num-
ber of instructions in each basic block weighted by a factor of C' if they involve
memory accesses, as described above. Then, we transformed that ILOC code
into C programs with ILOC’s i2¢ tool in order to simulate its execution. The
resulting C program was instrumented to count the number of times each basic
block was executed. We ran the resulting C code to obtain a dynamic weighted
wmstruction count:

Z (number of times B was executed) x (weighted instruction count for B) .
basic block 5

! URL: http://softlib.rice.edu/MSCP/MSCP.html
2 The TLOC benchmarks can be obtained from Tim Harvey (harv@cs.rice.edu).

146 Vincenzo Liberatore et al.

Double Integer
benchmark| prg |blckslavg len|avg var|blcks|avg lenavg var
fmm fmin 56 | 22.93 20 54 4.46 3.70
rkf45 129 | 10.85 8.78 132 | 26.51 23.07
seval 37 7.81 5 43 19.05 14.44

solve 96 4.88 3.85 110 | 27.79 | 24.14
svd 214 | 7.96 6.25 226 | 38.74 | 34.77

urand 10 6.1 4.1 13 18.38 12.62
zeroin 31 20.10 16.10 30 5.7 4.7
spec doduc 1898 | 16.66 12.43 | 1998 | 25.59 21.12

foppp || 433 | 57.05 | 44.56 | 467 | 60.91 | 54.47
matrix300|| 7 | 2.57 | 171 | 62 | 23.11 | 17.58
tomcatv || 72 | 11.68 | 9.67 || 73 | 73.48 | 68.14

spec95X applu 493 | 16.26 10.82 679 | 55.89 | 47.32
wavebX || 6444 | 10.92 7.54 || 7006 | 53.25 | 45.23

Table 1. Characteristics of static reference sequences from optimized code. For
each benchmark suite and program, the table gives the number of basic block
with references to double (integer) variables, the average number of references
to double (integer) variables per basic block, and the average number of distinct
double (integer) variables in each block.

The count is dynamic because it is collected by a simulation of code execution
and it is weighted because spill code count is multiplied by a factor of C, as
described above.

Table 1 describes the static reference sequences used in the experiments.
Column 1 gives the name of the benchmark suite and column 2 the program
name. Column 3, 4, and 5 report data for the static reference sequences of double
precision variables. Column 3 gives the number of basic blocks where there is
at least one live double precision variable. Column 4 gives the average length of
the corresponding reference sequences. Column 5 gives the average number of
distinct pseudo-registers referenced in a basic block. Finally, column 6, 7, and 8
report the same quantities for integer sequences. A measure of the size of the
double (integer) LRA problem associated with one benchmark can be obtained
by the product (number of double (integer) blocks) x (average double (integer)
length).

The program fpppp is quite different from the other benchmarks. First,
fpppp has on average the longest double and integer reference sequences. More-
over, fpppp contains the longest sequence among all our benchmarks: the basic
block _. fpppp- generates a double precision reference sequence of length 6579 —
nearly 5 times longer than any other sequence. The program tomcatv has long
integer sequences on average, but not long double sequence. Some optimization
passes (e.g. loop unrolling) produce long basic block, but no such optimization
is available in the ILOC system and none has been applied to our benchmarks.

Evaluation of Algorithms for Local Register Allocation 147

We conducted experiments to compare the FF and CF heuristics, our new
heuristic called MIX and a new optimum algorithm. We were mostly interested
in two quantities: the quality of the allocation each algorithm returns and the
speed of the algorithm itself. Our purpose was to identify possible trade-offs
between compiler speed and the speed of generated code. We measured allocation
quality by means of a dynamic weighted instruction count, which we described
above. The speed of the allocator itself was measured as follows. We inserted
rusage routine calls before and after each allocator was actually called. Then,
we summed up the user and system time elapsed between the two rusage calls.
In this way, we counted only the time needed to execute the LRA allocators,
and we disregarded the time for reading the input ILOC files, constructing data
structures that represent the associated LRA problems, and performing live
range analysis. We also inserted rusage code to estimate the time spent for live
range analysis. The live range analysis time was always estimated separately
from the allocation time.

