
Debugging Eli-Generated Compilers with Noosa

Anthony M. Sloane

Department of Computing, Macquarie University
Sydney, NSW 2109 Australia
asloane@mpce.mq.edu.au

Abstract. Source-level tools are not adequate for debugging generated
compilers because they operate at the level of the generated implementa-
tion. It is inappropriate to expect compiler writers to be familiar with the
implementation techniques used by the generation system. A higher-level
approach presents debugging in terms of an abstract model of the im-
plementation. For example, finite-state machines might be shown while
debugging a scanner. This approach is inappropriate for developers who
are not compiler experts and even for experts may present more infor-
mation than is desirable.
An even higher-level approach is used by the Noosa graphical debugger
for the Eli compiler generation system. The compiler writer is required
to understand a simple execution model that involves concepts that they
already have to understand to write Eli specifications. Noosa allows high-
level data examination in terms of the input to the compiler and the
abstract trees upon which attribution is performed. An event system
allows fine-tuned control of program execution. The result is a debugging
system that enables developers to diagnose bugs without having to have
any knowledge of the underlying mechanisms used by their compiler.

1 Introduction

A variety of methods have been developed for automatically producing compilers
from specifications. Using these techniques, a compiler writer can write a high-
level specification of compiler functionality and a generation system will produce
an implementation that conforms to that specification. Compiler generation has
been successful mainly due to the existence of a range of specification notations
covering important sub-problems, and the development of efficient methods for
implementing these notations (for example, see [4,9,12,14,19]).

The major advantage of generation systems is that they enable a compiler
writer to concentrate on the important issues while the responsibility for produc-
ing a correct implementation rests with the system. A generation system that
is functioning correctly is no guarantee of a correct compiler, however, because
the specification may have bugs.

Compiler generation systems typically provide very little in the way of de-
bugging facilities. Source-level debuggers such as Dbx [8] or GDB [16] can be
applied to generated compiler implementations, but this approach is largely un-
satisfactory because it requires compiler writers to have specific knowledge about

S. Jähnichen (Ed.): CC’99, LNCS 1575, pp. 17–31, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



18 Anthony M. Sloane

the implementation methods used by the generator. Requiring such knowledge
defeats the main purpose of a generation system.

This paper describes the Noosa debugger for programs generated by the Eli
compiler generation system. Eli generates compilers using a collection of specifi-
cation notations including regular expressions for token description, context-free
grammars for concrete and abstract syntax, and attribute grammars for semantic
analysis and later phases.

Noosa presents a graphical view of the execution of a generated compiler in
terms of the input being processed by it. The compiler writer can examine how
their regular expressions and grammar productions were used to structure the
input. Access is also provided to major compiler data structures such as the ab-
stract trees upon which attribution takes place, environment structures and the
definition table. Attribute values of any tree node can be examined in a flexible
browsing system that is easily extended to new data types. The developer also
has access to an abstract event stream produced by the running compiler. User-
specified event handlers can be written in the Tcl language. This facility enables
the specification of complex debugging operations such as semantic breakpoints
and correlation of information from disparate sources.

The goal of Noosa is to provide debugging facilities that operate at the spec-
ification level, hiding the implementation details as much as possible. The aim
is to achieve a level of implementation-hiding similar to source-level debuggers
operating on programs compiled to machine language. In those debuggers the
developer is able to interact with their program’s execution in terms with which
they are familiar. For example, data can be accessed via variable names and the
control state is presented in terms of a stack of active routines and the statement
about to be executed. Knowledge of all of these aspects can be expected of any
programmer familiar with the source language.

Noosa does not present details of the implementation of compiler compo-
nents. According to this philosophy, if the specification of the compiler includes
regular expressions to describe token types then it is appropriate to present infor-
mation in terms of tokens, where they were located in the input, and the regular
expressions that matched them. Detail about the functioning of the finite-state
machine that implements the scanner is not suitable because it relies on knowl-
edge that the compiler writer may not have. This approach contrasts with other
debuggers for generated components that present a large amount of internal
detail.

