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Abstract. Can formal specification techniques be scaled-up to industrial problems
such as the development of domain-specific languages and the renovation of large
COBOL systems?
We have developed a compiler for the specification formalism Asf+Sdf that has
been used successfully to meet such industrial challenges. This result is achieved in
two ways: the compiler performs a variety of optimizations and generates efficient C
code, and the compiled code uses a run-time memory management system based on
maximal subterm sharing and mark-and-sweep garbage collection.
We present an overview of these techniques and evaluate their effectiveness in several
benchmarks. It turns out that execution speed of compiled Asf+Sdf specifications
is at least as good as that of comparable systems, while memory usage is in many
cases an order of magnitude smaller.

1 Introduction

Efficient implementation based on mainstream technology is a prerequisite for
the application and acceptance of declarative languages or specification for-
malisms in real industrial settings. The main characteristic of industrial appli-
cations is their size and the predominant implementation consideration should
therefore be the ability to handle huge problems.

In this paper we take the specification formalism Asf+Sdf [5,19,15] as point
of departure. Its main focus is on language prototyping and on the development
of language specific tools. Asf+Sdf is based on general context-free grammars
for describing syntax and on conditional equations for describing semantics. In
this way, one can easily describe the syntax of a (new or existing) language
and specify operations on programs in that language such as static type check-
ing, interpretation, compilation or transformation. Asf+Sdf has been applied
successfully in a number of industrial projects [9,11], such as the development
of a domain-specific language for describing interest products (in the financial
domain) [4] and a renovation factory for restructuring of COBOL code [12]. In
such industrial applications, the execution speed is very important, but when
processing huge COBOL programs memory usage becomes a critical issue as
well. Other applications of Asf+Sdf include the development of a GLR parser
generator [26], an unparser generator [13], program transformation tools [14],
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and the compiler discussed in this paper. Other components, such as parsers,
structure editors, and interpreters, are developed in Asf+Sdf as well but are
not (yet) compiled to C.

What are the performance standards one should strive for when writing a
compiler for, in our case, an algebraic specification formalism? Experimental,
comparative, studies are scarce, one notable exception is [18] where measure-
ments are collected for various declarative programs solving a single real-world
problem. In other studies it is no exception that the units of measurement
(rewrite steps/second, or logical inferences/second) are ill-defined and that mem-
ory requirements are not considered due to the small size of the input problems.

In this paper, we present a compiler for Asf+Sdf that performs a variety of
optimizations and generates efficient C code. The compiled code uses a run-time
memory management system based on maximal subterm sharing and mark-
and-sweep garbage collection. The contribution of this paper is to bring the
performance of executable specifications based on term rewriting into the realm
of industrial applications.

In the following two subsections we will first give a quick introduction to
Asf+Sdf (the input language of the compiler to be described) and to µAsf (the
abstract intermediate representation used internally by the compiler). Next, we
describe the generation of C code (Section 2) as well as memory management
(Section 3). Section 4 is devoted to benchmarking. A discussion in Section 5
concludes the paper.

1.1 Specification Language: ASF+SDF

The specification formalism Asf+Sdf [5,19] is a combination of the algebraic
specification formalism Asf and the syntax definition formalism Sdf. An over-
view can be found in [15]. As an illustration, Figure 1 presents the definition of
the Boolean datatype in Asf+Sdf. Asf+Sdf specifications consist of modules,
each module has an Sdf-part (defining lexical and context-free syntax) and
an Asf-part (defining equations). The Sdf part corresponds to signatures in
ordinary algebraic specification formalisms. However, syntax is not restricted
to plain prefix notation since arbitrary context-free grammars can be defined.
The syntax defined in the Sdf-part of a module can be used immediately when
defining equations, the syntax in equations is thus user-defined.

The emphasis in this paper will be on the compilation of the equations ap-
pearing in a specification. They have the following distinctive features:

– Conditional equations with positive and negative conditions.
– Non left-linear equations.
– List matching.
– Default equations.