LRA performance can be measured only after boundary allocations are fixed.
A possible choice is to extract the boundary allocation from a state-of-the-art
global allocator. Unfortunately, no such allocator is currently available in the
ILOC infrastructure distribution. A canonical boundary allocator assumes that
all registers are empty at the beginning and end of each basic block [1]. We
used this boundary allocation. However, this is only an experimental choice, and
that all discussed algorithms would work for any other boundary allocator. More
work will be needed to evaluate the different LRA algorithms for other boundary
allocators.

4 An Integer Program

We propose a new optimum LRA algorithm that is based on branch-and-bound.
The algorithm is slower than some heuristics, but it returns the best possible
local allocation. The optimum algorithm is used in this paper as a local allocator
and as a definite point of comparison for faster heuristics. Substantial algorithm
engineering was required to speed-up a branch-and-bound procedure. Specifi-
cally, the network structure of the integer program was isolated and exploited to
reduce the number of integer variables and the time needed to solve the initial
relaxation. Further details are omitted for lack of space and can be found in [18].

We measured the running time of the optimum in seconds for C' = 2 and
several values of N. As discussed above, measured times do not include 1/0,
live range analysis, and the time to set-up the problem matrices. The optimum
took always less than one minute except for one benchmark (fpppp). We can
compare the branch-and-bound time with the size of the benchmark (which has
been defined in § 3 on the basis of table 1). Broadly speaking, in most cases the
optimum took longer on larger programs. The branch-and-bound running time
decreases as N increases for all programs but fpppp. An intuitive explanation is
that when more registers are available, most allocation problems should become
easier.

148 Vincenzo Liberatore et al.

The fpppp benchmark has a different behavior because it took 25 minutes
when N = 8 and 3 minutes for N = 16, while it was below 30 seconds for all
other values of N. We found that fpppp could be explained in terms of its longest
sequence of references. The branch-and-bound algorithm does not generate any
node for that sequence for all N # 8,16, but it visits 12807 nodes for N = 8
and 1034 nodes for N = 16. Correspondingly, the running time jumps from 26
seconds to 25 minutes. No other basic block exhibits such an extreme behavior.
The running time is exposed to the “NP-noise”, which the long basic block
dramatically amplifies.

5 Heuristics

Heuristic Definition We experimented with three heuristics. Each heuristic spec-
ifies which pseudo-register is to be evicted if no empty register is available.
Furthest-First (FF) determines the set S of pseudo-registers that are requested
furthest in the future, and evicts a clean pseudo-register in S. If all pseudo-
register in S are dirty, an arbitrary element in S is evicted [2,7]. Clean-First
(CF) evicts a clean pseudo-register that is used furthest in the future. If no
clean pseudo-register exists, a dirty pseudo-register is evicted that is requested
furthest in the future [8]. The heuristic MIX is based on the algorithm W [7].
While W is detailed in [7], we will also report it here for the sake of completeness.

The algorithm W has an intuitive explanation in terms of the integer program
that corresponds to LRA. That program consists of two parts: a network matrix
and side constraints. One could wish that the side constraints disappeared, be-
cause the network matrix leads to a polynomial-time solution. Unfortunately, it
is not possible to simply delete a set of constraints without altering the problem
at hand. However, it is possible to perform the following three step procedure,
called Lagrangian relazation: (1) Insert a penalty in the objective function with
the property that the penalty increases if the side constraints are violated, (2)
remove all side constraints, and (3) solve the resulting problem. The idea is that,
if the penalty is big enough, the side constraints will not be violated even though
they are not explicitly imposed. Finally, the resulting problem is defined only by
the network matrix, and so it can be solved in polynomial-time as a network flow
problem. The penalty function is to be chosen appropriately: formulas can be
found in [7] and are omitted from the present paper. MIX is a new heuristic that
invokes selectively either FF or W. The gist is that the computationally more
expensive W algorithm should be invoked only when there is an opportunity
to improve significantly on FF. MIX invokes VW when the reference sequence is
longer than a certain threshold (1500) and there are a at least 150 dirty variables
simultaneously alive

Ezperimental Results The experimental results can be divided into two broad
categories: results for the benchmarks fpppp and tomcatv and results for all
other benchmarks. First, we report results for all other benchmarks, and then
we give our findings for fpppp and tomcatv. On all benchmarks except fpppp