Noosa can also work in combination with source-level tools. Eli allows arbi-
trary C code to be included in the generated compiler to implement abstract
data types or to code a part of the functionality that is hard to specify. To
accommodate debugging of this code, Noosa can be used in conjunction with
a source-level debugger. Thus specification-level and source-level debugging can
be undertaken at the same time.

Section 2 considers the execution model that should form the basis of a de-
bugger for generated compilers and describes the model used by Noosa. Section 3
describes the basic elements of the Noosa design with reference to the execution



Debugging Eli-Generated Compilers with Noosa 19

model. Section 4 illustrates the Noosa style of debugging by describing typical
compiler bugs and how Noosa would be used to diagnose them.

2 Execution Model

The functionality of a debugger is grounded in the facilities it provides for con-
trolling execution of the program and the methods by which the program’s state
can be examined. For example, in most source-level debuggers breakpoints allow
execution to be stopped when specific points in the code are reached. When
execution is stopped, the values of program variables can be printed. Some de-
buggers have more advanced features such as conditional and data-dependent
breakpoints or graphical displays of data structures, but the basic features are
common to all source-level debuggers.

The kind of execution control and data access provided by a debugger de-
pends intimately on an execution model that the debugger shares with its user.
An execution model is a description of the structure of a program execution in
terms of elementary actions and data items. An understanding of the program
code and the execution model used by a debugger is necessary for the user to be
able to operate debugger facilities and understand the output from debugging
operations. For example, to use breakpoints in a debugger for an imperative lan-
guage a user must understand the basic units of execution (e.g., statements) and
the way execution proceeds (e.g., step-wise execution of statements plus routine
calls). The state displayed by the debugger might also rely on the execution
model (e.g., a stack of currently active routine calls).

Different debuggers for the same language can have different execution mod-
els that reflect the outcomes of design decisions about the kind of debugging that
is to be permitted. For example, some source-level debuggers provide facilities
for debugging at the machine level such as instruction stepping or the ability to
examine the contents of registers. Other debuggers might omit such features on
the grounds that machine level details are not relevant for a user of a high-level
language. In general, the execution model to be used by a debugger depends on
the view of execution that the debugger is trying to present.

In the compiler generation domain there are choices of execution model. If
a source-level debugger is used to debug a generated compiler, the execution
model is one appropriate to the implementation language. Even if the compiler
writer is familiar with that language, they will in general not be experts in the
generated code. Thus the use of an implementation language execution model is
inappropriate.

At a higher level of abstraction lies a class of execution models based on
the methods used to implement compiler components. For example, a generated
scanner might use a finite-state machine implementation. An execution model
for a debugger operating at this level might include concepts such as finite-
machine states, input characters, and legal state transitions. Execution could be
presented in terms of the actual transitions performed during scanning, perhaps
with a visual representation of the machine.



20 Anthony M. Sloane

Some compiler tools offer tracing facilities at this level. For example, parsers
generated by YACC [7] and derivatives like Bison [3], can produce a trace of the
parsing process. The trace consists of events such as getting a token, shifting a
symbol, reducing via a rule, and changing parser state.

More user-friendly alternatives at this level exist in the form of debuggers that
present the same kind of information as a trace, but in a graphical, browsable
form. For example, Visual Parse++ from SandStone Technology Inc. [6] presents
the developer with an extremely detailed view of the operation of generated
parsers. Information presented includes depictions of the parse stack, lookahead
tokens and three-dimensional views of parse trees . The recently released Par-
seView debugger bundled with the latest version of the ANTLR tool [13] seems
to offer similar features.