It is possible to execute specifications by interpreting the equations as condi-
tional rewrite rules. The semantics of Asf+Sdf is based on innermost rewriting.
Default equations are tried when all other applicable equations have failed, be-
cause either the arguments did not match or one of the conditions failed.
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imports Layout
exports

sorts BOOL
context-free syntax

true → BOOL {constructor}
false → BOOL {constructor}
BOOL “|” BOOL → BOOL {left}
BOOL “&” BOOL → BOOL {left}
BOOL “xor” BOOL → BOOL {left}
not BOOL → BOOL
“(” BOOL “)” → BOOL {bracket}

variables
Bool [0-9 ′]∗ → BOOL

priorities
BOOL “|”BOOL → BOOL < BOOL “xor”BOOL → BOOL <
BOOL “&”BOOL → BOOL < notBOOL → BOOL

equations

[B1] true | Bool = true [B5] not false = true
[B2] false | Bool = Bool [B6] not true = false
[B3] true & Bool = Bool [B7] true xor Bool = not Bool
[B4] false & Bool = false [B8] false xor Bool = Bool

Fig. 1. Asf+Sdf specification of the Booleans.

One of the powerful features of the Asf+Sdf specification language is list
matching. Figure 2 shows a single equation which removes multiple occurrences
of identifiers from a set. In this example, variables with a ∗-superscript are list-
variables that may match zero or more identifiers. The implementation of list
matching may involve backtracking to find a match that satisfies the left-hand
side of the rewrite rule as well as all its conditions. There is only backtracking
within the scope of a rewrite rule, so if the right-hand side of the rewrite rule is
normalized and this normalization fails no backtracking is performed to find a
new match.

The development of Asf+Sdf specifications is supported by an interactive
programming environment, the Asf+Sdf Meta-Environment [23]. In this envi-
ronment specifications can be developed and tested. It provides syntax-directed
editors, a parser generator, and a rewrite engine. Given this rewrite engine terms
can be reduced by interpreting the equations as rewrite rules. For instance, the
term true & (false|true) reduces to true when applying the equations of
Figure 1.

1.2 Intermediate Representation Language: µASF

The user-defined syntax that may be used in equations poses two major imple-
mentation challenges.
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imports Layout
exports

sorts ID Set
lexical syntax

[a-z][a-z0-9]∗ → ID
context-free syntax

“{” {ID “,”}∗ “}” → Set
hiddens

variables
Id “∗”[0-9]∗ → {ID “,”}∗
Id [0-9 ′]∗ → ID

equations

[1] {Id∗
0, Id, Id∗

1, Id, Id∗
2}

= {Id∗
0, Id, Id∗

1, Id∗
2}

module Booleans

signature

true; or( , );

false; xor( , );

and( , ); not( );

rules

and(true,B) = B;

and(false,B) = false;

or(true,B) = true;

or(false,B) = B;

not(true) = false;

not(false) = true;

xor(true,B) = not(B);

xor(false,B) = B;

Fig. 2. The Set equation in Asf+Sdf. Fig. 3. The Booleans in µAsf.

First, how do we represent Asf+Sdf specifications as parse trees? Recall that
there is no fixed grammar since the basic Asf+Sdf-grammar can be extended
by the user. The solution we have adopted is to introduce the intermediate
format AsFix (Asf+Sdf fixed format) which is used to represent the parse
trees of the Asf+Sdf modules in a format that is easy processable by a machine.
The user-defined syntax is replaced by prefix functions. The parse trees in the
AsFix format are self contained.

Second, how do we represent Asf+Sdf specifications in a more abstract form
that is suitable as compiler input? We use a simplified language µAsf as an in-
termediate representation to ease the compilation process and to perform various
transformations before generating C code. µAsf is in fact a single sorted (alge-
braic) specification formalism that uses only prefix notation. µAsf can be con-
sidered as the abstract syntax representation of Asf+Sdf. AsFix and µAsf live
on different levels, µAsf is only visible within the compiler whereas AsFix serves
as exchange format between the various components, such as structure editor,
parser, and compiler.

A module in µAsf consists of a module name, a list of functions, and a set
of equations. The main differences between µAsf and Asf+Sdf are:

– Only prefix functions are used.
– The syntax is fixed (eliminating lexical and context-free definitions, priori-

ties, and the like).
– Lists are represented by binary list constructors instead of the built-in list

construct as in Asf+Sdf; associative matching is used to implement list
matching.

– Functions are untyped, only their arity is declared.
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– Identifiers starting with capitals are variables; variable declarations are not
needed.