Evaluation of Algorithms for Local Register Allocation 149

and tomcatv, no heuristic was worse than .5% of the optimum, and, on those
instances, FF and MIX took nearly the same time and were faster than CF.
Such findings hold with minimal variations for all benchmarks except fpppp and
tomcatv. We turn now to fpppp and tomcatv and report our results in Table 2
and 3. Additional results are presented in [18]. The time rows represent the time
taken by the heuristics to run in seconds. It does not include the time to read the
input file nor the time to perform live range analysis, as discussed above. The
cost rows report the total weighted dynamic instruction count in thousands. We
make the following observations on the entries in the table. FF, CF, and MIX
were always at least ten times faster than the branch-and-bound algorithm. FF
and CF are independent of C, and they took the same time for all values of C. In
most cases, an increase of C' caused MIX to slow down, but in some cases MIX
was actually faster for a larger value of C'. CF produced allocations that were as
much as 23% worse than FF and MIX. FF produced allocations that were up to
4% worse than the optimum for N = 32. Moreover, FF and CF produced quite
different allocations even in the case C' = 2, and the gap increased with C.

MIX produced allocations that are up to .9% worse than the optimum and
never took much more than 1 second. MIX cost was always better than FF’s or
CF’s in these experiments. The gap between MIX cost and the other heuristics
grows larger with C'. The time taken by MIX is often less than the time taken by
live-variable analysis, a necessary prerequisite to almost all register allocators.
The time for live range analysis was 1.58 seconds on fpppp, and .01 seconds on
tomcatv.

Discussion We found an interesting correlation between the performance of
heuristics and the average length of basic blocks (average basic block length
is found in table 1). In general, programs with long basic block should be harder
to solve due to the NP-hardness of the problem. Indeed, fpppp has the longest
average basic block length and the largest gap between the optimum and the
heuristics. The program tomcatv has long integer sequences, but not long dou-
ble sequence. Correspondingly, we observe that heuristics performed better on
tomcatv than on fpppp. However, tomcatv still gave rise to substantial per-
formance differences when N = 16 and C' is large. All other benchmarks have
shorter basic blocks, and no significant discrepancy between optimum and heuris-
tics was detected. Long basic blocks are produced by some optimization passes
(e.g., loop unrolling, superblock scheduling), but, unfortunately, none is avail-
able to us. Since we found that a large average basic block length dramatically
increased the difference between heuristics and optimum on our benchmarks,
it is easy to conjecture that length-increasing optimizations would widen the
heuristic-optimum gap to much more substantial figures than those above for
most programs. We notice that the average static sequence length affected the
hardness of LRA instances. In other words, when we take the average length,
we do not weigh the sequence length by the number of times basic blocks were
executed. It is not at all obvious a priori why a static average should be related
to a dynamic instruction count, but we found that this was indeed the case in
our benchmarks.

150 Vincenzo Liberatore et al.

FF MIX CF
prg OPT | % | % |
0.3149 10.2167%]|0.5205 |0.3582%| 0.6929 |0.4769%
/ 194858| 0.776% |[193713| 0.184% 209013/ 8.1%
0.0443| 4.88% {/0.0761 | 8.388% [|0.0992 | 10.93%
/ 416380 0.629% {|413779| 0% 421582/ 1.89%
4] fpppp |time|| 151.2 []0.3186 [0.2107%]] 0.5218 |0.3452%]0.6957 [0.4601%
cost 251322’ 254325| 1.19% |[|252259| 0.373% 282635’ 12.5%
tomcatv|time|| 0. 9138/ 0.0433 | 4.738% {|0.0748 | 8.182% || 0. 1055/ 11.55%

%

2 | fpppp [time|| 145.3
cost|[193357
tomcatv|time|| 0.9069
cost||413779

cost||484108(|489310| 1.07% ||484108| 0% ||499714| 3.22%

8 | fpppp [time|| 140.6 |/0.3224]0.2293%|| 0.815 |0.5797%|| 0.709 |0.5044%
cost||367253 17.1%
tomcatv|time||0.9064 [|0.0433 | 4.775% [/ 0.0747 | 8.242% {|0.0969 | 10.69%
cost||624766(|635170| 1.67% |624766| 0% 655978 5%

16| fpppp |time|| 144.4 ||0.3198]0.2215%||0.7655 |0.5301%|0.7042]0.4877%

373258| 1.64% ||369222| 0.536% ||429879

cost||599115(|611125| 2% ||601868| 0.459% ||724367| 20.9%
tomcatv|time||0.8915 || 0.0426 | 4.779% || 0.0732 8.212% |{0.0974 | 10.92%
cost||906082(/926890| 2.3% [|906082| 0% ||968506| 6.89%

Table 2. Performance for N = 16 registers. Time is algorithm running time.
Cost is weighted dynamic instruction count. Percentage time is fraction of opti-
mum. Percentage cost is variation over optimum.