The design of Noosa follows a higher-level approach. The execution model
used by Noosa does not include anything to do with the implementation of gener-
ated components. Of course, compiler writers may well need to know something
about component implementations in order to use Eli. For example, writing an
Eli grammar may require some knowledge of the LALR parsing method since
both of Eli’s parser generators use that method and the system will reject non-
LALR(1) grammars. Similarly, using Eli’s attribute grammar notations may re-
quire some knowledge of allowable patterns of attribute dependences and the
methods used by generated evaluators. The philosophy behind Noosa is that
knowledge of this kind is not needed during debugging.

Some anecdotal support for this position was obtained recently when Noosa
was used by final year students in an introductory compiler unit at Macquarie
University. The students were able to use Noosa to debug Eli specifications con-
taining regular expressions and context-free grammars. In this unit the students
are acquainted with the compilation phases and their purposes, but the imple-
mentation techniques used by the tools are only covered in outline form. Thus
there is some evidence that such knowledge is not necessary for debugging.

Justification for the Noosa position as a goal can also be obtained from
a recognition that the widespread availability of compiler generation systems
has resulted in many non-compiler experts attempting to develop compilers (or
compiler-like programs). For these users it is important that the debugging sys-
tem not rely on knowledge that they do not have.

It should be noted that the more advanced features in the debuggers men-
tioned above are presumably at least partly inspired by the more complex speci-
fication notations and implementation methods used in those systems compared
to Eli. For example, the ANTLR parsers use multiple symbol lookahead and more
advanced debugger support may well be necessary for the user to understand
what is happening. Whether this situation is an argument for more complex
debuggers or less complex specification notations and implementation methods
is unclear. In any event, Noosa operates within the environment provided by the
Eli notations and methods.

Figure 1 shows the execution model used by Noosa expressed in pseudo-
code. An Eli-generated program under the control of Noosa will scan the input



Debugging Eli-Generated Compilers with Noosa 21

attempting to locate tokens and trying to group those tokens into syntactic
phrases. When a complete phrase is recognised an abstract tree fragment will
be built to represent it and its components. Once the complete input has been
recognised the tree is then decorated with attribute values. Usually a side-effect
of one or more attribute evaluations will be to produce the compiler output. (To
simplify the discussion we ignore the fact that attribution can occur during tree
construction and that attribution can produce further trees which are in turn
attributed. Both of these aspects are also supported by Noosa.)

while there is more input do

get the next token

if a complete syntactic phrase has been recognised then

build an abstract tree fragment for the new phrase

while there are more tree attributes to evaluate do

perform an attribute evaluation

Fig. 1. Noosa’s execution model.

The concepts in the Noosa execution model are ones with which an Eli user
can be expected to be familiar. The form of tokens is specified by the user
using regular expressions or literals in the context-free grammar. The context-
free grammar also specifies the valid phrases. The user’s attribute grammar
describes the abstract tree structure and the attribute computations that must
be evaluated. These specification notations and their underlying concepts must
be understood before a compiler can be specified using Eli.

3 Noosa

Noosa’s design is based on the execution model presented in the previous sec-
tion. The input and the abstract tree play a central role in the user interface
appropriate to their prominence in the model. Other data items can be accessed
via a flexible browsing system designed to be easy to use and extensible to new
data types. An event mechanism is used to allow both the debugger and the user
to determine which actions are performed by the compiler being debugged and
when they occur.

The rest of this section describes the main elements of the Noosa design.
The discussion of features is structured according to the relevant elements of the
execution model. Some mundane features such as menu invocations, searching
in text windows, saving the context of text windows, file editing, on-line help,
etc. are omitted. Example screenshots are taken from a debugging session for an
Eli-generated C processor.



22 Anthony M. Sloane

3.1 Input

The starting point of a compilation is the input that is to be analysed and
translated. Thus the main user interface of Noosa features the input (Figure 2).

Fig. 2. Main Noosa window. The upper text window shows the compiler input (a
C word counting program). The lower text window is a transcript of debugging
output showing the phrase structure at the equality operator in the highlighted
if statement and the tokens in that if statement.