Figure 3 shows the µAsf specification corresponding to the Asf+Sdf speci-
fication of the Booleans given earlier in Figure 11. Figure 4 shows the µAsf spec-
ification of sets given earlier in Figure 2. Note that this specification is not left-
linear since the variable Id appears twice on the left-hand side of the equation.
The {list} function is used to mark that a term is a list. This extra function is
needed to distinguish between a single element list and an ordinary term, e.g.,
{list}(a) versus a or {list}(V) versus V. An example of a transformation on
µAsf specifications is shown in Figure 5, where the non-left-linearity has been
removed from the specification in Figure 4 by introducing new variables and an
auxiliary condition.

module Set

signature

{list}(_);

set(_);

conc(_,_);

t;

rules

set({list}(conc(*Id0,

conc(Id,conc(*Id1,

conc(Id,*Id2)))))) =

set({list}(conc(*Id0,

conc(Id,conc(*Id1,*Id2)))));

module Set

signature

{list}(_);

set(_);

conc(_,_);

t;

term-equal(_,_);

rules

term-equal(Id1,Id2) == t ==>

set({list}(conc(*Id0,

conc(Id1,conc(*Id1,

conc(Id2,*Id2)))))) =

set({list}(conc(*Id0,

conc(Id1,conc(*Id1,*Id2)))));

Fig. 4. µAsf specification of Set. Fig. 5. Left-linear specification of Set.

2 C Code Generation

The Asf compiler uses µAsf as intermediate representation format and gener-
ates C code as output. The compiler consists of several independent phases that
gradually simplify and transform the µAsf specification and finally generate C
code.

A number of transformations is performed to eliminate “complex” features
such as removal of non left-linear rewrite rules, simplification of matching pat-
terns, and the introduction of “assignment” conditions (conditions that introduce
1 To increase the readability of the generated code in this paper, we have consistently

renamed generated names by more readable ones, like true, false, etc.
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new variable bindings). Some of these transformations are performed to improve
the efficiency of the resulting code whereas others are performed to simplify code
generation.

In the last phase of the compilation process C code is generated which im-
plements the rewrite rules in the specification using adaptations of known tech-
niques [22,17]. Care is taken in constructing an efficient matching automaton,
identifying common and reusable (sub)expressions, and efficiently implement-
ing list matching. For each µAsf function (even the constructors) a separate C
function is generated. The right-hand side of an equation is directly translated
to a function call, if necessary. A detailed description of the construction of the
matching automaton is beyond the scope of this paper, a full description of the
construction of the matching automaton can be found in [10]. Each generated C
function contains a small part of the matching automaton, so instead of build-
ing one big automaton, the automaton is split over the functions. The matching
automaton respects the syntactic specificity of the arguments from left to right
in the left-hand sides of the equations. Non-variable arguments are tried before
the variable ones.

The datatype ATerm (for Annotated Term) is the most important datatype
used in the generated C code. It is provided by a run-time library which takes
care of the creation, manipulation, and storage of terms. ATerms consist of a
function symbol and zero or more arguments, e.g., and(true,false). The li-
brary provides predicates, such as check sym to check whether the function
symbol of a term corresponds to the given function symbol, and functions, like
make nfi to construct a term (normal form) given a function symbol and i ar-
guments (i ≥ 0). There are also access functions to obtain the i-th argument
(i ≥ 0) of a term, e.g., arg 1(and(true,false)) yields false.

The usage of these term manipulation functions can be seen in Figures 6
and 7. Figure 6 shows the C code generated for the and function of the Booleans
(also see Figures 1 and 3). This C code also illustrates the detection of reusable
subexpressions. In the second if-statement a check is made whether the first
argument of the and-function is equal to the term false. If the outcome of this
test is positive, the first argument arg0 of the and-function is returned rather
than building a new normal form for the term false or calling the function
false(). The last statement in Figure 6 is necessary to catch the case that
the first argument is neither a true or false symbol, but some other Boolean
normal form.

Figure 7 shows the C code generated for the Set example of Figure 2. List
matching is translated into nested while loops, this is possible because of the re-
stricted nature of the backtracking in list matching. The
functions not empty list, list head, list tail, conc, and slice are library
functions which give access to the C data structure which represents the
Asf+Sdf lists. In this way the generated C code needs no knowledge of the
internal list structure. We can even change the internal representation of lists
without adapting the generated C code, by just replacing the library functions.
The function term equal checks the equality of two terms.
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ATerm and(ATerm arg0, ATerm arg1) {

if(check_sym(arg0,truesym))

return arg1;

if(check_sym(arg0,falsesym))

return arg0;

return make_nf2(andsym,arg0,arg1);

}

Fig. 6. Generated C code for the and function of the Booleans.