Integer programming is useful for several hard compilation problems; see [15]
for a survey. Network flow techniques have been used for intraprocedural register
assignment [16]. Lagrangian relaxation was proposed by the mathematician La-
grange in the context of non-linear optimization, and was introduced into discrete
optimization by Held and Karp [10]. The gist of Lagrangian relaxation is that,
given a complicate problem with many types of constraints, hard constraints
should be moved into the objective function so that the remaining problem is
easy to solve. In compiler optimization, there are examples where several types
of constraints are imposed. If only one type of constraints existed, the problem
would be easy, but multiple types of constraints complicate the problem solution.
It would be interesting to understand whether Lagrangian relaxation could be
exploited to solve those problems efficiently. Finally, we notice that live range
analysis takes much longer than any LRA heuristic. As a consequence, live range
analysis dominates the time required to perform LRA.

6 Conclusions

In this paper, we have proposed an approach to register allocation that divides an
allocator into three successive phases: boundary, LRA, and register assignment.
We have studied the problem of local register allocation in the context of four
different algorithms. We have given an optimum algorithm and a new heuris-

Evaluation of Algorithms for Local Register Allocation 151

MIX CF
| % [% [%
2 | fpppp |time|| 19.07 |{0.3056 |1.602%]|0.5107|2.678%|| 0.686 |3.597%
cost||167076 169013/ 1.16% [|167633|0.333%||178557| 6.87%
tomcatv|time||0.8496 ([0.0417 {4.911%]]0.0735|8.645% || 0.0985 [11.59%
cost ||343450 343450/ 0% /343450 0% ||343450| 0%
4 | fpppp [time|| 19.22 |/0.3101 |1.613%]|0.5134|2.671%]|0.6907 |3.593%
cost|[198815 202689’ 1.95% {|199928| 0.56% ||221776| 11.5%
tomcatv|time|| 0.8568 00414/4 .829%](0.0731 | 8.53% {|0.1048 {12.23%

prg OPT

cost||343450(|343450| 0% ||343450] 0% ||343450| 0%

8| fpppp |time|| 18.95 [|0.3101|1.636%]|0.9179 |4.844%]|0.6943 |3.664%
cost||262293||270040| 2.95% ||264118]0.696%||308215| 17.5%
tomcatv|time|| 0.676 |[0.0293 [4.341%||0.0580 |8.581%|| 0.0628 |9.285%
cost||343450(|343450| 0% ||343450] 0% ||343450| 0%

16| fpppp [time|| 19.73 |[0.3096 | 1.57% || 0.8418|4.267%||0.6954 |3.525%
cost||389248||404743| 3.98% {|392802]0.913%|481093| 23.6%
tomcatv|time||0.8336 [0.0409 [4.909%||0.0718 | 8.61% || 0.0964 |11.56%
0% ||343450| 0% ||343450| 0%

cost||343450(|343450

Table 3. Performance for N = 32 double registers and N = 32 integer reg-
isters. Time is algorithm running time. Cost is weighted dynamic instruction
count. Percentage time is fraction of optimum. Percentage cost is variation over
optimum.

tic called MIX. The optimum algorithm is based on an integer programming
formulation and it was reasonably fast. With the exception of one benchmark
program, the optimal solution was always computed in less than a minute. The
heuristic MIX combines two previous algorithms FF and W (the algorithm W is,
in turn, based on a Lagrangian relaxation of the integer program), and returned
allocations that were within 1% of the optimum. MIX outperformed FF more
significantly when C' is larger. All three heuristics, FF, MIX, and CF, computed
solutions in less time than typically required for the live variable analysis step
within the compiler. For short basic block, the qualities of the generated allo-
cations were comparable across the three heuristics. However, for larger basic
block sizes, our findings suggest that MIX should be the best choice for LRA on
optimized code, especially when C' is large.