Noosa correctly accounts for input processing that obtains text from multiple
sources. For example, if the language has an “include” facility and the compiler
expands includes during parsing, the input text window will show the complete
input seen by the compiler. This removes any need for the user to guess what



Debugging Eli-Generated Compilers with Noosa 23

the compiler is working with or pre-process the input specially before debugging.
The user can ask Noosa for the original source of any part of the input.

3.2 Phrases and Tokens

Syntactic phrases and lexical tokens play a central role in the user’s understand-
ing of their compiler. Noosa enables the user to determine which phrases and
tokens are recognised by the compiler. Each one is associated with a region of the
input text. Thus Noosa’s “Phrase” and “Token” commands are invoked relative
to coordinates in the input text.

To see the phrases recognised at a particular location in the input the user
selects the location with the mouse and invokes “Phrase.” This action produces
a list of the concrete grammar productions that have been recognised whose
coordinate ranges overlap the indicated location. For example, the transcript
(bottom text window) in Figure 2 shows productions involved in recognising the
equality operator in the highlighted if statement. The productions are listed in
order from the axiom of the grammar (not shown) to the most specific. The
coordinate range beside each instance indicates the input recognised by that
instance.

The coordinate display for phrases is an instance of a “browsable value”
(indicated by the underline). Browsable values can be clicked to obtain behaviour
dependent on the kind of value. Clicking on a coordinate or coordinate ranges
causes the indicated input to be highlighted in the input text window. Thus
it is easy to see the input corresponding to a particular recognised production
instance.

The “Token” command operates in a similar fashion to “Phrase.” To see the
tokens scanned in a particular region the user selects the region in the input text
window with the mouse and invokes “Token.” The transcript lists the relevant
tokens (if any). For example, the transcript in Figure 2 shows the tokens from
the highlighted if statement. The coordinate range of each token is shown along
with the token code, intrinsic value1, length and lexeme. Tokens which are non-
literals and hence specified using regular expressions are also labelled with the
regular expression name from the user’s specification.

3.3 Abstract Tree

Once the input has been processed, focus switches to the abstract tree con-
structed during parsing. Noosa has two basic forms of tree display shown in
Figure 3. The displays show the region of the tree around the while condition
on line six of the input. Each node consists of the non-terminal it represents and
the (user-specified) name of the abstract production applied at the node. Nodes
are numbered for identification.
1 The intrinsic value distinguishes different instances of general token classes. For

example, the intrinsic value of an integer token might be the numeric value of the
integer. For identifiers it might be the index of the identifier string in a global string
table.



24 Anthony M. Sloane

Fig. 3. Abstract tree displays: “complete” tree above and “expandable” tree
below. Both windows are focussed on the node representing the getchar token
in the word counting program.

The upper version of the tree shows every node in a “traditional” tree style.
The lower version lays out nodes in an indented style which takes up less space
and allows subtrees to be selectively hidden. Siblings are connected by verti-
cal lines. Internal nodes are indicated by squares: white if the node’s children
are visible, black otherwise. Leaves are indicated by small black rectangles. In
both displays the node corresponding to the getchar identifier occurrence is
highlighted (indicated by the outline around the node).

Clicking on a node in a tree display causes the coordinate range of the node
and the abstract production applied at the node to be displayed in the transcript.
The coordinate range is also highlighted in the input window. Thus it is easy
to relate tree nodes to the input text. Browsing in the opposite direction is
also supported. Clicking on a location in the input window and invoking the
“Node” command in a tree window causes that tree display to focus on the node
farthest from the root whose coordinate range contains the selected location.
This mechanism is commonly used to quickly focus attention on relevant parts
of the tree.