When specifications grow larger, separate compilation becomes mandatory.
There are two issues related to the separate compilation of Asf+Sdf specifica-
tions that deserve special attention. The first issue concerns the identification
and linking of names appearing in separately compiled modules. Essentially, this
amounts to the question how to translate the Asf+Sdf names into C names.
This problem arises since a direct translation would generate names that are too
long for C compilers and linkage editors. We have opted for a solution in which
each generated C file contains a “register” function which stores at run-time for
each defined function defined in this C file a mapping between the address of
the generated function and the original Asf+Sdf name. In addition, each C file
contains a “resolve” function which connects local function calls to the corre-
sponding definitions based on their Asf+Sdf names. An example of registering
and resolving can be found in Figure 8.

The second issue concerns the choice of a unit for separate compilation. In
most programming language environments, the basic compilation unit is a file.
For example, a C source file can be compiled into an object file and several
object files can be joined by the linkage editor into a single executable. If we
change a statement in one of the source files, that complete source file has to be
recompiled and linked with the other object files.

In the case of Asf+Sdf, the natural compilation unit would be the mod-
ule. However, we want to generate a single C function for each function in the
specification (for efficiency reasons) but Asf+Sdf functions can be defined in
specifications using multiple equations occurring in several modules. The solu-
tion is to use a single function as compilation unit and to re-shuffle the equations
before translating the specification. Equations are thus stored depending on the
module they occur in as well as on their outermost function symbol. When the
user changes an equation, only those functions that are actually affected have
to be recompiled into C code. The resulting C code is then compiled, and linked
together with all other previously compiled functions.

3 Memory Management

At run-time, the main activities of compiled Asf+Sdf specifications are the
creation and matching of large amounts of terms. Some of these terms may even
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ATerm set(ATerm arg0) {

if(check_sym(arg0,listsym)) {

ATerm tmp0 = arg_0(arg0);

ATerm tmp1[2];

tmp1[0] = tmp0; tmp1[1] = tmp0;

while(not_empty_list(tmp0)) {

ATerm tmp3 = list_head(tmp0);

tmp0 = list_tail(tmp0);

ATerm tmp2[2];

tmp2[0] = tmp0; tmp2[1] = tmp0;

while(not_empty_list(tmp0)) {

ATerm tmp4 = list_head(tmp0);

tmp0 = list_tail(tmp0);

if(term_equal(tmp3,tmp4))

return set(list(conc(slice(tmp1[0],tmp1[1]),

conc(tmp3,conc(slice(tmp2[0],tmp2[1]),

tmp0)))));

tmp2[1] = list_tail(tmp2[1]);

tmp0 = tmp2[1];

}

tmp1[1] = list_tail(tmp1[1]);

tmp0 = tmp1[1];

}

}

return make_nf1(setsym,arg0);

}

Fig. 7. C code for the Set specification.

be very big (more than 106 nodes). The amount of memory used during rewriting
depends entirely on the number of terms being constructed and on the amount of
storage each term occupies. In the case of innermost rewriting a lot of redundant
(intermediate) terms are constructed.

At compile time, we can take various measures to avoid redundant term
creation (only the last two have been implemented in the Asf+Sdf compiler):

– Postponing term construction. Only the (sub)terms of the normal form must
be constructed, all other (sub)terms are only needed to direct the rewriting
process. By transforming the specification and extending it with rewrite
rules that reflect the steering effect of the intermediate terms, the amount
of term construction can be reduced. In the context of functional languages
this technique is known as deforestation [27]. Its benefits for term rewriting
are not yet clear.

– Local sharing of terms, only those terms are shared that result from non-
linear right-hand sides, e.g., f(X) = g(X,X). Only those terms will be shared
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void register xor() {
xorsym = "prod(Bool xor Bool -> Bool {left})";
register prod("prod(Bool xor Bool -> Bool {left})",

xor, xorsym);

}
void resolve xor() {

true = lookup func("prod(true -> Bool)");

truesym = lookup sym("prod(true -> Bool)");

false = lookup func("prod(false -> Bool)");

falsesym = lookup sym("prod(false -> Bool)");

not = lookup func("prod(not Bool -> Bool)");

notsym = lookup sym("prod(not Bool -> Bool)");

}
ATerm xor(ATerm arg0, ATerm arg1) {

if (check sym(arg0, truesym))

return (*not)(arg1);

if (check sym(arg0, falsesym))

return arg1;

return make nf2(xorsym,arg0,arg1);

}

Fig. 8. Generated C code for the xor function of the Booleans.

of which the sharing can be established at compile-time; the amount of shar-
ing will thus be limited. This technique is also applied in ELAN [8].