More work will be needed to evaluate the LRA algorithms and our three-
phase framework in the context of different global register allocators. In addition,
since the results suggest that the performance gap between the algorithms will
increase with increasing basic block sizes, we are planning to investigate the
impact of source level transformations that potentially increase basic block sizes,
including loop unrolling, inlining, and speculative execution (superblocks).

152 Vincenzo Liberatore et al.

Acknowledgments

We gratefully acknowledge helpful conversations with Bill Pugh and Barbara
Ryder. We thank Keith Cooper, Tim Harvey, and Taylor Simpson from the
Massively Scalar Compiler Group at Rice University for providing us with the
ILOC software and benchmark codes.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986. 138, 147

2. J. Backus. The history of FORTRAN I, II, and III. In Richard Wexelblat, ed-
itor, History of Programming Languages, ACM Monographs Series, pages 25-45.
Academic Press, New York, 1981. 144, 148

3. J. C. Beatty. Register assignment algorithm for generation of highly optimized
code. IBM J. Res. Develop., 18:20-39, January 1974. 144

4. L. A. Belady. A study of replacement algorithms for a virtual storage computer.
IBM Systems Journal, 5(2):78-101, 1966. 143

5. P. Briggs, K. Cooper, and L. Torczon. Improvements to graph coloring register
allocation. ACM Trans. on Programming Lang. and Sys., 16(3):428-455, May 1994.
138, 143

6. G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings of
the ACM SIGPLAN Symposium on Compiler Construction, pages 98-105, 1982.
143

7. M. Farach and V. Liberatore. On local register allocation. In Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 564-573, 1998.
144, 145, 148

8. C. N. Fischer and R. J. LeBlanc, Jr. Crafting a Compiler. Benjamin/Cummings,
Menlo Park, CA, 1988. 145, 148

9. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of N P-Completeness. Freeman, San Francisco, 1979. 143

10. M. Held and R. Karp. The traveling salesman problem and minimum spanning
trees. Operations Research, 18:1138-1162, 1970. 150

11. D. S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, Boston, 1997. 143

12. L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation.
Journal of the Association for Computing Machinery, 13(1):43-61, January 1966.
143, 144, 145

13. W-C. Hsu, C. N. Fischer, and J. R. Goodman. On the minimization of
load/stores in local register allocation. IEEE Transactions on Software Engineer-
ing, 15(10):1252-1260, October 1989. 143, 144, 145

14. K. Kennedy. Index register allocation in straight line code and simple loops.
In Randall Rustin, editor, Design and Optimization of Compilers, pages 51-63.
Prentice-Hall, Englewood Cliffs, NJ, 1972. 145

15. U. Kremer. Optimal and near-optimal solutions for hard compilation problems.
Parallel Processing Letters, 7(2):371-378, 1997. 139, 150

16. S. M. Kurlander and C. N. Fischer. Minimum cost interprocedural register al-
location. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1996. 150

17

18.

19.

20.

21.

Evaluation of Algorithms for Local Register Allocation 153

V. Liberatore. Uniform multipaging reduces to paging. Information Processing
Letters, 67:9-12, 1998. 144

V. Liberatore, M. Farach-Colton, and U. Kremer. Evaluation of algorithms for
local register allocation. Technical Report TR98-376, Laboratory for Computer
Science Research, Rutgers University, 1998. 145, 147, 149

F. Luccio. A comment on index register allocation. Communications of the ACM,
10(9):572-574, September 1967. 143, 144, 145

T. A. Proebsting and C. N. Fischer. Demand-driven register allocation. ACM
Trans. on Programming Lang. and Sys., 18(6):683-710, November 1996. 138, 143,
144

J. Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein. Software pipelin-
ing showdown: Optimal vs. heuristics methods in production compilers. In Proc.
SIGPLAN 96 Conf. on Programming Language Design and Implementation, pages
1-11, May 1996. 139

	Evaluation of Algorithms for Local Register Allocation
	Introduction
	Register Allocation
	Local / Global Register Allocation
	Discussion and Related Work

	Experimental Set-up
	An Integer Program
	Heuristics
	Conclusions
	References