3.4 Attributes

Each node in the abstract tree has a set of attributes associated with it. The
user’s attribute grammar specifies how the values of these attributes are to be



Debugging Eli-Generated Compilers with Noosa 25

calculated. Eli takes care of traversing the tree and calculating the attributes in
an order consistent with the dependences between them.

Using a tree display the user can express an interest in the value of one or
more attribute values. The right mouse button on a node brings up a menu of
attributes and their types. Each attribute has a setting with options “Show”,
“Show, stop” and “Ignore” (default). Selecting “Show” or “Show, stop” causes
Noosa to display the value of the attribute in the transcript when it is next
calculated. If “Show, stop” is selected, the execution of the compiler will also
stop when the attribute is evaluated. The state of the compiler can be examined
and a “Continue” command used to resume execution.

Figure 4 shows the transcript window after the user has selected “Show” for
all of the attributes of the identifier node representing the occurrence of nl in the
statement ++nl;. The Key attribute is a definition table key which the compiler
is using to represent the variable entity. The FunctionId attribute is a Boolean
value which is one if and only if this identifier represents a function.

Fig. 4. Attribute value display and browsing. Attribute values are displayed with
their node number, name and type. Structured values such as definition table
keys can be browsed. Here the first key represents a variable. It has been browsed
to reveal the properties of the variable, including the key representing its type.
The properties of the type have also been displayed.

In the attribute display some values will be browsable. The node number can
be clicked to cause the tree display to focus on that node. This feature is used to
switch attention quickly between nodes of interest. Also, the Key attribute value
is browsable. Since it is a definition table key clicking on it causes the values of
its properties to be displayed (middle part of Figure 4). In this case it has four
integer properties and a key property that represents the type of the variable.
In turn, clicking on that key brings up the properties of the type (bottom part
of the figure). Browsing in this way makes it easy to examine the relationships
between definition table keys which form the major representational mechanism
for information such as the compiler’s type system.



26 Anthony M. Sloane

Incidentally, the “unknown” value for the OilType property in Figure 4 indi-
cates that Noosa doesn’t currently know how to display values of this type. The
Eli library module exporting this type can be easily augmented with routines
for Noosa to use to obtain a textual representation. It is also straight-forward
to make values of new types browsable. This strategy keeps the knowledge of
data types with the modules that define them and allows the user to extend the
debugging system to support their own types.

3.5 Messages

Often bugs involve the compiler detecting errors when it should not. For ex-
ample, erroneous regular expressions or context-free grammar productions will
usually result in lexical or syntax errors during testing. In Eli each error mes-
sage is associated with a particular input coordinate. To aid in tracking down
this kind of error Noosa displays compiler messages and their coordinates in the
transcript. Clicking on the coordinate takes the user directly to the site of the
error from which tokens or phrases can be examined as described above. Sim-
ilarly, a semantic error message can be easily traced back to the relevant tree
nodes using the “Node” command.

3.6 Events

The capabilities discussed so far have been concerned with data viewing, with
one exception. The “Show, stop” command enables execution to be stopped
when a particular attribute is evaluated. Noosa also provides a more general
event mechanism that allows complex control of the execution. Noosa’s use of
events is similar to the way they are used in algorithm animation and monitor-
ing systems [1,2,15,17,18]. Abstract event systems have also been used in other
debuggers [5,10].

As the compiler executes, it generates a stream of abstract events. Each
event represents an action in the execution model. For example, there is an
event type to indicate that a token has been scanned. Other events represent
the recognition of a concrete production, the construction of the abstract tree,
and the evaluation of an attribute. Each event has parameters that distinguish
the event instances. For example, a token event had parameters that describe
the type of token, source coordinate, lexeme, and so on. Care is taken to ensure
that event types and their parameters refer only to user-level concepts.

Noosa uses the event stream to implement the facilities described previously.
The stream is also available to the user for more specific control. Event handlers
can be specified via the window shown in Figure 5. The left list shows the event
types and the right list the parameters of the currently selected event type. In
the middle are the names of user-specified handlers.