– Local reuse of terms, i.e., common subterms are only reduced once and their
normal form is reused several times. Here again, the common subterm has
to be determined at compile-time.

At run-time, there are various other mechanisms to reduce the amount of work:

– Storage of all original terms to be rewritten and their resulting normal forms,
so that if the same term must be rewritten again its normal form is immedi-
ately available. The most obvious way of storing this information is by means
of pairs consisting of the original term and the calculated normal form. How-
ever, even for small specifications and terms an explosion of pairs may occur.
The amount of data to be manipulated makes this technique useless.
A more feasible solution is to store only the results of functions that have
been explicitly annotated by the user as “memo-function” (see Section 5).

– Dynamic sharing of (sub)terms. This is the primary technique we use and it
is discussed in the next subsection.

3.1 Maximal Sharing of Subterms

Our strategy to minimize memory usage during rewriting is simple but effective:
we only create terms that are new, i.e., that do not exist already. If a term to be
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constructed already exists, that term is reused thus ensuring maximal sharing.
This strategy fully exploits the redundancy that is typically present in the terms
to be build during rewriting. The library functions to construct normal forms
take care of building shared terms whenever possible. The sharing of terms is
invisible, so no extra precautions are necessary in the code generated by the
compiler.

Maximal sharing of terms can only be maintained when we check at every
term creation whether a particular term already exists or not. This check implies
a search through all existing terms but must nonetheless be executed extremely
fast in order not to impose an unacceptable penalty on term creation. Using
a hash function that depends on the internal code of the function symbol and
the addresses of its arguments, we can quickly search for a function application
before creating it. The (modest but not negligible) costs at term creation time
are hence one hash table lookup.

Fortunately, we get two returns on this investment. First, the considerably
reduced memory usage also leads to reduced (real-time) execution time. Second,
we gain substantially since the equality check on terms (term equal) becomes
very cheap: it reduces from an operation that is linear in the number of subterms
to be compared to a constant operation (pointer equality). Note that the compiler
generates calls to term equal in the translation of patterns and conditions.

The idea of subterm sharing is known in the LISP community as hash consing
and will be discussed below.

3.2 Shared Terms versus Destructive Updates

Terms can be shared in a number of places at the same time, therefore they
cannot be modified without causing unpredictable side-effects. This means that
all operations on terms should be functional and that terms should effectively
be immutable after creation.

During rewriting of terms by the generated code this restriction causes no
problems since terms are created in a fully functional way. Normal forms are
constructed bottom-up and there is no need to perform destructive updates on
a term once it has been constructed. When normalizing an input term, this
term is not modified, the normal form is constructed independent of the input
term. If we would modify the input term we would get graph rewriting instead
of (innermost) term rewriting. The term library is very general and is not only
used for rewriting; destructive updates would therefore also cause unwanted side
effects in other components based on this term library.

However, destructive operations on lists, like list concatenation and list slic-
ing, become expensive. For instance, the most efficient way to concatenate two
lists is to physically replace one of the lists by the concatenation result. In our
case, this effect can only be achieved by taking the second list, prepending the
elements of the first list to it, and return the new list as result.

In LISP, the success of hash consing [1] has been limited by the existence of
the functions rplaca and rplacd that can destructively modify a list structure.
To support destructive updates, one has to support two kinds of list structures
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“mono copy” lists with maximal sharing and “multi copy” lists without maximal
sharing. Before destructively changing a mono copy list, it has to be converted
to a multi copy list. In the 1970’s, E. Goto has experimented with a Lisp dialect
(HLisp) supporting hash consing and list types as just sketched. See [25] for a
recent overview of this work and its applications.

In the case of the Asf+Sdf compiler, we generate the code that creates and
manipulates terms and we can selectively generate code that copies subterms in
cases where the effect of a destructive update is needed (as sketched above). This
explains why we can apply the technique of subterm sharing with more success.

3.3 Reclaiming Unused Terms

During rewriting, a large number of terms is created, most of which will not
appear in the end result. These terms are used as intermediate results to guide
the rewriting process. This means that terms that are no longer used have to be
reclaimed in some way.