User-specified event handlers are written in the Tcl language [11]. Tcl is
a full-featured, imperative scripting language. Thus an event handler can per-
form arbitrary actions including querying event parameters, storing data for use
by other handlers, and displaying information in the Noosa transcript window.



Debugging Eli-Generated Compilers with Noosa 27

Fig. 5. Event handler window. The user is writing a handler for token events
so that the compiler will stop each time an else token is scanned. Calling the
n break procedure achieves this effect.

Space limitations prevent presentation of a complex example, but as a simple
illustration, the lower text window of Figure 5 shows a handler for token events
which will stop execution each time an else keyword is recognised. The handler
employs a conventional conditional statement checking the value of the lexeme
parameter of the event (available via a Tcl variable). The n_break procedure is
the published interface to Noosa’s execution control mechanism.

4 Debugging Situations

To illustrate the use of Noosa’s features, this section briefly considers a variety of
typical debugging situations. The situations chosen are intended to be represen-
tative of the sorts of bugs that are encountered by Eli users, but are not meant
to be exhaustive. In all cases it is assumed that the compiler input is correct; all
bugs reside in the user-supplied specifications.

4.1 Lexical Bugs

A lexical error occurs when the lexical analyser is not able to assign a token type
to some portion of the input. In the Eli context this means that an error exists
in either the concrete grammar literals or the regular expressions describing the
non-literal tokens. Eli-generated compilers report lexical errors by pointing to
the characters that cannot be scanned.

To diagnose a lexical error with Noosa the user would first browse the error
message coordinate to go to the problematic input location. Errors in literals are
usually obvious at this point. Otherwise, the “Token” command would be used



28 Anthony M. Sloane

to examine the token stream around the error location. Usually the erroneous
input should belong to one of the tokens surrounding the error and an insuffi-
ciently general regular expression is to blame. Less commonly, a non-literal token
specification has simply been omitted. Both of these cases are readily diagnosed
from the token stream.

4.2 Syntactic Bugs

Syntactic bugs arise in two ways. First, the concrete grammar may not describe
the right language. Often focussing in on the problem area will make the reason
obvious. Sometimes more information is needed. Eli-generated parsers incorpo-
rate error recovery strategies that will possibly insert or delete symbols in an
attempt to continue the parse. When this occurs the parser generates a mes-
sage noting the location from which parsing was continued. Thus the user can
easily determine the extent of the problem. In an error situation the “Phrase”
command will show the productions that were recognised as part of the error
recovery. This information may show that a portion of the input was recog-
nised using a production other than the intended one (leading to the syntax
error later). The ability to match production instances to input coordinates is
extremely useful in this type of situation.

Alternatively, a syntax error may be reported when the grammar is correct
but the scanner is returning the wrong type of token for some portion of the
input. For example, a real number may be scanned as three tokens: an integer, a
period, and another integer. This may occur because the regular expression for
a real number literal erroneously requires an exponent. The “Token” command
can be used to diagnose this kind of problem.

4.3 Semantic Bugs

In Eli-generated compilers semantic processing is largely specified using an at-
tribute grammar. Semantic bugs arise if the value of an attribute is incorrectly
computed. Thus localising these sorts of errors is a matter of observing the
value of attributes. Noosa’s attribute value display capabilities are suitable for
this purpose.

A semantic bug may be exhibited by an error message or the absence of an
error message. For example, a bug in the compiler’s handling of type rules may
result in an error message for a correctly-typed construct or a missing message
for an incorrectly-typed one. In either case the user needs to localise the problem
to the portion of the tree that represents the concerned construct. If a message
was produced, the coordinate provides access to the appropriate area of the
input. If a message is missing, presumably the user knows which part of the
input should have produced it. Once the relevant input location is known, the
“Node” command can be used to focus attention on the appropriate part of the
tree.

Attribute values of tree nodes around the error can be examined to diagnose
the problem. This may require multiple executions to focus in on an attribute



Debugging Eli-Generated Compilers with Noosa 29

whose value is incorrect. (Note that attribute storage may be reused, so the
value of an attribute computed earlier in the execution might not still exist to
be examined at the current execution point.) Usually when this has been done,
the user will have narrowed the problem down to a particular computation that
is producing the wrong value and the cause of the bug has been located.

Sometimes a semantic bug results from attribute computations being per-
formed in the wrong order. For example, the definition of an applied identifier
occurrence might be looked up before relevant defining occurrences have been
processed. This kind of error is often due to missing dependencies between at-
tribute computations. It is usually sufficient to display the values of the attributes
and to hand verify whether the order is satisfied by the order in which the val-
ues are printed. Once this kind of problem has been diagnosed, a fix must be
devised in the form of additional dependencies. Noosa does not assist with static
dependence analysis because its emphasis is on dynamic information. A similar
design decision arises for imperative language debuggers when facilities such as
static call graph display are considered.

Complex bugs can be diagnosed with the use of special-purpose event han-
dlers. Since Noosa event handlers are Tcl code they can perform arbitrary com-
putations. In particular, they can store information in global variables for access
by other handlers and display information in Noosa’s transcript.

For example, Eli’s name analysis modules represent scopes as environments
holding mappings from identifier names to definition table keys. Suppose that the
user wishes to know the tree nodes corresponding to scopes that have at least one
identifier defined in them. This can be achieved by three cooperating handlers:
1) one on “an attribute of type Environment has been evaluated” events to
record the nodes which have environment attributes, 2) one on “a mapping has
been added to an environment” events to increment a per-environment count,
and 3) one on the “finalisation” event to print the list of nodes when execution
is complete. (For the purposes of this example, it is assumed that only nodes
representing scopes have environment attributes.)

Handlers can be saved in files and loaded into other Noosa sessions. Thus
high-level debugging functionality can be reused and shared between users.

4.4 Source-Level Bugs

An Eli-generated compiler may have user-supplied code to implement function-
ality not present in the Eli libraries. For example, abstract data type (ADT)
implementations can be provided. Values of user-defined data types can be used
in attribute computations.

Problems in user-supplied code can be diagnosed using a source-level de-
bugger. While a debugger can be used independently of Noosa, a cooperative
strategy is an advantage because it allows source-level behaviour to be examined
in concert with high-level behaviour. For example, attributes of tree nodes may
have types which are defined by a user-supplied module. It is useful to be able
to examine the values of the attributes in their tree context while debugging the
module.



30 Anthony M. Sloane

Noosa allows source-level debugging to interoperate with specification-level
debugging. In this case the source-level debugger runs as a child process of Noosa
and the compiler is a child of that process. The event stream implementation
“bypasses” the intermediate process so that Noosa is largely unaffected by the
presence of the other debugger. The only complication from the user perspective
is a need to be aware of which debugger has control at a given moment. For
example, while the compiler is stopped at a source-level breakpoint Noosa has
no access to the process, and vice versa. In practice this potential confusion is
easily handled.

5 Conclusion

Noosa provides debugging functionality that operates at the level of the user’s
Eli specifications. Thus the execution of a generated compiler can be understood
without knowledge of its internals. The focus is on the main compiler data items:
the input and the abstract tree. A text-based browsing facility makes display of
other data convenient and extensible. An abstract event stream enables the user
to formulate sophisticated queries about the execution. While Noosa is targetted
to Eli and its notations, the same general approach should be applicable to other
compiler generation systems and specification methods.

Future work will concentrate on extending Noosa to incorporate specification
views. This development will aid in the use of Noosa for execution-based specifi-
cation understanding. Also, it will enable additional debugging capabilities to be
triggered from the specifications rather than via the tree. For example, the user
might express interest in the value of an attribute in a particular rule context by
clicking on an attribute occurrence in that context. Other work is investigating
debugging facilities based on the use of program slicing techniques at both the
specification-level and on compiler intermediate forms.