After experimentation with various alternatives (reference counting, mark-
and-compact garbage collection) we have finally opted for a mark–and-sweep
garbage collection algorithm to reclaim unused terms. Mark-and-sweep collection
is more efficient, both in time and space than reference counting [20]. The typical
space overhead for a mark-sweep garbage collection algorithm is only 1 bit per
object.

Mark-and-sweep garbage collection works using three (sometimes two)
phases. In the first phase, all the objects on the heap are marked as ‘dead’.
In the second phase, all objects reachable from the known set of root objects
are marked as ‘live’. In the third phase, all ‘dead’ objects are swept into a list
of free objects.

Mark-and-sweep garbage collection is also attractive, because it can be imple-
mented efficiently in C and can work without support from the programmer or
compiler [7]. We have implemented a specialized version of Boehm’s conservative
garbage collector [6] that exploits the fact that we are managing ATerms.

4 Benchmarks

Does maximal sharing of subterms lead to reductions in memory usage? How
does it affect execution speed? Does the combination of techniques presented in
this paper indeed lead to an implementation of term rewriting that scales-up to
industrial applications?

To answer these questions, we present in Section 4.1 three relatively simple
benchmarks to compare our work with that of other efficient functional and
algebraic language implementations. In Section 4.2 we give measurements for
some larger Asf+Sdf specifications.
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Compiler Time (sec)

Clean (strict) 32.3

SML 32.9

Clean (lazy) 36.9

Asf+Sdf (with sharing) 37.7

Haskell 42.4

Opal 75.7

Asf+Sdf (without sharing) 190.4

Elan 287.0

Table 1. The execution times for the evaluation of 223.

4.1 Three Small Benchmarks

All three benchmarks are based on symbolic evaluation of expressions 2n mod 17,
with 17 ≤ n ≤ 23. A nice aspect of these expressions is that there are many ways
to calculate their value, giving ample opportunity to validate the programs in
the benchmark 2.

Note that these benchmarks were primarily designed to evaluate specific im-
plementation aspects such as the effect of sharing, lazy evaluation, and the like.
They cannot (yet) be used to give an overall comparison between the various
systems. Also note that some systems failed to compute results for the complete
range 17 ≤ n ≤ 23 in some benchmarks. In those cases, the corresponding graph
also ends prematurely. Measurements were performed on an ULTRA SPARC-5
(270 MHz) with 512 Mb of memory. So far we have used the following imple-
mentations in our benchmarks:

– The Asf+Sdf compiler as discussed in this paper: we give results with and
without maximal sharing.

– The Clean compiler developed at the University of Nijmegen [24]: we give
results for standard (lazy) versions and for versions optimized with strictness
annotations (strict).

– The ELAN compiler developed at INRIA, Nancy [8].
– The Opal compiler developed at the Technische Universität Berlin [16].
– The Glasgow Haskell compiler [21].
– The Standard ML compiler [3].

The evalsym Benchmark The first benchmark is called evalsym and uses
an algorithm that is CPU intensive, but does not use a lot of memory. This
benchmark is a worst case for our implementation, because little can be gained
by maximal sharing. The results are shown in Table 1. The differences between
the various systems are indeed small. Although, Asf+Sdf (with sharing) cannot
benefit from maximal sharing, it does not loose much either.
2 The actual source can be obtained at
http://adam.wins.uva.nl/∼olivierp/benchmark/index.html
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Fig. 9. Memory usage for the evalexp benchmark

The evalexp Benchmark The second benchmark is called evalexp and is
based on an algorithm that uses a lot of memory when a typical eager (strict)
implementation is used. Using a lazy implementation, the amount of memory
needed is relatively small.

Memory usage is shown in Figure 9. Clearly, normal strict implementations
cannot cope with the excessive memory requirements of this benchmark. Inter-
estingly, Asf+Sdf (with sharing) has no problems whatsoever due to the use
of maximal sharing, although it is also based on strict evaluation

Execution times are plotted in Figure 10. Only Clean (lazy) is faster than
Asf+Sdf (with sharing) but the differences are small.

The evaltree Benchmark The third benchmark is called evaltree and is
based on an algorithm that uses a lot of memory both with lazy and eager
implementations. Figure 11 shows that neither the lazy nor the strict imple-
mentations can cope with the memory requirements of this benchmark. Only
Asf+Sdf (with sharing) can keep the memory requirements at an acceptable
level due to its maximal sharing. The execution times plotted in Figure 12 show
that only Asf+Sdf scales-up for n > 20.

4.2 Compilation Times of Larger Asf+Sdf Specifications

Table 2 gives an overview of the compilation times of four non-trivial Asf+Sdf
specifications and their sizes in number of equations, lines of Asf+Sdf speci-
fication, and generated C code. The Asf+Sdf compiler is the specification of
the Asf+Sdf to C compiler discussed in this paper. The parser generator is an
Asf+Sdf specification which generates a parse table for an GLR-parser [26].
The COBOL formatter is a pretty-printer for COBOL, this formatter is used
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Fig. 10. Execution times for the evalexp benchmark

Specification Asf+Sdf Asf+Sdf Generated C Asf+Sdf C compiler
(equations) (lines) code (lines) compiler (sec) (sec)

Asf+Sdf compiler 1876 8699 85185 216 323

Parser generator 1388 4722 47662 106 192

COBOL formatter 2037 9205 85976 208 374

Risla expander 1082 7169 46787 168 531

Table 2. Measurements of the Asf+Sdf compiler.

within a renovation factory for COBOL [12]. The Risla expander is an Asf+Sdf
specification of a domain-specific language for interest products, it expands mod-
ular Risla specifications into “flat” Risla specifications [4]. These flat Risla speci-
fications are later compiled into COBOL code by an auxiliary tool. The compila-
tion times in the column “Asf+Sdf compiler” give the time needed to compile
each Asf+Sdf specification to C code. Note that the Asf+Sdf compiler has
been fully bootstrapped and is itself a compiled Asf+Sdf specification. There-
fore the times in this column give a general idea of the execution times that can
be achieved with compiled Asf+Sdf specifications. The compilation times in
the last column are produced by a native C compiler (SUN’s cc) with maximal
optimizations.

Table 3 gives an impression of the effect of maximal sharing on execution time
and memory usage of compiled Asf+Sdf specifications. We show the results
(with and without sharing) for the compilation of the Asf+Sdf to C compiler
itself and for the expansion of a non-trivial Risla specification.
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Fig. 11. Memory usage for the evaltree benchmark

Application Time (sec) Memory (Mb)

Asf+Sdf compiler (with sharing) 216 16

Asf+Sdf compiler (without sharing) 661 117

Risla expansion (with sharing) 9 8

Risla expansion (without sharing) 18 13

Table 3. Performance with and without maximal sharing.

5 Concluding Remarks

We have presented the techniques for the compilation of Asf+Sdf to C, with
emphasis on memory management issues. We conclude that compiled
Asf+Sdf specifications run with speeds comparable to that of other systems,
while memory usage is in some cases an order of magnitude smaller. We have
mostly used and adjusted existing techniques but their combination in the
Asf+Sdf compiler turns out to be very effective.

It is striking that our benchmarks show results that seem to contradict pre-
vious observations in the context of SML [2] where sharing resulted in slightly
increased execution speed and only marginal space savings. On closer inspection,
we come to the conclusion that both methods for term sharing are different and
can not be compared easily. We share terms immediately when they are cre-
ated: the costs are a table lookup and the storage needed for the table while the
benefits are space savings due to sharing and a fast equality test (one pointer
comparison). In [2] sharing of subterms is only determined during garbage col-
lection in order to minimize the overhead of a table lookup at term creation. This
implies that local terms that have not yet survived one garbage collection are
not yet shared thus loosing most of the benefits (space savings and fast equality



Compilation and Memory Management for ASF+SDF 213

0

50

100

150

200

250

300

350

400

450

500

550

600

650

17 18 19 20 21 22 23

tim
e 

(t
en

th
s 

of
 a

 s
ec

on
d)

Asf+Sdf
Asf+Sdf (no sharing)
Clean (lazy)
Clean (strict)
Opal
Haskell
SML
Elan

Fig. 12. Execution times for the evaltree benchmark

test) as well. The different usage patterns of terms in SML and Asf+Sdf may
also contribute to these seemingly contradicting observations.

There are several topics that need further exploration. First, we want to
study the potential of compile-time analysis for reducing the amount of garbage
that is generated at run-time. Second, we have just started exploring the im-
plementation of memo-functions. Although the idea of memo-functions is rather
old, they have not be used very much in practice due to their considerable mem-
ory requirements. We believe that our setting of maximally shared subterms will
provide a new perspective on the implementation of memo-functions. Finally,
our ongoing concern is to achieve an even further scale-up of prototyping based
on term rewriting.
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