Acknowledgements

Much of the functionality and style of Noosa has been influenced by past and
current members of the Eli project. In particular, Bill Waite, Bob Gray, Uwe
Kastens, Basim Kadhim and Matthias Jung have all contributed valuable sug-
gestions, insights, comments and, in most cases, code to enable Eli and Noosa
to interoperate. Thanks to them all. Noosa was implemented by the author with
assistance from Tony Vanderlinden and Marianne Brown. The referees also made
useful suggestions that improved the presentation of this paper.

References

1. Marc H. Brown. Algorithm Animation. The MIT Press, Boston, MA, 1988. 26
2. Marc H. Brown. Zeus: a system for algorithm animation and multi-view editing.

Research Report No.75, Digital Equipment Corporation Systems Research Center,
February 1992. 26



Debugging Eli-Generated Compilers with Noosa 31

3. Charles Donnelly and Richard Stallman. Bison—the YACC-compatible parser gen-
erator. Free Software Foundation, 1.25 edition, November 1995. 20

4. Robert W. Gray, Vincent P. Heuring, Steven P. Levi, Anthony M. Sloane, and
William M. Waite. Eli: A complete, flexible compiler construction system. Com-
mun. ACM, 35(2):121–131, February 1992. 17

5. David R. Hanson. Event associations in SNOBOL4 for program debugging. Softw.
Pract. Exper., 8:115–129, 1978. 26

6. SandStone Technology Inc. Visual parse++. http://www.sand-stone.com. 20
7. S. C. Johnson. YACC – Yet another compiler-compiler. Computer Science Tech.

Rep. 32, Bell Telephone Laboratories, Murray Hill, N.J., 1975. 20
8. Mark A. Linton. The evolution of Dbx. In USENIX Summer Conference, pages

211–220, June 1990. 17
9. Hanspeter Mössenbock. A generator for production quality compilers. In D. Ham-

mer, editor, Proceedings of Third International Workshop on Compiler Compilers,
number 477 in Lecture Notes in Computer Science, pages 42–55. Springer-Verlag,
October 1990. 17

10. Ronald A. Olsson, Richard H. Crawford, W. Wilson Ho, and Christopher E. Wee.
Sequential debugging at a high level of abstraction. IEEE Software, 8(3):27–36,
May 1991. 26

11. John Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, 1994. 26
12. T. J. Parr, H. G. Dietz, and W. E. Cohen. PCCTS reference manual. SIGPLAN

Not., 27(2):88–165, February 1992. 17
13. T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Softw.

Pract. Exper., 25(7):789–810, July 1995. 20
14. Friedrich Wilhelm Schröer. The GENTLE Compiler Construction System. R.

Oldenburg, 1997. 17
15. Rok Sosic. Design and implementation of Dynascope. Computing Systems,

8(2):107–134, Spring 1995. 26
16. Richard M. Stallman and Roland H. Pesch. Debugging with GDB 4.17—The GNU

source-level debugger. Free Software Foundation, 1998. 17
17. John T. Stasko. A practical animation language for software development. In

International Conference on Computer Languages, pages 1–10, 1990. 26
18. John T. Stasko. Tango: a framework and system for algorithm animation. Com-

puter, 23(9):27–39, September 1990. 26
19. P. D. Terry. Compilers and compiler generators: an introduction with C++. Inter-

national Thomson Computer Press, 1997. 17


	Debugging Eli-Generated Compilers with Noosa
	Introduction
	Execution Model
	Noosa
	Input
	Phrases and Tokens
	Abstract Tree
	Attributes
	Messages
	Events

	Debugging Situations
	Lexical Bugs
	Syntactic Bugs
	Semantic Bugs
	Source-Level Bugs

	Conclusion
	References




